小麦白粉病小种特异抗性新基因Pm-M53的遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由小麦专化型白粉菌(Blumeria graminis DC f.sp.tritici)引起的小麦白粉病几乎在所有小麦生产区都有发生,已成为影响小麦生产的主要病害之一。培育抗病品种是防治其流行最有效、最安全的方法,而有利抗性基因资源的挖掘和高效利用则是培育抗病品种的前提,开展遗传分析可为目标基因的高效利用和后续的克隆及其抗病机制研究奠定基础。
     M53(YAV2/TEZ//Aegilops squarrosa249)是硬粒小麦(Triticum durum,2n=4x=28,AABB)与粗山羊草(Aegilops tauschii,2n=2x=14,DD)的双二倍体人工合成种,其对北京地区白粉菌主流小种15号和扬州地区主流小种表现免疫。本研究通过抗谱分析研究了抗性基因的来源、遗传模式以及与已命名白粉病抗性基因在抗谱上的差异;利用AFLP和SSR标记以及非整倍体分析对目的基因进行了染色体定位和遗传作图;利用抗病基因具有保守功能域的特点,采用同源克隆的方法从M53基因组DNA中分离了抗病基因类似片段(RGA),结果如下:
     对抗病亲本M53和感病亲本宛7107的正反交F_1以及F_2和F_3分离群体进行了白粉菌接种,结果表明,F_1正反交均表现为抗病,说明抗性受显性核基因控制,而F_2单株则表现出抗感分离,x~2测验表明,抗感分离比例符合3∶1,达显著水平,说明抗性受显性单基因控制。F_3代植株的接种鉴定证实了F_2代表型鉴定结果的可靠性。为了追踪抗性基因的来源,我们对M53及其双亲Triticum durum(YAV2/TEZ)和Ae.squarrosa249分别在苗期和成株期进行接种鉴定,结果表明,YAV2/TEZ在两个时期均表现高感,而M53和Ae.squarrosa249则全生育期表现免疫,说明抗性基因来自Ae.squarrosa249,即来自粗山羊草,该基因暂命名为Pm-M53。
     截至目前,已定名的白粉病抗性基因中,总共有3个位于D组染色体上,分别为Pm2,Pm19和Pm24,对其载体品种Ulka/8~*Cc、XX186和赤鸭草进行了白粉菌15号生理小种接种鉴定,结果表明,Pm-M53在全生育期表现抗病,Pm19和Pm24则在全生育期表现感病;Pm2在苗期表现抗病,而在成株期表现感病,另外14个白粉菌生理小种在苗期接种也显示Pm-M53在抗谱上不同于Pm2、Pm19和Pm24,对其中5个小种表现感病,说明Pm-M53是小种特异性(race-specific)抗病基因,可能是一个新的白粉病抗性基因。
     分子标记技术已成为培育抗病品种、基因定位、遗传作图及图位克隆基因的主要手段和技术之一,目前已被广泛的应用于白粉病的研究。本研究结合AFLP、SSR和BSA技术,对来自杂交组合M53/宛7107的F_2作图群体进行了分析,在256对AFLP引物中,所有引物对在亲本M53和宛7107间都能扩增出30个以上位点,每对引物能够检测到1~11个多态性位点,在抗感池间筛选到多态性片段16个,其中Apm109和Apm161两个片段在抗亲和抗池中能够稳定重现,而在感亲和感池中无此带,用JoinMapV3.0和Kosambi公式对F_2作图群体的分析结果表明,这两个片段与目的基因紧密连锁,且位于目的基因的两侧,遗传距离分别为1.0和3.0 cM。标记Apm109在F_3的抗病单株中也能够稳定重现。从70个位于D组染色体的SSR标记中,在亲本及抗感池间筛选到重现性好的多态性标记标记5个,分别为Xwmc289,Xgwm583,Xgwm292,Xgwm191和Xwmc161,除Xgwm191位于5DS上外,其余4个标记均位于5DL上。对上述多态性SSR标记在群体中的分布进行了分析,结果表明,在LOD阈值为3.0时,位于5DL上的3个SSR标记Xwmc289、Xgwm583和Xgwm292与目的基因连锁,遗传距离分别为20.0、33.0和24.0 cM,并且分布于目的基因的两侧,初步说明目的基因位于5DL上。其中标记Xwmc289在M53和宛7107各存在两个共迁移片段,这两个共迁移片段在序列上存在很大差异,但均具有1个CT重复域和1个GA重复域,在M53中共迁移的两个目的片段的大小为159bp,在宛7107中对应的两个共迁移片段的大小为161bp,相对应的等位位点之间均有3个碱基的差异,一个为C/G碱基替换,另一个为GA重复域缺失。
     利用JoinMap V3.0对两个AFLP标记Apm109和Apm161,以及3个SSR标记Xwmc289、Xgwm583和Xgwm292联合进行了遗传作图,结果表明这些标记分布在目的基因Pm-M53的双侧,SSR标记Xgwm583和Xwmc289以及AFLP标记Apm161分布在一侧,Xgwm292和AFLP Apm109分布在目的基因的另一侧。从着丝粒近端(proximal)到远端(distal)的排列次序依次为Xgwm583、Xwmc289、Apm161、Pm-M53、Apm109、Xgwm292。其中3个SSR标记在染色体上的排列顺序与已经建立的小麦整合图谱是一致的,但标记之间的距离存在一定差异。由于两个AFLP标记Apm109和Apm161距离目的基因较近且位于目的基因的双侧,而3个位于5DL上的SSR标记又覆盖目标基因双侧的两个AFLP标记区,进一步说明目的基因Pm-M53位于5DL上,这点也通过距离目的基因最近的AFLP标记Apm109在两个中国春缺-四体材料(CSN5BT5D、CSN5DT5B)及两个双端体材料(CSDT5DS、CSDT5DL)中的扩增情况进行了证实,标记Apm109在CSN5BT5D和CSDT5DL上有目的特异带,而在CSN5DT5B和CSDT5DS上无此条带。
     在植物-病原菌相互作用中,不论何种植物类型还是与其作用的何种病原菌,植物抗病基因在结构上具有高度的保守性,因此根据R基因保守区设计特异或兼并引物、用PCR的方法从基因组DNA或诱导表达的转录本cDNA中寻找和克隆抗病基因是常用的方法。本研究根据GenBank中粗山羊草的部分抗病序列以及已克隆的大、小麦抗白粉病基因的核苷酸和氨基酸序列设计了非兼并和兼并引物,在M53和宛7107以及F_2单株组成的抗感池基因组DNA中进行了扩增,平均每对引物能够扩增出8个以上的位点。非兼并引物对RGAP-2和RGAP-6分别能够扩增出一条和两条多态性条带,即抗亲M53和抗池中有带,而在感亲和感池中无带,而所有兼并引物对在6%聚丙烯酰胺变性胶上均未扩增出肉眼可辨的多态性条带。我们对RGAP-2和RGAP-6产生的多态性片段分别进行了回收、克隆和测序,RGAP-2多态性片段大小331bp,而RGAP-6多态性片段之一的大小为259bp。对RGAP-2(331bp)和RGAP-6(259bp)的核苷酸序列在NCBI(http://www.ncbi.nih.gov/BLAST/)中进行相似性搜索(BLASTN)时发现,与RGAP-2和RGAP-6目的片段相似性最高的几个序列均来自粗山羊草,且都与抗病有关,具有明显的LZ-NBS-LRR或NBS-LRR抗病结构保守域。利用DNAStar软件的EditSeq模块对RGAP-6和RGAP-2多态性片段进行了核苷酸到氨基酸的序列翻译,RGAP-6(259bp)多态性片段无法翻译成氨基酸,而RGAP-2(331bp)能够翻译成氨基酸,推测RGAP-6(259bp)可能是内含子或者调控序列的一部分,而RGAP-2很可能是表达序列(外显子)的一部分。利用NCBI中的BLASTX对RGAP-2翻译的氨基酸序列进行同源搜索时发现,所有命中的序列均与抗病有关,且与来自粗山羊草的LZ-NBS-LRR型抗病蛋白序列同源性最高。在与RGAP-2同源性较高氨基酸序列的比较中发现,RGAP-2目的片段及其同源序列在I(V/L)IDD(K/I)WDK、N(N/E)CGSR(I/V)I(T/A)TTRI、PLS、KIL、KCGGVPLAII等序列上高度保守,与已知R基因NB功能域的kinase2、kinase3a和GLPLAII 3个结构域具有一定的相似性。在NCBI中利用rpsblast进行功能域搜索时发现RGAP-2目的片段含有保守域NB-ARC,与来自拟兰芥的R基因RPS-2、RPM1、RPP8和RPP13,番茄的R基因Prf,12C-1和12C-2,亚麻的R基因L6,以及与人和果蝇程序性死亡相关蛋白具有较高同源性,这些结果表明RGAP-2和RGAP-6两个感兴趣片段极可能来自粗山羊草,而RGAP-2很可能与粗山羊草的抗病性有关,但较低的相似性得分与较高的E值暗示这两个序列不同于任何已知的粗山羊草序列。
     此外,本文还就目的基因Pm-M53与已定名白粉病抗性基因的关系、白粉病的表型鉴定、Pm-M53遗传图谱与已构建遗传图谱的差异、位点特异性标记的转化,以及克隆的RGA片段与禾本科中已克隆R基因的关系、与植物中已克隆的白粉病抗性基因的关系、与小麦和大麦中白粉菌诱导抗性相关基因或候选基因的关系进行了讨论。对麦类白粉菌的生物学特性、白粉病抗性基因的发现及其相关分子标记的开发、白粉病抗性基因的遗传特点和抗白粉病分子育种策略、植物抗病机制及抗病基因的克隆、植物抗病性构筑策略以及AFLP标记技术的原理、发展、完善、优缺点及应用等方面进行了文献综述。
Wheat powdery mildew disease caused by Blumeria graminis DC f.sp.tritici is one of themost devastating diseases prevalent in the wheat production area worldwide.Development of resistant cultivars is the most cost efficient and environmental safe wayto prevent its epidemic. Mining effective resistance genes and resources, however, is theprerequisite to developing the resistant cultivars. Genetic dissection of the genes ofinterest provides a foundation for marker-assisted selection, subsequent gene isolationand for understanding of plant disease resistance mechanism.
