小麦基部小穗不育突变体的鉴定和相关cDNA片段克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦基部和顶部小穗常常不育是影响穗粒数的重要因素。推广的小麦品种中,顶部小穗不育的问题在很大程度上得到了解决。但大多数品种总有1~2个基部小穗不育,极少见到基部小穗完全可育的品种。因此,增加基部小穗的育性,进而增加穗粒数,是提高小麦产量的关键问题之一。我们利用EMS诱变基部小穗完全可育的小麦品系山农1186,获得了稳定遗传的基部小穗不育的突变体,命名为BSS(basal spikelet sterility)突变体。本研究对该突变体进行了农艺性状鉴定、小穗发育过程观察、遗传变异分析、相关基因片段克隆。主要结果如下:
     (1)10个突变体的基部有2~4个不育小穗,而山农1186基部小穗正常结实;与受体山农1186相比,10个突变株系的穗长、小穗数无显著变化,但穗粒数显著降低;突变株系的株高,穗下、倒二、倒四、倒五节间长度显著增加,表明株高的增加是由多个节间伸长造成的;大多数株系的旗叶、倒二叶、倒三叶宽度显著变窄。BSS突变体的农艺性状间存在相关关系。株高、穗下节间长和倒二节间长度与不育小穗数呈显著正相关;旗叶宽、倒二叶宽、倒三叶宽及穗粒数与不育小穗数呈极显著负相关。
     (2)对小穗发育的形态学观察发现,BSS突变体基部小穗在四分体时期开始退化,雌蕊、雄蕊、子房萎焉失水,变成模糊的一团组织,进而导致基部小穗不育。
     (3)从305对EST-SSR引物中筛选出28对在山农1186和BSS突变体之间具有稳定多态性的引物。28对EST-SSR引物在BSS突变体中检测到133个等位位点,每对多态性引物检测出2~6个等位位点,其中多态性等位位点为43个,占32.33%。
     (4)应用mRNA差异显示技术研究了受体山农1186和BSS突变体孕穗期幼穗的基因表达差异。获得了7个可能和基部小穗育性相关的cDNA片段:BSS_1~BSS_7。BSS_3与水稻、拟南芥等植物的琥珀酸脱氢酶具有很高的同源性(99%),推测BSS_3参与植物三羧酸循环,调节物质和能量的代谢,可能属于广谱性的调节基因;BSS_4与小麦含有保守F-box区域的EST序列ta94166的451~820区段同源性达到95%,与水稻F-Box蛋白质EAZ17658.1、EAY80184.1具有很高的同源性。推测BSS_4可能是F-Box基因,在小麦幼穗发育过程中调节B类基因的功能。
Basal and apical spikelets sterility was important factors influencing grain number per ear. Apical spikelets sterility had been solved to a large extent for wheat cultivars. While most wheat varieties still have 1~2 sterile distal spikelets, and it’s rare that all basal spikelets are fertile. So improving basal spikelets fertility, and finally increasing grain number per ear has become one of the key problems to increase wheat yield. We gained basal spikelets sterility mutant (BSS) via EMS inducing Shannong1186 which basal spikelets were completely fertile. In this study, we studied on it’s agronomic traits, development of the spikelets and the genetic variation. DDRT-PCR (mRNA differential display PCR) technology was applied in order to clone the genes related to basal spikelets. The results were as follows:
     (1) The investigation on agronomic traits showed that 2-4 distal spikelets of all the 10 mutant lines were sterility. However, the distal spikelets of Shannong1186 were fertile. Compared with Shannong1186, grains per spike of all the 10 mutant lines decreased significantly; plant height, length of the first, second, fourth and fifth node from top of all the mutant lines increased significantly. It indicated that the increased length of multi nodes led to the increase of plant height; the width of flag leaf, penultimate leaf and the third leaf from top for the most mutant lines decreased significantly. There were some correlation among agronomic characters. There were significant positive correlation between plant height and distal sterility spikelets per spike, between length of the first node from top and distal sterility spikelets per spike, between length of the second node from top and distal sterility spikelets per spike. The correlation coefficients between flag leaf width and distal sterility spikelets per spike, between penultimate leaf width and distal sterility spikelets per spike, between Width of the third node from topdistal sterility spikelets per spike, between grains per spikedistal sterility spikelets per spike were significant negative at the 0.01 level.
     (3) Observation on spikelet morphological development showed that distal spikelets of the mutant began to degrade in tetrad stage. Pistils, stamens and ovaries of mutants became wilt and turn to illegibility organism. Degeneration was the reason why distal spikelets of mutants were sterility. Distal spikelets of Shannong1186 could develop normally in tetrad stage.
     (4) 305 EST-SSR were screened and 28 ones amplified different fragments between Shannong1186 and BSS mutant. The 28 polymorphic primer sets produced 133 amplified fragments, 2~6 fragments per primer pair, of which 43 (32.33%) were polymorphic.
     (5)mRNA differential display was used to analyze the differential expression of genes between Shannong1186 young panicles and BSS mutant young panicles. Seven differential fragments related to basal spikelets had been obtained: BSS_1~BSS_7. BSS_3 had highly homology (99%) with succinate dehydrogenase (SDH) in rice and Arabidopsis Thaliana. The results suggested that BSS_3 maybe accommodate metabolism of substance and energy by tricarboxylic acid cycle (TCA cycle), and finally regulated basal spikelets development in wheat. BSS_3 may belong to a broad regulated gene. BSS_4 was of highly homology with F-Box gene (ta94166) and protien (EAZ17658.1, EAY80184.1). F-Box was very important to function of B-type gene that controled petal and stamen development.
引文
1.陈晓,陈彦惠,任永哲.植物开花转换的分子生物学研究[J].分子植物育种, 2005, 3(4): 557-565
    2.陈忠明,王秀娥,赵彦,张清平,王海燕.水稻“9311”EMS诱导突变体的分离与鉴定[J].分子植物育种, 2004, 2 (3): 331-335
    3.高翔,宁锟,宋哲民.小麦高产品种幼穗分化发育特性的研究[J].西北农业学报, 1995, 4(3): 1-7
    4.黄开红,卞祖华,石伟旗,蒋进章,黄群芝.小麦粒重分布特性及争重分析[J].江苏农业科学, 1992, (2): 8-9
    5.康华,梁振兴.小麦产量形成的栽培技术原理[M].北京:北京农业大学出版社, 1994, 222-237
    6.李存东,曹卫星.小麦小花原基分化和退化的动态模式与特征[J].中国农业科学, 1999, 32 (5): 98-100
    7.李存东,曹卫星,张月辰.小麦茎顶端原基分化的综合模式.植物学报, 2002, 44(3): 273-278
    8.李睿,蓝盛银,徐珍秀.水稻胚乳发育中线粒体向淀粉质体转变及琥珀酸脱氢酶的定位[J].电子显微学报, 2002, 21 (2): 118-122
    9.李宗霆,周燮.植物激素及其免疫检测技术[M].江苏:江苏科学技术出版社, 1996
    10.梁铁兵,雍伟东,谭克辉,徐继,种康.春化处理控制冬小麦的小穗发育[J].植物学报, 2001, 43(8): 788-794
    11.刘康.棉花纤维发育的蛋白质组学研究[D].南京农业大学硕士论文, 2006
    12.刘克礼,高聚林,张铁山,张永平,张玉贵,刘凯.春小麦幼穗分化进程及其与植株生长发育关系[J].麦类作物学报. 2003, 23(3): 58-63
    13.罗琼,朱立煌.水稻花发育的分了生物学研究进展[J].遗传, 2002, 24 (1): 87-93
    14.马元喜.协调小麦幼穗发育三个两极分化过程增加穗粒数.中国小麦栽培研究新进展[M].北京:农业出版社, 1993
    15.孟繁静.植物花发育的分子生物学[M].北京:中国农业出版社, 2000: 86-105
    16.米国华,李文雄.温光互作对春性小麦小穗建成的效应[J].作物学报, 1999, 25 (2): 186-192
    17.弭忠祥,赵小钒,胡宝忠,陆印.大豆种子发育阶段种皮细胞壁表面糖蛋白的变化[J].大豆科学, 1999, 18(1): 560-564
    18.秘彩莉,黄占,何聪芬,朱正,马闻师,沈银柱.小麦早熟突变体抽穗期的遗传分析[J].作物学报, 2003, 29 (5): 794-796
    19.彭永欣.小麦栽培与生理[M].北京:农业出版社, 1992, 46-47
    20.沈关心,朱慧芳,张悦,王硕,朱志刚,周春.菌落PCR和质粒PCR对转化菌的筛选[J].免疫学杂志, 2000, 16 (2): 149-151
    21.史卫东,李景欣,徐寿军,陈贺芹,侯立白,何平,侯秀英,黄国坤.沈阳地区冬小麦幼穗分化规律的研究[J].内蒙古民族大学学报, 2006, 21(3): 300-304
    22.田纪春,王延训,赵亮.不同类型超级小麦品种小花分化及产举构成因素的相关性分析[J].山东农业科学, 2005, 1: 14-19
    23.王俊英,赵春江,杨宝祝.小麦小花发育与退化的研究[J].华北农学报, 1996, 11 (2): 9-13
    24.王树安.玉米、小麦的花粒发育及穗粒数调控.第五次全国作物栽培生理研讨会. 1995, 10-13
    25.王永胜,王景,段静雅,王金发,刘良式.水稻极度分蘖突变体的分离和遗传学初步研究[J].作物学报, 2002, 28(2): 235-239
    26.王沅,田正国.小麦小花发育不同时期土壤干早对成花与成粒的影响[J].作物学报, 1982, 8(4): 229-236
    27.王兆龙,曹卫星,戴廷波.小麦小花两极分化中内源植物激素与糖氮含量的变化特征[J].作物学报, 2001, 27(4): 447-452
    28.王志敏,王树安,苏宝林.小麦穗粒数的调节II开花前遮光对穗碳水化合物代谢和内源激素水平的影响[J].华北农学报, 1997, 12(4): 42-47
    29.魏育明,郑有良.内源激素对小麦可育小花数的调控[J].四川农业大学学报, 1998, 16(3): 290-293
    30.魏育明,郑有良.内源激素与多小穗小麦幼穗分化持续时间的关系[J].麦类作物学报, 2000, 20(2): 35-38