     Aegilops tauschii (syn. Aegilops squarrosa, 2n=2x=14, DD) is the diploid donor of Dgenome of allohexaploid bread wheat (Triticum aestivum,2n=6x=42,AABBDD). Itcarries a wide variety of superior genes which can be transferred to bread wheat withoutmuch effort because the two species share D genome. M53 (YAV2/TEZ//Aegilopssquarrosa249) is the synthetic hexaploid wheat of Aegilops tauschii and tetraploidTriticum durum(2n=4x=28,AABB). It was introduced from CYMMIT and exhibitedeverlasting immunity to the predominant isolates of Blumeria graminis DC f.sp.tritici(Bgt) in Beijing and Yangzhou wheat fields of China. In this paper, we explored theorigin and the inheritance mode of the gene of interest carried by M53 and the differences of disease response patterns of the target gene from known powdery mildewresistant genes (Pm) through inoculation of an array of isolates of Bgt. Chromosomelocation and integrated genetic mapping of the gene of interest were done employingAFLP, SSR and a set of aneuploids with Chinese Spring (CS) genetic backgrounds.Considering the cloned R genes have functional and structural similarities in proteinsequences irrespective of host type and pest type, we designed both degenerate andspecific PCR primers based on the conserved motifs and isolated the resistant geneanalogs (RGAs) from genomic DNA of M53. The following are the major points:
     Under infection of isolate No. 15 of Bgt, which is prevalent in wheat fields of Beijing area,both of F_1 reciprocal crosses of M53/Wan7107 demonstrated resistant phenotypes.indicating the gene resides in the nucleus in a dominant form. Further investigation of F_2individuals showed that the gene of interest segregated in a Mendelian factor waysuggested by significant 3:1 ratio of resistant/susceptible at Chi-square level. Randomlysampled F_2 individuals were advanced to F_3 generation. The disease response pattern ofF_3 individuals were in concert with the expectation, indicating the reliable scoring of F_2phenotypes. In order to make clear of the origin of the gene of interest, the two parents ofM53, YAV2/TEZ and Aegilops squarrosa249, were inoculated with the same isolate ofBgt. Consequently, YAV2/TEZ exhibits considerable susceptibility and Aegilopssquarrosa249 showed immunity to the tested isolate. These results figured out the factthat the gene is originated from Aegilops squarrosa249, that is, from D genome. Thegene of interest is temporarily named Pm-M53.
     To date a total of three Pm genes were assigned to D genome of wheat and its wildrelatives. They are Pm2, Pm19 and Pm24. All of these three Pm genes respondeddifferently from Pm-M53 to isolate No. 15 infection either at seedling stage or at adultstage. Pm-M53 was immune at both stages, whereas Pm19 and Pm24 showedsusceptibility at both stages. and Pm2 was resistant at seedling stage and susceptible atadult stage. Further infection with 14 additional isolates of Bgt differentiated Pm-M53from the other three Pm genes. The facts above showed that Pm-M53 is a race-specificand single dominant R gene, and seemed to be different from known Pm genes.
     Molecular markers are now becoming indispensable tools for marker-assisted selectionbreeding (MAS), genetic mapping and map-based cloning of agronomically importantgenes. AFLP marker technique is very powerful and popular because of no requirementof sequence information of organisms and being accessible to many loci at one-time PCRamplification. When combined with bulked segregant analysis (BSA), it is quite effectiveto search for closely-linked markers and to saturate mapping of the target region. SSRmarkers also have distinct advantages of widely and evenly distributions and knownpositions on wheat chromosomes and of displaying co-dominant band patterns which candifferentiate homozygote from heterozygote. Therefore, they have been universally usedfor genetic mapping and gene localization. Application of these powerful molecularmarkers facilitates identification and characterization of wheat Pm genes.
     In this study, F_2 segregation population from cross of M53/Wan7107 was investigated tomap Pm-M53 by combining employment of AFLP, SSR and BSA. Each of 256 AFLPprimer pairs can produce over thirty bands both in M53 and Wan7107 genomic DNA,and polymorphic loci ranged from one to eleven between M53 and Wan7107, but only asmall fraction of them, a total of 16, were found to repeat well between the bulkedresistant genomic DNA pool and the bulked susceptible genomic DNA pool. Usinglinkage analysis software JoinMap version 3.0 and Kosambi's function at LODthreshold of 3.0, only two AFLP polymorphic fragments, Apm109 and Apm161, werefound to be closely linked to Pm-M53 with genetic distances of 1.0 and 3.0 cM,respectively. These two fragments flanked the target gene. Apm109 repeat well inresistant F_3 individuals. Amongst of 70 SSR primers sampled from D genome, only fiveprimers, Xwmc289, Xgwm583, Xgwm292, Xgwm191 and Xwme161, were able toproduce required polymorphic loci between bulked resistant genomic DNA pool andbulked susceptible genomic DNA pool. Interestingly, all of these five markers werelocated to the chromosome 5D with Xgwm191 on the short ann and the remaining fouron the long ann. These five polymorphic primers were subsequently used to analyze F_2mapping population, as a result, three markers, Xwmc289, Xgwm583 and Xgwm292,were linked to and flanked Pm-M53 with genetic distances of 20.0, 33.0 and 24.0 cM,respectively, indicating that Pm-M53 was probably located on the long arm of chromosome 5D. Unexpectedly, when the band of interest of marker Xwmc289 fromM53 and its 'allele band' from Wan7107 was respectively excised, cloned and sequenced,each band was found to be involved with two distinct types of nucleotide sequences ofsame size. That is, one band, two loci. The size of co-migration band from M53 was 159bp and its 'allele band' from Wan7107 was 161 bp. Two-nucleotide motifs of CT and GAreside in each co-migration band, whereas each type of sequence from M53 has acountpart in Wan7107 with polymorphisms of a C/G substitution and a GA-unitdeletion/insertion.
     Integrated genetic map encompassing Pm-M53 was constructed with two screened AFLPmarkers and three SSR markers. Markers Apm161, Xgwm583 and Xwmc289 wereplaced at one side, and Apm109 and Xgwm292 at the other side of Pm-M53. Thearrangement of the screened markers and Pm-M53 on 5DL, from proximal to distal,follows the sequence of Xgwm583, Xwmc289, Apm161, Pm-M53, Apm109 andXgwm292. The sequence of the three SSR markers on our genetic map was consistentwith the reference map. The fact that flanking SSR and AFLP markers covered the targetregion further indicated that the target gene was located on 5DL. This assignation ofPm-M53 to 5DL was also enhanced by chromosome location using a set of CSaneuploids. Closely linked AFLP marker Apm109 was present both innullisomic-tetrasomic line CSN5BT5D and ditelosomic line CSDT5DL, but absent innullisomic-tetrasomic line CSN5DT5B and ditelosomic line CSDT5DS.