    31.徐文忠,雍伟东,徐云远,梁铁兵,白薇,种康,谭克辉,许智宏,朱至清.利用反义RNA技术分析春化相关基因Ver17在冬小麦花发育过程中的功能[J].植物生理与分子生物学学报, 2005, 31(l): 71-77
    32.薛香,郜庆炉.光温生态因子对冬小麦幼穗分化影响的研究[J].中国生态农业学报, 2005, 13(4): 56-60
    33.叶俊,吴建国,杜婧,郑希,张志,石春海.水稻“9311”突变体筛选和突变体库构建[J].作物学报, 2006, 32(10): 1525-1529
    34.于振文.不同密度条件对冬小麦小花发育的影响.作物学报, 1984, 1(3): 185-194
    35.余松烈.山东小麦[M].北京:农业出版社, 1990, 351-353
    36.岳兵,邢永中.水稻抽穗期分子遗传研究进展[J].分子植物育种, 2005, 3(2): 222-228
    37.张国泰.小麦顶小穗形成特点及其与大穗形成的关系[J].作物学报, 1989, 11: 349-354
    38.庄东红,欧阳永长,胡忠.苦瓜MAP30基因原核表达载体的构建和PCR快速检测重组子的研究[J].遗传, 2004, 26 (5): 701-704
    39.周小云,计巧灵,刘亚萍.低能离子注入对小麦种子发芽及幼苗生理生化的影响[J].生物技术, 2005, 15(2): 69-72
    40.朱云集,崔金梅,郭天财,王晨阳,张三坤,李九星.温麦6号生育规律极其超高产栽培关键技术研究.作物学报[J], 1999, 24(6): 947-951
    41.朱云集,崔金梅,王晨阳,郭天财,夏国军,刘万代,王永华.小麦不同生育时期施氮对穗花发育和产量的影响[J].中国农业科学, 2002, 35(11): 1325-1329
    42. Ambrose B A, Lemer D R, Ciceri P Padilla C M, Yanofsky M F, Schmidt RJ. Molecular and genetic analyses of Silky1 gene reveal conservation in floral organ specification between eudicots and monocots [J]. Molecular Cell, 2001, 5: 569-579
    43. Angenent G C, Franken J, Busscher M, Dijken A , Went J L, Dons H J, Tunen A J. A novel class of MADS box genes is involved in ovule development in petunia [J]. Plant Cell, 1995, 7: 1569-1582
    44. Araki T. Transition from vegetative to reproductive phase [J]. Curr Opin Plant Biol, 2001, 4: 63-68
    45. Bangerth F. Dominance among fruits/sinks and the search for correlative signal [J]. Physiol Plant, 1989, 76:608-614
    46. Boss P K, Bastow R M, Mylne J S, Dean C. Multiple pathways in the decision to flower: enabling, promoting, and resetting [J]. Plant Cell, 2004, 16: 518-531
    47. Bowman J L, Smyth D R , Meyerowitz E M. Genetic interactions among floral homeotic genes of Arabidopsis [J]. Development, 1991, 1 (12): 1-20
    48. Bradley D, Carpenter R, Copsey L Vincent C, Rothstein S, Coen E. Control of inflorescence architecture in Antirrhinum [J]. Nature, 1996, 376: 791-797
    49. Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsi [J]. Science, 1997, 275: 80-83
    50. Cantrell R G, Haro A E S. Selection for spikelet fertility semidwarf durum wheat population [J]. Crop Sci, 1986, 26: 691-693
    51. Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development [J]. Nature, 1991, 353: 31-37
    52. Coen E S, Nugent J. Evolution of flowers and inflorescences [J]. Development Suppl, 1994, 107-116
    53. Coen E S, Romero J M, Doyle S, Elliott R, Murphy G, Carpenter R. floricaula: a homeotic gene required for flower development in Antirrhinum majus [J]. Cell, 1990, 63: 1311-1322
    54. Colombo L, Franken J, Koetje E, Went J, Dons H J, Angenent GC, Tunen AJ. The petunia MADS box gene FBP11 determines ovule identity [J]. Plant Cell, 1995, 7: 1859-1868
    55. Corbesier L, Coupland G. Photoperiodic flowering of Arabidopsis: integrating genetic and physiological approaches to characterization of the floral stimulus [J]. Plant Cell and Environment, 2005, 28: 54-66
    56. Cottrell J K, Dele J E, Jeff C B. The effects of day length and treatment with gibberellic acid on spikelet initiation and development in clipper barley [J]. Ann Bot, 1982, 50: 57-68
    57. David R S. Morphogenesis of flowers-our evolving view [J]. Plant Cell, 2005, 17: 330-341
    58. Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky M. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity [J]. Curr Biol, 2004, 14: 1935-1940
    59. Doebley J, Stec A, Hubbard L. The evolution of apical dominance maize [J]. Nature, 1997, 386: 485-488
    60. Doi K, Fuse T, Yananouchi U, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and contrals FT-like gene expression independently of Hdl [J]. Genes Dev, 2004, 18(8): 926-93
    61. Fischer R A. Number of kernels in wheat crop and the influence of solar radiation and temperature [J]. J Agric Sci, 1985, 105: 447-461
    62. Fischer R A, Stockman Y M. Increased kernel number in Norin10 derived dwarf wheat: Evaluation of the cause [J]. Plant Physiol, 1986,13: 767-784
    63. Fornara F, Paienicova L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Dee L Z, Altamura M M, Colombo L, Kater M. Functional characterization of OsMADS18, a member of the API/SQUA subfamily of MADS box Genes [J]. Plant Physiol, 2004, 135: 2207-2219
    64. Gale M D, Devos K M. Comparative genetics in the grasses [J]. Proc Nat Acad Sci, 1998, 95: 1971-1974
    65. Goremykin V V, Hansmann S, Martin W F. Evolutionary analysis of 58 proteins encoded in six completely sequenced chloroplast genomes: revised molecular estimates of two seed plant divergence times [J]. Plant Syst Evol, 1997, 206: 337-35
    66. Greene E A, Codomo C A, Taylor N E. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis [J], Genetics, 2003, 164: 731-740
    67. Hama E, Takumi S, Ogihara Y, Murai K. Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats [J]. Planta, 2004, 218: 712-720
    68. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin S Y, Antonio B A, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush G S, Sasaki T. A high-density rice genetic linkage map with2275 markers using a single F2 population [J]. Genetics, 1998, 148: 479-494
    69. Hay R K M, Ellis R P. The control of flowering in wheat and barley: what recent advances in molecular genetics can reveal [J]. Ann Bot, 1998, 82: 541-554
    70. Hitta M S, Huang N, Courtois B, Venuprasad R, Shashidhar H E, Zhuang J Y, Zheng K L, Liu G F, Wang G C, Sidhu J S, Srivantaneeyakul S, Singh V P, Bagali P G, Prasanna H C, McLaren G, Khush G S. Identification of QTL for growth-and grain yield-related traits in rice across nine locations of Asia [J]. Theor Appl Genet, 2003, 107: 679-690
    71. Itoh J I, Hasegawa A, Kitano H, Yasuo Nagato. A recessive heterochronic mutation, plastochron1, shortens the plastochron and elongates the vegetative phase in rice [J]. Plant Cell, 1998, 10: 1511-1521
    72. Izawa T, Oikawa T, Tokutomi S , Okuno K, Shimamoto K. Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant) [J]. Plant J, 2000, 22: 391-399
    73. Izawa T, Takahashi Y J, Yano M. Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis [J]. Curr opin in Plant Biol, 2003, 6: 113-120
    74. J.萨姆布鲁克, D. W.拉塞尔.分子克隆实验指南(第三版) [M].北京:科学出版社, 2002
    75. Jeon J S, Jang S, Lee S. Leafy hull sterile is a homeotic mutation in rice MADS box gene affecting rice flower development [J]. Plant Cell, 2000, 12: 871-884
    76. Kamlofski C A, Antonelli E, Bender C, Jaskelioff M, Danna C H, Ugaldec R, Acevedo A. A lesion-mimic mutant of wheat with enhanced resistance to leaf rust [J]. Plant Pathol, 2007, 56: 46-54
    77. Kang H G, Jeon J S. Identification of class B and class C floral organ identity genes from rice [J]. Plant Mol Bio, 1998, l38 (6): 1021-1029