     Cloned R genes share a strong functional and structural similarity in protein sequence.One or more conserved domains and motifs are present in cloned R genes irrespective ofhost type and pest type. These domains are typically categorized into four types,NBS-LRR, extracellular LRR, receptor kinase and cytosomic protein kinase. Each ofdomains has one or more highly conserved motifs. Therefore, PCR amplification wereoften utilized to search for candidate R genes or defense response related genes, usingdegenerate or specific primers which were designed based on amino acid or nucleotidesequence of conserved motifs. In this study, both degenerate and specific primers weredesigned based on the conserved amino acid or nucleotide sequences of NBS-LRR likeprotein from Aegilops tauschii and cloned Pm genes from wheat and barley. For M53. Wan7107, bulked resistant genomic DNA pool and bulked susceptible genomic DNApool, both types of primers can produce over eight loci. Only two specific primers,RGAP-2 and RGAP-6, amplified required polymorphic bands, present in M53 andbulked resistant genomic DNA pool, but absent in W7107 and bulked susceptiblegenomic DNA pool. None of degenerate primers could produce any polymorphic bandsbetween them. The polymorphie bands were then excised, cloned and sequenced. Thesizes of RGAP-2 and RGAP-6 fragments are 331bp and 259bp, respectively.Interestingly, when searching for similarities in GenBank non-redundant nucleotidedatabase using NCBI BLASTN function, the top three or four hits were all originatedfrom Aegilops tauschii and related to disease resistance. RGAP-2 fragment shared ahigher homology with top hits. Moreover, RGAP-2 fragment could be translated intoprotein sequence without interruption, whereas RGAP-6 fragment could not, resulting inthe prediction that RGAP-2 fragment may be a partial sequence of a functionallyunknown gene, while RGAP-6 fragment may be an intron or a regulatory sequence.When searching for similarities in non-redundant protein database of GenBank usingNCBI BLASTX function, all of the hits were related to plant disease resistance withobvious NB or kinase domains and motifs. The top four hits share a strong homologywith LZ-NBS-LRR type of protein sequences originated from Aegilops tauschii.RGAP-2 fragment shared with top 10 hits several conserved amino acid motifs likeI(V/L)IDD(K/I)WDK, PLS, KIL, KCGGVPLAII and N(N/E)CGSR(I/V)I(T/A)TTRI,amongst of which, I(V/L)IDD(K/I)WDK, N(N/E)CGSR(I/V)I(T/A)TTRI andKCGGVPLAII were correspondingly similar to kinase2, kinase3a and conservedhydrophobic GLPLAII motifs of cloned R genes. Further 'domain search' with NCBIRPSBLAST function in GenBank showed that RGAP-2 fragment possesses a NB-ARCdomain which shared by cloned R genes of Arobidopsis thaliana-derived RPS-2, RPM1,RPP8 and RPP13, and tomato-derived Prf, I2C-1 and I2C-2, and flax-derived L6, andprogrammed cell death related proteins from human and fruit fly. These results showedthat RGAP-2 fragment was probably originated from Aegilops tauschii, and may be apartial sequence of a functional R gene. But relative low score of identity and high Evalue suggested that RGAP-2 and RGAP-6 were distinct sequences from known Aegilops tauschii-derived sequences in GenBank.
     In this paper, the following issues were discussed: The relationship of Pm-M53 withknown Pm genes; scoring system of powdery mildew inducible phenotype; conversion ofAFLP markers into locus-specific markers; the possible relationship of RGAP-2fragment with the cloned R genes in cereals, and with the cloned Pm genes in plant, andwith powdery mildew inducible defense response genes or candidate genes in wheat andbarley, respectively. Additionally, the advances of relevant issues were mini-reviewed inthe beginning pages of this paper: The biological characteristics of Blumeria graminisDC f.sp.tritici; identification and characterization of known Pm genes and QTLs;exploitation of closely linked or genie markers of known Pm genes; the inheritancemodes of powdery mildew resistance genes or QTLs; molecular breeding strategies ofdevelopment of powdery mildew resistance cultivars; mechanism of plant-pathogeninteraction and R gene cloning; strategies of engineering enhanced plant resistance.Finally, the disadvantages and disadvantages, progress and optimization of AFLPsystems were thoroughly reviewed.
引文
Bennett FGA (1984) Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathology 33: 279-300.
    Bowen KL, Everts KL & Leath S (1991) Reduction in yield of winter wheat in North Carolina due to powdery mildew and leaf rust. Phytopathology 81: 503-511.
    Briggle LW (1966) Three loci in wheat involving resistance to Erysiphe graminis f. sp. tritici. Crop Sci 6: 461-465.
    Briggle LW & Sears ER (1966) Linkage of resistance to Erysiphe graminis f.sp.tritici(Pm3) and hairy glume(Hg) on chromosome 1A of wheat. Crop Sci 6:559-561.
    Brooks SA, Huang L, Gill BS & Fellers JP (2002) Analysis of 106 kb of contiguous DNA sequence from the D genome of wheat reveals high gene density and a complex arrangement of genes related to disease resistance. Genome 45: 963-972.
    Cenci A, Chantret N, Kong X, Gu Y, Anderson OD, Fahima T, Distelfeld A & Dubcovsky J (2003) Construction and characterization of a half million clone BAC library of durum wheat(Triticum turgidum ssp.durum). Theor Appl Genet 107: 931-939.
    Cenci A, D'Ovidio R, Tanzarella OA, Ceoloni C & Porceddu E (1999) Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet 98: 448-454.
    Ceoloni C, Delsignore G, Ercoli L & Donini P (1992) Locating the alien chromatin segment in common wheat-Aegilops longissima mildew resistance tranfers. Hereditas 116: 239-245.
    Chantret N, Mingeot D, Sourdille P, Bernard M, Jacquemin JM & Doussinault G (2001) A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat. Theor Appl Genet 103: 962-971.
    Chantret N, Pavoine MT & Doussinault G (1999) The race-specific resistance gene to powdery mildew.MLRE,has a residual effect on adult plant resistance of winter line RET14. Phytopathology 89: 533-539.
    Chantret N, Sourdille P, Roder M, Tavaud M, Bernard M & Doussinault G (2000) Location and mapping of the powdery mildew resistance gene MlRE and detection of a resistance QTL by bulked segregant analysis (BSA) with mierosatellites in wheat. Theor Appl Genet 100: 1217-1224.
    Chen PD, Qi LL, Zhou B, Zhang SZ & Liu DJ (1995) Development and molecular cytogentic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet 91: 1125-1129.
    de Froidmont D (1998) A co-dominant marker for the 1BL/1RS wheat-rye translocation via multiplex PCR. J Cereal Sci 27: 229-232.
    Dilbirligi M, Erayman M, Sandhu D, Sidhu D & Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166: 461-481.
    Donini P, Koebner RMD & Ceoloni C (1995) Cytogenetic and molecular mapping of the wheat-Aegilops longissma chromatin breakpoints in powdery mildew resistant introgression lines. Theor Appl Genet 91:738-743.
    Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A & Dvorak J (1996) Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143:983-999.
    Everts KL & Leath S (1992) Effect of early season powdery mildew on development,survival,and yield contribution of tillers of winter wheat. Phytopathology 82:1273-1278.
    Faris JD, Haen KM & Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823-835.
    Feuillet C & Keller B (1999) High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci USA 96:8265-8270.
    Feuillet C, Travella S, Stein N, Albar L, Nublat A & Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat {Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253-15258.
    Flor HH (1955) Host-parasite interaction in flax rust-its genetics and other implications. Phytopathology 45:680-685.
    
    Flor HH (1971) The current status of the gene for gene concept. Ann Rev Phytopath 9 (12):275-296.
    Foote T, Roberts M, Kurata N. Sasaki T & Moore G (1997) Detailed comparative mapping of cereal chromosome regions corresponding to the Ph1 locus in wheat. Genetics 147:801-807.
    Friebe B, Heun M, Tuleen N, Zeller FJ & Gill BS (1994) Cytogenetically monitored transfer of powdery mildew resistance from rye to wheat. Crop Sci 34:621-625.
    Gill KS, Gill BS, Endo TR & Boyko EV (1996a) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001-1012.
    Gill KS, Gill BS, Endo TR & Boyko EV (1996b) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001-1012.
    Gill KS, Gill BS, Endo TR & Taylor T (1996c) Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144:1883-1891.
    Gill KS, Gill BS, Endo TR & Taylor T (1996d) Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144:1883-1891.
    Griffey CA & Das MK (1994) In heritance of adult-plant resistance to powdery mildew in Massey and Knox 62 winter wheats. Crop Sci 34:641 -646.
    Griffey CA, Das MK & Stromberg EL (1993a) Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Disease 77:618-622.
    Griffey CA, Das MK & Stromberg EL (1993b) Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Disease 77:618-622.
    
    Halterman DA, Wei F & Wise RP (2003) Powdery mildew-induced Ma mRNAs are alternatively spliced and contain multiple upstream open reading frames. Plant Physiol 131:558-567.
    Halterman DA, Zhou F, Wei F, Wise RP & Schulze-Lefert P (2001) The MAL6 coiled-coil,NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f.sp, hordei in barley and wheat. Plant J25: 335-348.
    Hartl L, Mohler V, Zeller FJ, Hsam SKL & Schweizer G (1999) Identification of AFLP markers closely linked to the powdery mildew resistance genes Pm1c and Pm4a in common wheat. Genome 42: 322-329.
    Hartl L, Weiss H, Stephan U, Zeller FJ & Jahoor A (1995) Molecular identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). Theor Appl Genet 90: 601-606.
    Hartl L, Weiss H, Zeller FJ & Jahoor A (1993) Use of RFLP markers for the identification of alleles of the Pro3 locus conferring powdery mildew resistance in wheat (Triticum aesivum L.). Theor Appl Genet 86: 959-963.
    Hautea RA, Coffman WR, Sorrells ME & Bergstrom GC (1987) Inheritance of partial resistance to powdery mildew in spring wheat. Theor Appl Genet 73: 609-615.