    78. Kang H G, Noh Y S, Chung Y Y , Costa M A, Kyungsook A, Gynheung A. Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS-box gene in tobacco [J]. Plant Mol Biol, 1995, 29: 1-10
    79. Kempin S A, Mandel M A, Yansosky M F. Conversion of perianth into reproductive organs by ectopic expression of tobacco floral homeotic gene NAGI [J]. Plant physio1, 1993, 103: 1041-1046
    80. Kim Y S, Schumaker K S, Zhu J K. EMS mutagenesis of Arabidopsis [J]. Methods in Molecular Biology, 2004, 323: 101-103
    81. Kirby E J M. Analysis of leaf, stem and ear growth in wheat from terminal spikelet stage to anthesis [J]. Field Crops Res, 1988, 18:127-140
    82. Kitsaki C K, Drossopoulos J B, Aivalkis G , Anastasiadou F, Delis C. In vitro studies of ABA and ethephon induced abscission in olive organs [J]. J of Hort Sci and Biotech, 1999, 74(1): 19-25
    83. Kojima S, Takahashi Y, Kobayashi Y , Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions [J]. P1ant Cell Physiol, 2002, 43: 1096-1105
    84. Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. Frizzy panicle is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets [J]. Development, 2003, 130: 3841-3850
    85. Komatsu M, Maekawa M, Shimamoto K , Junko Kyozuka. The LAX1 and FRIZZY PANICLE2 genes determine the inflorescence architecture of rice by controlling rachis-branch and snikelet development [J]. Developmental Biol, 2001, 231: 364-373
    86. Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana [J]. Annu Rev Plant Biol, 2004, 55: 521-535
    87. Kyozuka J, Kobayashi T, Morita M, Shimamoto K. Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B, C genes [J]. Plant Cell Physiol, 2000, 41: 710-718
    88. Kyozuka J, Konishi S, Nemoto K , Izawa T, Shimamoto K. Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation [J]. PNAS, 1998, 95: 1979-1982
    89. Kyozuka J, Shimamoto K. Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants [J]. Plant Cell Physiol, 2003, 43: 130-135
    90. Kyozuka J. Molecular biology of rice [M]. Edited by Shimamoto K. Tokyo: Springer-Verlag, 1999: 43-58
    91. Laurie D A. Comparative genetics of flowering time [J]. Plant Mol Biol, 1997, 35:167-177
    92. Lee B T, Martin P, Bangerth F. Phytohormone levels in the florets of a single wheat spikelet during pre-anthesis development and relationships to grain set [J]. J of Exp Bot, 1988, 39(204): 927-933
    93. Lejeune P, Prinsen E. Abortion in a stress-sensitive maize inbred [J]. Plant Physiol, 1998, 25: 481-488
    94. Levy Y Y, Dean C. The transition to flowering [J]. Plant Cell, 1998, 10: 1973-1989
    95. Li Z K, Yu S B, Lafitte H R , Huang N, Courtois B, Hittalmani S, Vijayakumar C H, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S. QTL×environment interactions in rice heading date and plant height [J]. Theor Appl Genet, 2003, 108: 141-153
    96. Lin S Y, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, using backcross inbred lines [J]. Theor Appl Genet, 1998, 96: 997-1003
    97. Luo D, Carpenter R, Vincent C, Copsey L, Coen E. Origin of floral asymmetry in Antirrhinum [J]. Nature, 1996, 383: 794-799
    98. Ma H. The unfolding drama of flower development: recent results from genetic and molecular analyses [J]. Genes Dev. 1994, 8(7): 745-756
    99. Mouradov A, Cremer F, Coupland G. Control of flowering time: interacting pathways as a basis for diversity [J]. Plant Cell Suppl, 2002, 14: 5111-5130
    100. Munster T, Wingen L U, Faigl W. Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-functiongenes of grasses [J]. Gene, 2001, 262(1-2): 1-13
    101. Murai K, Takumi S, Koga H , Ogihara Y . Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat[J]. Plant, 2002, 29: 169-181
    102. Nagasawa N, Miyoshi M, Sano Y. SUPERWOMANI and DROOPING LEAF genes control floral organ identity in rice [J]. Development, 2003, 130: 705-718
    103. Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice [J]. Plant, 1998, 36: 82-93
    104. Patton E E, Willmes A R, Tyers M. Combinatorial control in ubiquitin-dpendent proteolysis: don’t skp the F-box hypothesis [J]. Trends Genet, 1998, 14: 236-243
    105. Pelaz S, Ditty G S, Baumann E , Wisman E, Yanofsky M F. B and C floral organ identity functions require SEPALLATA MADS-box genes [J]. Nature, 2001a, 405: 200-203
    106. Pelaz S, Gustafson-Brown C, Kohalmi S E , Zhongchi Liu. APETALAI and SEPALLATA3 interact to promote flower development [J]. Plant J, 2001b, 26: 385-394
    107. Peterman C J, Sears R G, Kanemasu E T. Rate and duration of spikelet initiation in 10 winter cultivars [J]. Crop Sci, 1985, 25: 221-225
    108. Pilar C, Nick L, John D , Coen E. The TCP domain: a motif found in proteins regulating plant growth development [J]. The Plant Journal, 1999, 18(2): 215-222
    109. Prasad K, Sriram P, Kumar C S , Kushalappa K, Vijayraghavan U. Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals [J]. Dev Genes Evol, 2001, 211: 281-90
    110. Prasad K, Vijayraghavan U. Double-stranded RNA interference of a rice PI/GLO paralog, OsMADS2, uncovers its second-whorl-specific function in floral organ patterning [J]. Genetics, 2003, 165: 2301-2305
    111. Pruitt R E, Bowman J L, Grossniklaus U. Plant genetics: a decade of integration [J]. Nature genetics, 2003, 3: 294-304
    112. Rahaman M S, Wilson J H. Determination of spikelet number in wheat: Effect of varying photoperiod on ear development [J]. Aust J Agric Res, 1978, 29: 469-476
    113. Reeves P H, Coupland G. Response of plant development to environment: control of flowering by day length and temperature [J]. Curr Opin Plant Biol, 2000, 3: 37-42
    114. Riechmann J L, Meyerowitz E M. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins APl, AP3, Pl, and AG is independent of their DNA-binding specificity [J]. Mol Biol Cell, 1997, 8(7): 1243-1259
    115. Sakata K, Antonio B A, Mukai Y. INE: a rice genome data–base with an integrated map view [J]. Nucleic Acids Res, 2000, 28: 97-101
    116. Samach A, Klenz J E, Kohalmi S E , Risseeuw E, Haughn G, Crosby W L. Theunusual floral ordans gene of Arabidopsis thaliana F-Box protein required for normal patterning and growth in the floral meristem [J]. Plant J, 1999, 20: 433-445
    117. Schmid M, Uhlenhaut N H, Godard F , Demar M, Bressan R, Weigel D, Lohmann J. Dissection of floral induction pathways using global expression analysis [J]. Development, 2003, 130: 6001-6012
    118. Shunichi K, Yuko O. DNA binding and dimerization specificity and potential targets for the TCP protein family [J]. The Plant Journal, 2002, 30(3): 337-348
    119. Silverstone A L, Tseng T S, Swain S M , Dill A, Jeong S Y, Olszewski N E, Sun T P. Functional analysis of SPINDLY in gibberellin signaling in Arabidopsis [J]. Plant Physiol, 2007, 143: 987-1000