    Heun M, Friebe B & Bushuk W (1990) Chromosomal location of the powdery mildew resistance gene of Amigo wheat. Phytopathology 80: 1129-1133.
    Hsam SKL, Huang XQ, Ernst F, Hartl L & Zeller FJ (1998) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L, em. Thell).5.Alleis at the Pm1 locus. Theor Appl Genet 96: 1129-1134.
    Hsam SKL, Huang XQ & Zeller FJ (2001) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L, em. Thell).6.Allels at the Pm5 locus. Theor Appl Genet 102: 127-133.
    Hsam SKL, Lapochkina IF & Zeller FJ (2003) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L, em. Thell). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica 133: 367-370.
    Hsam SKL, Mohler V, Hartl L, Wenzel G & Zeller FJ (2000) Mapping of powderymildew and leaf rust resistance genes on the wheat-rye transloeated chromosome T1BL.1RS using molecular and biochemical markers. Plant Breed 119: 87-89.
    Hsam SKL & Zeller FJ (1997) Evidence of allelism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar 'Amigo'. Plant Breed 116: 119-122.
    Hu XY, Ohm HW & Dweikat 1(1997) Identification of RAPD markers linked to the gene Pm1 for resistance to powdery mildew in wheat. Theor Appl Genet 94: 832-840.
    Huang L, Brooks SA, Li W, Fellers JP, Trick HN & Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164: 655-664.
    Huang XQ, Hsam SKL & Zeller FJ (1997) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.).4. Gene Pm24 in Chinese landrance 'Chiyacao'. Theor Appl Genet 95:950-953.
    Huang XQ, Hsam SKL & Zeller FJ (1997) Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). IX. Cultivars,landraces and breeding lines grown in China. Plant Breed 116:233-238.
    Huang XQ, Hsam SKL & Zeller FJ (2002) Chromosomal location of genes for resistance to powdery mildew in Chinese wheat lines Jieyan 94-1-1 and Siyan 94-1-2. Hereditas 136:212-218.
    Huang XQ, Hsam SKL, Zeller FJ & Wenzel FJ (2000a) Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101:407-414.
    Huang XQ, Hsam SLK & Zeller FJ (2000b) Chromosomal location of two novel genes for resistance to powdery mildew in Chinese landraces (Triticum aestivum L. em. Thell.). Journal of Genetics and Breed 54:311-317.
    Huang XQ & Roder MS (2003a) High-density genetic and physical mapping of the powdery mildew resistance gene Pm24 on chromosome 1D of wheat. Paper read at Proceedings of the 10th International Wheat Genetics Symposium, at Paestum, Italy.
    Huang XQ & Roder MS (2004) Molecular mapping of powdery mildew resistance genes in wheat: A review. Euphytica 137:203-223.
    Huang XQ, Wang LX, Xu MX & Roder MS (2003b) Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Theor Appl Genet 106:858-865.
    Iqbal MJ & Rayburm AL (1995) Identification of the 1RS rye chromosomal segment in wheat by RAPD analysis. Theor Appl Genet 91:1048-1053.
    Jarve K, Peusha HO, Tsymbalova J, Tamm S, Devos KM & Enno TM (2000) Chromosomal location of a Triticum timopheevii derived powdery mildew resistance gene tranferred to common wheat. Genome 43:377-381.
    Jia J, Devos KM, Chao S, Miller TE, Reader SM & Gale MD (1996) RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12,a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559-565.
    
    Jorgense JH (1973) Gene Pm6 for resistance to powdery mildew in wheat. Euphytica 22:43.
    Keller M, Keller B, Scachermayr G, Winzeler M, Schmid JE, Stamp P & Messmer MM (1999) Quantitative trait loci for resistance against powdery mildew in a segregating wheat x spelt population. Theor Appl Genet 98:903-912.
    Killian A, Chen J, Han F, Steffenson B & Kleinhofs A (1997) Towards map-based cloning of the barley stem rust resistance genes Rpg1 ang rpg4 using rice as an intergenomic cloing vehicle. Plant Mol Biol 35:187-195.
    Kintzios S, Jahoor A & Fischbeck G (1995) Powdery mildew resistance gene Mla29 and Mla32 in H. spontaneum-derived winter barley lines. Plant Breed 114:265-266.
    Law CN & Wolfe MS (1966) Location of genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheal Can J Genet Cytol 8: 462-479.
    Leath S & Bowen KL (1989) Effects of powdery mildew, triadimenol seed treatment, and triadimefon foliar sprays on yield of winter wheat in North Carolina. Phytopathology 79: 152-155.
    Lijavetzky D, Muzzi G, Wicker T, Keller B, Wing R & Dubcovsky J (1999) Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42: 1176-1182.
    Liu DJ, Liu JY, Tao WJ &Chen PD (1998) Molecular markers and breeding wheat for powdery mildew resistance. Paper read at Proceedings of the 9th International Wheat Genet Symposium, at Saskatoon, Canada.
    Liu SX, Griffey CA & Saghai Maroof MA (2001) Identification of molecular markers associated with adult plant resistance to powdery mildew in common sheat culivar Massey. Crop Sci 41: 1268-1275.
    Liu Z, Sun Q, Ni Z, Nevo E & Yang TM (2002) Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123: 21-29.
    Liu Z, Sun Q, Ni Z & Yang T (1999) Development of SCAR markers linked to the Pra21 gene conferring resistance to powdery mildew in common wheat. Plant Breed 118: 215-219.
    Lutz J, Hsam SLK, Limpert E & Zeller FJ (1995) Chromosomal location of powdery mildew resistance genes in Triticum aestivum L.(common wheat) 2. Genes Pro2 and Pm19 from Aegilops squarrosa L. Heredity 74: 152-156.
    Lutz J, Limpert E & Zeller FJ (1992) Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.) Ⅰ. czechoslovakian cultivars. Plant Breeding 108: 33-39.
    Ma ZQ, Sorrells ME & Tanksley SD (1994) RELP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat. Genome 37: 871-875.
    McIntosh RA & Baker EP (1970) Cytogenetical studies in wheat. Ⅳ. Chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance. Euphytica 19: 71-77.
    McIntosh RA, Hart GE, Devos KM, Gale MD & Rogers WJ (2000) Catalogue of gene symbols for wheat supplemental, In: Proceedings of the 9th International Wheat Genetics Symposium, edited by AE Slinkard. University Extension Press, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
    McIntosh RA, Hart GE, Gale MD & Rogers WJ (1998) Catalogue of gene symbols for wheat. Paper read at Proceedings of the 9th International Wheat Genet Symposium, at Saskatoon, Canada. Vol.5, pp. 1-235.
    Mingeot D, Chantret N, Baret PV, Dekeyser A, Boukhatem N, Sourdille P, Doussinault G & Jacquemin JM (2002) Mapping QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 in two susceptible genetic backgrounds. Plant Breed 121: 133-140.
    Mohler V, Hsam SKL, Zeller FJ & Wenzel G (2001a) An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breed 120: 448-450.
    Mohler V, Hsam SLK, Zeller FJ & Wenzel G (2001b) An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breeding 120: 448-450.
    Mohler V & Jahoor A (1996) Allele specific amplification of polymorphic sites for the detection of powdery mildew resistance loci in cereals. Theor Appl Genet 93: 1078-1082.
    Moullet O, Zhang HB & Lagudah ES (1999) Construction and characterisation of a large DNA insert library from the D genome of wheat. Theor Appl Genet 99: 303-313.
    Neu C, Stein N & Keller B (2002) Gentic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45: 737-744.
    Panstruga R, Buschges R, Piffanelli P & Schulze-Lefert P (1998) A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res 26: 1056-1062.
    Petrova H, Hsam SLK, Spetsov P & Zeller FJ (2000) Identification of powdery mildew and leaf rust resistance genes in common wheat (Triticum aestivum L.em. Thell) cultivars grown in Bulgaria and Russia. Plant Genetic Resources Newsletter 122: 21-27.
    Peusha H, Enno T & Priilimn O (2000) Chromsome location of powdery mildew resistance genes and cytogenetic analysis of meiosis in common wheat cultivar Meri. Hereditas 132: 29-34.
    Pimental D, Wilson C, McCallum C, Huang R & Dwen P (1997) Economical and environmental benefits of biodiversity. Bioscience 47: 747-757.
    Qi LL, Cao MS, Chen PD, Li WL & Liu DJ (1996) Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome 39: 191-197.
    Reader SM & Miller TE (1991) The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer. Euphytica 53: 57-60.
    Robe P & Doussinault G (1995) Genetic analysis of powdery-mildew resistance of a winterwheat line. RE714, and identification of a new specific-resistance gene. Plant Breeding 114: 387-391.
    Roberts JJ & Caldwell RM (1970) General resistance (slow mildewing) to Erysiphe graminis f.sp. tritici in 'Knox' wheat. Phytopathology 60: 1310.
    Rong JK, Millet E, Manisterski J & Feldman M (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115: 121-126.
    Royer MH, Nelson RR, MacKenzie DR & Diehle DA (1984) Partial resistance of near-isogenic wheat lines compatible with Erysiphe graminis f. sp. tritici. Phytopathology 74: 1001 - 1006.