    120. Simpson G G, Gendall A R, Dean C. When to switch to flowering [J]. Annu Rev Cell Dev Biol, 1999, 15: 519-550
    121. Stelmakh A F. Genetic systems regulating flowering response in wheat [J]. Euphytica, 1998, 100: 359-369
    122. Sterm W R. Floret surrival in wheat: significance of the time of floret in itiation relation to terminal spikelet formation [J]. J Agric Sci, 1982, 98: 257-292
    123. Takahashi Y, Shomura A, Sasaki T , Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity encodes they ubunit of protein kinase CK2[J]. Proc Natl Acad Sci, 2001, 98: 7922-7927
    124. Temnykh S, Park W D, Ayres N , Cartinhour S, Hauck N, Lipovich L, Cho Y G, Ishii T, McCouch S R. Mapping and genome organization of microsatellite sequences in rice [J]. Theor Appl Genet, 2000, 100: 697-712
    125. Theiben G. Development of floral organ identity: stories from the MADS house [J]. Curr Opin Plant Biol, 2001, 4: 75-85
    126. Theiβen G, Strater T, Fischer A , Saedler H. Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS box genes from maize [J]. Gene, 1995, 156: 155-166
    127. Tyagi A K, Mohanty A. Rice transformation for crop improvement and functional genomics [J]. Plant Sci, 2000, 158: 1-18
    128. Vandenbussche M, Zethof J, Souer E , KoesR, TornielliG B, PezzottiM, Ferrario S, AngenentG C, Gerats T. Toward the analysis of the petumia MADS box genefamily by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia [J]. Plant Cell, 2003, 15: 2680-2693
    129. Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes [J]. Cell, 1994, 78: 203-209
    130. Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, Yano M. Fine mapping of quantitative trait loci, Hd-1, Hd-2, and Hd-3, controlling heading date of rice, as single mendedian factors [J]. Theor Appl Genet, 1997, 97: 37-44
    131. Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map [J]. Theor Appl Genet, 1997, 95: 1025-1032
    132. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, NagamurY, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS[J]. Plant Cell, 2000, 12: 2473-2483
    133. Youssefian S. Pleitropic effects of the GA-insensitive rht dwarf gene in wheat [J]. Field Crops Res, 1992, 28: 191-210
    134. Yuan Q, Liang F, Hsiao J. Anchoring of rice BAC clones to the rice genetic map in silico [J]. Nucleic Acids Res, 2000, 28: 3636-3641
    135. Zenaida P, Dee L, Peter W M , Rigola D, Buono I D, Gorla M S, Kater M M, Colombo L. OsMADS13, a novel rice MADS-Box gene expressed during ovule development [J]. Dev Genet, 1999, 25: 237-244
    136. Zhao D Z, Yu Q L, Chen M , Ma H. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis [J]. Development, 2001, 128: 2735-2746
    137. Zhao X Y, Cheng Z J, Zhang X S. Over expression of TaMADS1, a SEPALLATA-like gene in wheat causes early flowering and the abnormal development of floral organs in Arabidopsis [J]. Planta, 2006, 223: 698-707
    138. Zhao X Y, Liu M S, Li J R , Guan C M, Zhang X S. The Wheat TaGI1, Involved in photoperoidic flowering, encodes an Arabidopsis GI ortholog [J]. 2005, Plant Mol Biol, 58(1): 51-62
    139. Zhou Y, Li W, Wu W, Chen Q, Mao D, Worland A J. Genetic dissection ofheading time and its components in rice [J]. Theor Appl Genet, 2001, 102: 1236-1242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700