    Sandhu D & Gill KS (2002) Gene-containing regions of wheat and the other grass genomes. Plant Physiol 128: 803-811.
    Sandhu DJ. Champoux A, Bondareva SN & Gill KS (2001) Identification and physical localization of useful genes and markers to a major gene-rich region on wheat group 1S chromosomes. Genetics 157: 1735-1747.
    Sears ER (1954) The aneuploids of common wheat. Missouri Agricultural Experiment Station Research Bulletin 572: 59.
    Sears ER & Briggle LW (1969) Mapping the gene Pm1 for resistance to Erysiphe graminits f.sp. tritici on chromosome 7A of wheat. Crop Sci 9:96-97.
    Shaner G (1973) Evaluation of slow-mildewing resistance of Knox wheat in the field. Phytopathology 63: 867-872.
    Shen QH, Zhou F, Bieri S, Haizel T, Shirasu K & Schulze-Lefert P (2003) Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15: 732-744.
    Shi AN, Leath S & Murphy JP (1998) A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 88: 144-147.
    Singrun Ch, Hsam SKL, Hartl L, Zeller FJ & Mohler V (2003) Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell). Theor Appl Genet 106: 1420-1424.
    Smith DB & Flavell RB (1975) Characterization of the wheat genome by renaturation kinetics. Chromosoma 50: 223-242.
    Sourdille P, Robe P, Tixier M-H, Doussinault G, Pavoine M-T & Bernard M (1999) Location of Pm3g, a powdery mildew resistance allele in wheat, by using a monosomic analysis and by identifying associated molecular markers. Euphytica 110: 193-198.
    Stein N, Feuillet C, Wicker T, Schlagenhauf E & Keller B (2000) Subgenome chromosome walking in wheat: A 450 kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexapioid wheat (T. aestivum L.). Proc Natl Acad Sci USA 97: 13436-13441.
    Tao W, Liu D, Liu J, Feng Y & Chen, P (2000) Genetic mapping of the powdery mildew resistance gene Pro6 in wheat by RFLP analysis. Theor Appl Genet 100:564-568.
    The TT, McIntosh RA & Bennett FGA (1979) Cytogenetical studies in wheat.Ⅸ. Monosomic analysis, telocentric mapping and linkage relationship of gene Sr21,Pm4 and Mle. Aust J Biol Sci 32: 115-125.
    Tompkins DK, Wright AT & Fowler DB (1992) Foliar disease development in no-till wheat: influence of agronomic practices on powdery mildew development. Can J Crop Sci 72:965-972.
    Tosa Y & Sakai K (1990) The genetics of resistance of hexaploid wheat to the wheatgrass powdery mildew fungus. Genome 33:225-230.
    Tosa Y, Tokunaga H & Ogura H (1988) Identification of a gene for resistance to wheatgrass powdery mildew fungus in the common wheat cultivar Chinese Spring. Genome 30: 612-614.
    Tosa Y, Tsujimoto H & Ogura H (1987) A gene involved in the resistance of wheat to wheatgrass powdery mildew fungus. Genome 29:850-852.
    Wei F, Gobelman-Werner K, Morroll SM, Kurth J, Mao L, Wing R, Leister D, Schulze-Lefert P & Wise RP (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153: 1929-1948.
    Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42: 225-249.
    Wicker T, Stein N, Albar L, Feuillet C & Schlagenhauf E (2001) Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J 26: 307-316.
    Wicker T, Stein N, Aibar L, Feuiilet C, Schlagenhauf E & Keller B (2001) Analysis of contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J 26: 307-316.
    Wricke G, Dill P & Senft P (1996) Linkage between a major gene for powdery mildew resistance and an RFLP marker on chromosome 1R of rye. Plant Breed 115: 71-73.
    Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M & Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291: 118-120.
    Xie C, Sun Q, Ni Z, Yang T, Nero E & Fahima T (2003) Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsateilite markers. Theor Appl Genet 106: 341-345.
    Yahiaoui N, Srichumpa P, Dudler R & Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 34: 528-538.
    Yah L, Loukoianov A, Tranquilli G, Helguera M & Fahima T (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci 100: 6263-6268.
    Yu DZ, Yang XJ, Yang LJ, Geger MJ & Brown JKM (2001) Assessment of partial resistance to powdery mildew in Chinese wheat varieties. Plant Breeding 120: 279-284.
    Zeller FJ, Huang XQ, Paderina EV, Coilaku A, Kowalczyk K, Aslam M, Peusha H & Hsam SKL (1998) Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L. era. Thell). Ⅻ, Cultivars and iandraces grown in Mediterranean countries. Plant Genet Resources Newslett 116: 5-8.
    Zeller FJ, Kong L, Hartl L, Mohler V & Hsam SKL (2002) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. era. Thell). 7. Gene Pm29 in line Pova. Euphytica 123: 187-194.
    Zeller FJ, Lutz J & Stephan U (1993) Chromosome location of genes for resistance to powdery mildew in commonm wheat (Triticum aestivum L.). Ⅰ. Ml/k and other alleles at the Pm3 locus. Euphytica 68: 223-229.
    Zhou F, Kurth J, Wei F, Elliot C, Vale G, Yahiaoui N, Keller B, Somerville S, Wise R & Schuize-Lefert P(2001) Cell-autonomous expression of barley Mlal confers race-specific resistance to the powdery mildew fungus via a Rarl-independent signaling pathway. Plant Cell 13: 337-350.
    陈利锋 & 徐敬友(2001)农业植物病理学(南方本).第一版.北京:中国农业出版社.
    方中达(1998)植病研究方法。第三版.北京:中国农业出版社.
    金善宝(1996)中国小麦学.第一版.北京:中国农业出版社.
    刘金元,陶文静,刘大钧,陈佩度,李万隆,向齐军 & 段霞瑜(1999)小麦—粗毛麦移位系6VS/6AL中6VS的传递及其所携带Pm21基因的遗传稳定性分析.植物学报 41:1058-1060.
    刘万才 & 邵振润(1998)我国小麦白粉病大区流行的气候因素分析.植保技术与推广 18(1):3-5.
    司权民,张新心,段霞瑜 & 盛宝钦(1987)小麦白粉病菌生理小种鉴定.中国农业科学 20(5):64-70.
    周益林,段霞瑜,陈刚,盛宝钦 & 张莹(2002)40个小麦优良品种资源的抗白粉病基因推导.植物病理学报 32(4):301-305.
    朱振东(2003)小麦抗白粉病基因的发现,中国农业科学院作物所&中国农业科学院研究生院,博士论文,北京.
    庄巧生(2003)中国小麦改良及系谱分析.第一版.北京:中国农业出版社.
    Audenaert K, De Meyer GB & Hofte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128: 491-501.
    Ayliffe MA, Roberts JK, Mitchell H J, Zhang R, Lawrence GJ, Ellis JG & Pryor TJ (2002) A plant gene up-regulated at rust infection sites. Plant Physiol 129: 169-180.
    Balivora A, Ereolano MR, Weiss J, Meksem K, Bormann CA, Oberhagemann P, Salamini F & Gebhardt C (2002) The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the ieucine zipper/NBS/LRR class of plant resistance genes. Plant J 30: 361-371.
    Bendahmane A, Kanyuka K & Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11: 781-792.
    Bendahmane A, Querci M, Kanyuka K & Baulcombe DC (2000) Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J 21: 73-81.
    Bent AF, Kunkel BN, Dahlbeck D, Brown KL & Schmidt R (1994) RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265:1856-1860.
    Bittner-Eddy PD, Crute IR, Holub EB & Beynon JL (2000) RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Pero nospora parasitica. Plant J 21:177-188.
    Bonas U & T Lahaye (2002) Plant disease resistance triggered by pathogen-derived molecules:refined models of specific recognition. Curr Opin Microbiol 5:44-50.
    Brandwagt BF, Mesbah LA, Takken FL, Laurent PL, Kneppers TJ, Hille J & Nijkamp HJ (2000) A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp.lycopersici toxins and fumonisin B1. 97:4961-4966.
    Braun CJ, Siedow JN, Williams ME & Levings CS (1989) Mutations in the maize mitochondrial T-urf13 gene eliminate sensitivity to a fungal pathotoxin. PNAS, USA 86:4435-4439.
    Brommonschenkel SH, Frary A & Tanksley SD (2000) The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant-Microbe Interact 13:1130-1138.
    Brueggeman R, Rostoks N, Kudrna D, Killan A & Han F (2002) The barly stem rust resistance gene Rpg1 is a novel disease resistance gene with homology to receptor kinase. PNAS 99:9328-9333.
    Bryan GT, Wu KS, Farrall L, Jia YL, Hershey HP, McAdams SA. Faulk KN, Donaldson GK, Tarchini R & Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033-2045.
    Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F & Schulze-Lefert P (1997) The Barley Mlo Gene: A Novel Control Element of Plant Pathogen Resistance. Cell 88:695-705.
    Cai D, Kleine M. Kifle S, Harloff HJ & Sandal NN (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832-834.
    Cao H, Glazebrook J, Clarke J.D, Volko S & Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57-63.
    Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Holub E & Staskawicz BJ (1997) NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278:1963-1966.
    Chin DB, Arroya-Garcia R, Ochoa OE, Keselli RV & Lavelle DO (2001) Recombination and spontaneous mutation at the major cluster of resistance genes in lettuce (Lactuca sativa).Genetics 157:831-849.
    Chisholm ST, Mahajan SK, Whitham SA, Yamamoto ML & Carrington JC (2000) Cloning of the Arabidopsis RTM1 gene, which controls restriction of longdistancemovement of tobacco etch virus. PNAS 97:489-494.
    Collins NC, Drake J, Ayliffe M, Sun Q & Ellis J (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11:1365-1376.
    Collins NC, Webb CA, Seah S, Ellis JG & Hulbert SH (1998) The isolation and mapping of disease resistance gene analogs in maize. Mol Plant-Microbe Interact 11: 968-978.
    Comai L, Young K, Reynolds SH, Codeine C, Enns L, Johnson J, Burtner C, Henikoff JG, Greene EA, Till BJ & Henikoff S (2004) Efficient discovery of nucleotide polymorphisms in populations by eeotilling. Plant J 37: 778-786.
    Cooley MB, Pathirana S, Wu H J, Kachroo P & Klessig DF (2000) Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12: 663-676.
    Dangl JL, Dietrich RA & Richberg MH (1996) Death don't have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8: 1793-1807.
    Dangl JL & Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411: 826-833.
    de Wit PJGM (1992) Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu Rev Phytopathol 30: 391-418.
    Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J & Marco Y (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. PNAS 99: 2404-2409.
    Dilbirligi M, Erayman M, Sandhu D, Sidhu D & Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166: 461-481.
    Dixon MS, Hatzixanthis K, Jones DA, Harrison K & Jones JD (1998) The tomato Cf-5 disease resistance genc and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 10: 1915-1925.
    Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K & Jones JDG (1996) The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84: 451-459.
    Dodds P, Lawrence G & Ellis J (2001) Six amino acid changes confined to the leueine-rich repeat beta-strand/beta-turn motif determine the difference between the P and P2 rust resistance speeificities in flax. Plant Cell 13: 163-178.
    Dodds PN, Lawrence GJ & Ellis JG (2001) Contrasting modes of evolution acting on the complex N locus for rust resistance in flax. Plant J27: 439-453.
    Ellis JG, Lawrence GJ, Luck JE & Dodds PN (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-forgene specificity. Plant Cell 11: 495-506.
    Ernst K, Kumar A, Kriseleit D, Kloos DU, Phillips MS & Ganal MW (2002) The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J 31: 127-136.
    Falk A, Feys BJ, Frost LN, Jones JD, Daniels MJ & Parker JE (1999) EDSI, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. PNAS 96: 3292-3297.
    Farmer EE, Almeras E & Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6: 372-378.
    Feuillet C, Travella S, Stein N, Albar L, Nublat A & Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum. L) genome. PNAS 100 (25): 15253-15258.
    Flor HH (1971) Current status of the gene-for-gene concept. Annu. Rev Plant Pathol 9: 275-296.
    Friedrich L, Lawton K, Dietrich R, Willits M, Cade R & Ryals J (2001) NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant Microbe Interact 14: 1114-1124.
    Gassmann W, Hinsch ME & Staskawicz BJ (1999) The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of diseaseresistance genes. Plant J. 20: 265-277.
    Glazebrook J (2005) contrasting mechenisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43: 205-227.
    Goff SA, Ricke D, Lan TH, Presting G & Wang R (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92-100.
    Gomez-Gomez L &Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5: 1003-1011.
    Grant MR, Godiard L, Straube E, Ashfield T & Lewald J (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269: 843-846.
    Guo H & Ecker JR (2004) The ethylene signaling pathway new insights. Curt Opin Plant Biol 7: 40-49.
    Gurr SJ & Rushton PJ (2005) Engineering plants with increased disease resistance: how are we going to express it? TRENDS in Biotechnology 23 (6): 282-290.
    Halterman D, Zhou F, Wei F, Wise RP & Schulze-Lefert P (2001) The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J25: 335-348,
    Halterman DA, Wei F & Wise RP (2003) Powdery mildew-induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. Plant Physiol 131: 558-567.
    Hammond-Kosack KE & Jones J (1997) Plant disease resistance genes. Annu Rev Plant Physiol 48: 575-608.
    Hammond-Kosack KE & Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8: 1773-1791.
    Hammond-Kosak KE & Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14: 177-193.
    Holt III BF, Hubert DA & Dangl JL (2003) Resistance gene signaling in plants-complex similarities to animal innate immunity. Current Opinion in Immunology 15: 20-25.
    Huang L, Brooks SA, Li WL, Fellers JP, Trick HN & Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164: 655-664.
    Jirage D, Tootle TL, Reuber TL, Frost LN & Feys BJ (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. PNAS 96: 13583-13588.
    Johal GS & Briggs SP (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258: 958-987.
    Jones DA, Thomas CM, Hammond-Kosack KE, Balint -Kurti PJ & Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266: 789-793.
    Kang L (2003) Interplay of the arabidopsis nonhost resistant gene NHO1with bacterial virulence. PNAS 100: 3519-3524.
    Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R & Howard RJ (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. PNAS 98:6511-6515.
    Kikuchi M, Ohnishi K & Harayama S (1999) Novel family shuffling methods for the in vitro evolution of enzymes. Gene 236: 159-167.
    Kim HS & Delaney TP (2002) Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. Plant Cell 14: 1469-1482.
    Kim YJ, Lin NC & Martin GB (2002) Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell 109:589-598.
    Lagudah ES, Moullet O & Appels R (1997) Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome 40:659-065.
    Lawrence GJ, Finnegan EJ, Ayliffe MA & Ellis JG (1995) The L6 gene for flax rust resistance is related to the Arabidopsisbacterial resistance gene RPS2 and tobacco viral resistance gene N. Plant Cell 7: 1195-1206.
    Leister D, Ballvora A, Salamini F & Gebhardt C (1996) A PCRbased approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Na. Genet 14: 421-429.
    Liu GZ, Pi LY, Walker JC, Ronald PC & Song WY (2002) Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21. d Biol Chem 277: 20264-20269.
    Lu M (2001) Arabidopsis NHO1 is required for general against Pseudomonas bacteria. Plant Cell 13: 437-447.
    Mackey D, Belkhadir Y, Alonso JM, Ecker JR & Dangl J (2003) Arabidopsis RIN4 is a target of the type Ⅲ virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112: 379-389.
    Mackey D, Holt BF, Wiig A & Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type Ⅲ effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108: 743-754.
    Maldonado AM, Doerner P, Dixon RA, Lamb CJ & Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis, Nature 419:399-403.
    Martin GB, Brommonschenkel SH, Chunwongse J. Frary A & Ganal MW (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432-1436.
    McCallum CM, Comai L, Greene EA & Henihoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439-442.
    McDowell JM, Dhandaydham M, Long TA, Aarts MG & Goff S (1998) Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10:1861 -1874.
    Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW & Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20.317-332.
    Michelmore RW & Meyers BC (1998) Clusters of resistance genes in plants evolved by divergent selection and a birth-and-death process. Genome Research 8:1113-1130.
    Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I. Zabel P & Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307-1319.
    Mondragon-Paiomino M, Meyers BC. Michelmore RW & Gaut BS (2002) Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Research 12:1305-1315.
    Mysore KS & Ryu Choong-Min (2004) Nonhost resistance:how much do we know? TRENDS in Plant Science 9 (2):97-l 04.
    Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I & Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887-898.
    Ori N, Eshed Y, Paran I, Presting G & Aviv D (1997) The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding leucine-rich repeat superfamily of plant resistance genes. Plant Cell 9:521-532.
    Parker JE, Coleman MJ, Dean C & Jones JDG (1997) The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the Toll and Interleukin-1 receptors with N and L6. Plant Cell 9:879-894.
    Pieterse CMJ, Van Wees SCM, Ton J, Van Pelt JA & Van Loon LC (2002) Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol 4:535-544.
    
    Richly E, Kurth J & Leister D (2002) Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Bio Evol 19:76-84.
    Rushton PJ (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signalling. Plant Cell 14:749-762.
    Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY & Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809-1819.
    Salmeron JM, Oldroyd GED, Rommens CMT, Scofield SR & Kim H-S (1996) Tomato Prf is a member of the leucine rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86: 123-133.
    Schaffrath U, Freydl E & Dudler R (1997) Evidence for different singaling pathways activated by inducers of acquired resistance in wheat. Mol Plant-Microbe Interact 6: 779-783.
    Shen KA, Chin DB, Arroyo-Garcia R, Ochoa OE & Lavelle DO (2002) Dm3 is one member of a large constitutively expressed family of nucleotide binding site-leucine-rich repeat encoding genes. Mol Plant-Microbe Interact 15: 251-261.
    Shen KA, Meyers BC, Islam-Faridi MN, Chin DB & Stelly DM (1998) Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant-Microbe Interact 11: 815-823.
    Shen QH, Zhou F, Bieri S, Haizel T, Shirasu K & Schulze-Lefert P (2003) Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15: 732-744.
    Song WY, Wang G-L, Chen L-L, Kim H-S & Pi L-Y (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270: 1804-1806.
    Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux J-P, Brown R & Kazan K (2003)NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15: 760-770.
    Stemmer WPC (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389-391.
    Sun Q, Collins NC, Ayliffe M, Simith SM & Drake J (2001) Recombination between paralogues at the Rpl rust resistance locus in maize. Genetics 158: 423-438.
    Swiderski MR & Irmes RW (2001) The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J 26: 101-112.
    Takken FLW, Thomas CM, Joosten MHAJ, Golstein C, Westerink N, Hille J, Nijkamp HJJ, De Wit PJGM & Jones JDG (1999) A second gene at the tomato Cf-4 locus confers resistance to Cladosporium fulvum through recognition of a novel avirulence determinant. Plant J 20: 279-288.
    Tameling WIL, Elzinga SDJ, Darmin PS, Vossen JH, Takken FLW, Haring MA & Cornelissen BJC (2002) The tomato R gene products Ⅰ-2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14: 2929-2939.
    Thomas CM, Jones DA, Parniske M, Harrison K, Balint-Kurti PJ & et al (1997) Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9: 2209-2224.
    Ton J & Mauch-Mani B (2004) b-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J 38: 119-130.
    Van der Hoom RA, De Wit PJ & Joosten MH (2002) Balancing selection favors guarding resistance proteins. Trends Plant Sci 7: 67-71.
    van Wees SC, de Swart EA, van Pelt JA, van Loon LC & Pieterse CM (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. PNAS 97: 8711-8716.
    Vogel JP, Raab TK, Schiff C & Somerville SC (2002) PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell 14:2095-2106.
    Wang ZX, Yano M, Yamanouchi U, Iwamoto M & Monna L (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leueinerich repeat class of plant disease resistance genes. Plant J 19:55-64.
    Whitham S, Dinesh Kumar SP, Choi D, Hehl R, Corr C & Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101-1115.
    Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M & Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291: 118-120.
    Yahianui N, Srichumpa P, Dudler R & Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 34: 528-538.
    Yang Y, Shah J & Klessig D, F (1997) Signal perception and transduetion in plant defense response. Gene Dev 11: 1621-1639.
    Yoshimura S, Yamanouehi U, Katayose Y, Toki S & Wang ZX (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. PNAS 95: 1663-1668.
    Yu YG, Buss GR & Maroof MA (1996) Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nueleotide-binding site. PNAS 93: 11751-11756.
    Zhao YI, DelGrosso L, Yigit E, Dempsey DA, Klessig DF & Wobbe KK (2000) The amino terminus of the coat protein of Turnip crinkle virus is the AVR factor recognized by resistant arabidopsis. Mol Plant-Microbe Interact 13: 1015-1018.
    Zhou F, Kurth J, Wei F, Elliott C, Vale G, Keller B, Somerville SC, Wise RP & Sehuize-Lefert P (2001) Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Kar1-independent signaling pathway. Plant Cell 13: 337-350.
    Zhu Q, Droge-Laser W, Dixon RA & Lamb C (1996) Transcriptional activation of plant defense genes. Curr Opin Genet Dev 6:624-630.
    万里红,周奕华 & 陈正华(2002)植物防御系统中抗病相关基因的研究进展.遵传 24(4):486-492.
    王关林 & 方宏筠(2002)植物基因工程,第二版.北京:科学出版社.
    王钧(1998)植物抗病反应的分子机理.见:余叔文和汤章城主编.植物生理与分子生物学.北京:科学出版社,784-807.
    Aggarwa R K, Brar D S, Nandi S, Huang N & Khush O S (1999) Phylogenetic relationships among Oryza species revealed by AFLP markers. Theor Appl Genet 98 (8): 1320-1328.
    Alonso-Blanco C, Peeters AJM, Koorrmeef M, Lister C, Dean C, van den Bosch N, Pot J & Kuiper MTR (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J 14: 259-271.
    Anja Klahr, Volker Mohler, Markus Herz, Gerhard Wenzel1 & Gerhard Schwarz (2004) Enhanced power of QTL detection for Fusarium head blight resistance in wheat by means of codominant scoring of hemizygous molecular markers. Molecular Breeding 13: 289-300.
    Bachem CWB, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M & Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant Journal 9 (5): 745-753.
    Barrett BA & Kidwell KK (1998) AFLP-based genetic diversity among wheat eultivars from the Pacific Northwest. Crop Sci 38: 1261-1271.
    Barrett BA, Kidwell KK & Fox PN (1998) Comparison of AFLP and pedigree-based genetic diversity assessment methods using wheat cultivars from the Pacific Northwest. Crop Sci 38: 1271-1278.
    Beeker J, Vos P, Kuiper M, Salamini F & Heun M (1995) Combined mapping of AFLP markers in barley. Molecular Genetics and Genomics 249: 65-73.
    Bensch S, Akesson S & Irwin DE (2002) The use of AFLP to find an informative SNP: genetic differences across a migratory divide in willow warblers. Mol. Ecol. 11: 2359-2366.
    Boivin K, Deu M, Rami J-F, Trouche G & Hamon P (1999a) Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98: 320-328.
    Boivin K, Deu M, Rami JF, Trouche G & Hamon P (1999b) Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98: 320-328.
    Boumedine KS & Rodolakis A (1998) AFLP allows the identification of genomic markers of ruminant Chlamydia psittaci strains useful for typing and epidemiological studies. Res Microbiol 149(10): 735-744.
    Bourdoncle W & Ohm HW (2003) Quantitative trait loci for resistance to Fusarium head blight in recombinant inbred wheat lines from the cross Huapei 57-2/Patterson. Euphytica 131 (1): 131-136.
    Bradeen JM & Simon PW (1998) Conversion of an AFLP fragment linked to the carrot Y2 locus to a simple, codominant, PCR-based marker form. Theor Appl Genet 97: 960-967.
    Brugmans Bart, van der Hulst Ron GM, Visser Richard GF, Lindhout Pim & van Eck Herman J (2003) A new and versatile method for the successful conversion of AFLP markers into simple single locus markers. Nucleic Acids Research 31 (10): e55.
    Cervera MT, Ruiz-Garcia L & Martinez-Zapater JM (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genomics 268 (4): 543-552.
    Chalhoub BA, Thibault S, Laucou V, Rameau C, Hofte H & Cousin R (1997) Silver staining and recovery of AFLP amplification products on large denaturing polyacrylamide gels. Biotechniques 22 (2): 216-220.
    Corbellini M, Perenzin M, Accerbi M, Vaccino P & Borghi B (2002) Genetic diversity in bread wheat, as revealed by coefficient of perentage and molecular markers, and its relationship to hybrid performance. Euphytica 123: 273-285.
    Dellaqi A, Birch PR, Heilbronn J, Lyon GD & Toth IK (2000) cDNA-AFLP analysis of differential gene expression in the prokaryotic plant pathogen Erwinia carotovora. Microbiology 146 (1): 165-171.
    Diatchenko Luda, Lau Yun-Fai Chris, Campbell Aaron P, Chenchik Alex, Moqadam Fauzia, Huang Betty, Lukyanov Sergey, Lukyanov Konstantin, Gurskaya Nadya, Sverdlov Eugene D & Siebert Paul D (1996) Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. PNAS 93: 6025-6030.
    Donini P, Elias L & Bougourd S (1997) AFLP fingerprinting reveals pattern differences between template DNA extracted from different plant organs. Genome 40: 521-526.
    Donini P, Law J R & Koebner R M D (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100: 912-917.
    Esquibet Magali, Grenier Eric, Plantard Olivier, Andaloussi Fouad Abbad & Caubel Georges (2003) DNA polymorphism in the stem nematode Ditylenchus dipsaci: development of diagnostic markers for normal and giant races. Genome 46 (6): 1077-1083.
    Giannasi N, Thorpe R & Malhotra A (2001) The use of amplified fragment length polymorphism in determining species trees at fine taxonomic levels: analysis of a medically important snake, Trimeresurus albolabris. Mol. Ecol. 10: 419-426.
    Gregory J, Tranah, Mark Bagley, Jeremy J, Agrestil & Bernie May (2003) Development of codominant markers for identifying species hybrids. Conservation Genetics 4: 537-541.
    Groos C, Robert N, Bervas E & Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor. Appl. Genet. 106 (6): 1032-1040.
    Haley CS & Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315-324.
    Hans-Peter Piepho & Georg Koch (2000) Codominant Analysis of Banding Data From a Dominant Marker System by Normal Mixtures. Genetics 155: 1459-1468.
    Hartl L, Mohler V & Zeller F J (1999) Identification of AFL P markers closely linked to the powdery mildew resistance genes Pmlc and Pm4a in common wheat (Triticum aestivum L.). Genome 42: 322-329.
    Henk Geerlings, Jan van Oeveren, Jerina Pot, Ritsert Jansen & Rene van Schaik (2002) AFLP-Quantar~(TM) Pro: Co-dominant and Expression Analysis Software (http://www.keygene.com/).
    Heun M, Schafer-Pregl R & Klawan D (1998) Site of einkorn wheat domestication identificated by DNA fingerprinting. Science 278 (5341): 1312.
    Huang X, Zeller F J & Hsam S L K (2000) Chromosomal location of AFL P markers in common wheat utilizing nuUi-tetrasomic stocks. Genome 43: 298-305.
    Huaracha E, Xu M & Korban SS (2004) Narrowing down the region of the Vf locus for scab resistance in apple using AFLP-derived SCARs. Theor Appl Genet 108 (2): 274-279.
    Huys G. et al. (1996) High-resolution genotypic analysis of the genus Aeromonas by AFLP fingerprinting. Int. J. Syst. Bacteriol. 46: 572-580.
    Jansen R C & Stare P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136: 1447-1455.
    Jansen Ritsert C, Geerlings Henk, Jan Van Oeveren A & Van Schaik Rene C (2001) A Comment on Codominant Scoring of AFLP Markers. Genetics 158: 925-926.
    Janssen P. et al. (1997) Discrimination of Acinetobacter genomic species by AFLP fingerprinting. Int. J. Syst. Bacteriol. 47: 1179-1187.
    Jones CJ, Edwards KJ & Castaglione s (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Molecular Breed 3: 381-390.
    Ke Liping, Sun Yuqiang, Liu Pingwu & Yang Guangsheng (2004) linked to one recessive genic male sterility (RGMS) in rapeseed (Brassiea napus L.) and conversion to SCAR markers for marker-aided selection. Euphytica 138 (2): 163-168.
    Keim P et al. (1997) Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J. Bacteriol. 179: 818-824.
    Klein PE, Klein RR, Cartinhour SW, Ulaneh PE, Dong J, Obert JA, Morishige DT, Schlueter SD, Childs KL, Ale M & Mullet JE (2000) A High-throughput AFLP-based Method for Constructing Integrated Genetic and Physical Maps: Progress Toward a Sorghum Genome Map. Genome Research: 789-807.
    Knox MR & Ellis TH (2001) Stability and inheritance of methylation states at PstⅠ sites in Pisum. Mol Genet Genoraics 265 (3): 497-507.
    Koeleman JGM et al. (1997) Nosoeomial outbreak of multiresistant Acinetobacter baumannii on a surgical ward: epidemiology and risk factors for acquisition. J. Hosp. Infect. 37: 113-123.
    Kojima T, Habu Y, lida S & Ogihara Y (2000) Direct isolation of differentially expressed genes from a specific chromosome region of common wheat -Application of the amplified fragment length polymorphism-based messenger-RNA fingerprinting (Amf) method in combination with a deletion line of wheat. Molecular and General Genetics 263 (4): 635-641.
    Labra M, Grassi F, Imazio S, Di Fabio T, Citterio S, Sgorbati S & Agradi E (2004) Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere 54 (8): 1049-1058.
    Lin Jhy-Jhu, Kuo Jonathan & Ma Jin (1996) A PCR-based DNA fingerprinting technique: AFLP for molecular typing of bacteria. Nucleic Acids Research 24 (18):3649-3650.
    Liu B, Brubaker CL, Mergeai G, Cronn RC & Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321-330.
    Liu Z et al. (1998) Inheritance and usefulness of AFLP markers in channel catfish (Ictalurus punctatus), blue catfish (I. furcatus), and their F1, F2, and backcross hybrids. Mol. Gen.Genet. 258:260-268.
    Lu Zhen-Xiang, Sosinski B, Reighard GL, Baird WV & Abbott AG (1998) Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41 (199-207).
    Maheswaran M, Subadhi P K & Nandi S (1997) Polymophism distribution and segreation of AFLP markers in a doubled haploid rice population. Theor Appl Genet 94:39-45.
    Majer D, Mithen R, Lewis B, Vos P & Oliver R (1996) The use of AFLP fingerprinting for the detection of genetic variation in fungi. Mycol. Res. 100:1107-1 111.
    Martinez O & Curnow RN (1992) Estimating the locations and the sizes of effects of quantitative trait loci using flanking markers. Theor Appl Genet 85:480-484.
    Maughan P et al. (1996) Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance, and near-isogenic line analysis. Theor Appl Genet 93:392-401.
    Maughan PJ, Saghai-Maroof MA, Buss GR & Huestis GM (1996) Amplified fragment length polymorphism in soybean.species diversity,inheritance and near-isogenic line analysis. Theor Appl Genet 93:392-401.
    Meksem K, Ruben E, Hyten D, Triwitayakorn K & Lightfoot DA (2001) Conversion of AFLP bands into high-throughput DNA markers. Mol Genet Genomics 265 (2):207-214.
    Mienie CMS, Fourie H, Smit MA, Van Staden J & Botha FC (2000) Identification of AFLP markers in soybean linked to resistance to Meloidogyne javanica and conversion to Sequence Characterized Amplified Regions (SCARs). Plant Growth Regul 37:157-166.
    Mueller Ulrich G & LaReesa Wolfenbarger L (1999) AFLP genotyping and fingerprinting. TREE 14(19):389-395.
    Navabi A, Tewari JP, Singh RP, McCallum B, Laroche A & Briggs KG (2005) Inheritance and QTL analysis of durable resistance to stripe and leaf rusts in an Australian cultivar, Triticum aestivum 'Cook'. Genome 48 (1):97-107.
    Negi MS, Devic M, Delseny M & Lakshmikumaran M (2000) Identification of AFLP fragments linked to seed coat colour in B.juncea and conversion to SCAR marker for rapid selection.Theor Appl Genet 101(1/2): 146-152.
    Nguyen V, Nguyen B, Sarkarung S, Martinez C, Paterson A & Nguyen H (2002) Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. Molecular Genetics and Genomics 267 (6):772-780.
    Nicod Jean-Claude & Largiader Carlo R. (2003) SNPs by AFLP (SBA): a rapid SNP isolation strategy for non-model organisms. Nucleic Acids Reseach 31 (5): e19.
    Otsen M, Den Bieman M, Kuiper M, Pravenec M, Kren V, Kurtz T, Jacob H, Lankhorst A & van Zutphen B (1996) Use of AFLP markers for gene mapping and QTL detection in the rat. Genomics 37: 289-294.
    Ovilo C, Cervera M, Castellanos C & Martinez Zapater J (2000) Characterisation of Iberian pig genotypes using AFLP markers. Anita Genet 31: 117-122.
    Paglia G & Morgante M (1998) PCR-based multiplex DNA fingerprinting techniques for the analysis of conifer genomes. Mol. Breed. 4: 173-177.
    Pawei CC, Arseniuk E, Czaplicki A, Song Q, Cregan PB & Ueng PP (2003) QTL mapping of partial resistance in winter wheat to Stagonospora nodorum blotch. Genorne 46 (4): 546-554.
    Peters JL, Constandt H, Neyt P, Cnops G, Zethof J, Zabeau M & Gerats T (2001) A physical amplified fragment-length polymorphism map of Arabidopsis. Plant Physiol 127: 1579-1589.
    Piao ZY, Deng YQ, Choi SR, Park YJ & Lim YP (2004) SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp. pekinensis). Theor Appl Genet 108 (8): 1458-1465.
    Poncet V, Hamon P, Sauvage de Saint Marc MB, Bernard T, Hamon S & Noirot M (2005) Base Composition of Coffea AFLP Sequences and Their Conservation Within the Genus. Journal of Heredity 96 (1): 59-65.
    Qi X, Stare P & Lindhout P (1998) Use of locus specific AFLP markers to construct a high-density map in barley. Theor Appl Genet 96: 376-384.
    Qin L, Overmars H, Helder J, Popeijus H, van der Voort JR, Groenink W, van Koert P, Schots A, Bakker J & Smant G (2000) An efficient cDNA-AFLP-based strategy for the identification of putative pathogenicity factors from the potato cyst nematode Globodera rostochiensis. Molecular Plant Microbe Interactions 13: 830-836.
    Ransom D & Zon L (1999) Mapping zebrafish mutations by AFLP. Methods Cell Biol 60: 195-211.
    Reyna-Lopez GE, Simpson J & Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol. Gen. Genet 253: 703-710.
    Rosendahl S & Taylor JW (1997) Development of multiple genetic markers for studies of genetic variation in arbuscular mycorrhizal fungi using AFLP. Mol. Ecol. 6: 821-829.
    Russell JR, Fuller JD, Macaulay M, Hatz BG, Jahoor A, Powell W & Waugh R (1997) Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95: 714-722.
    Sabharwall V, Negi MS, Banga SS & Lakshmikumaran M (2004) Mapping of AFLP markers linked to seed coat colour loci in Brassica juncea (L.) Czem. 109 (1): 160-166.
    Sabharwal V, Negi MS, Banga SS & Lakshmikumaran M (2004) Mapping of AFLP markers linked to seed coat colour loci in Brassica juncea (L.) Czern. Theor Appl Genet 109 (1): 160-166.
    Shan X, Blake TK & Talbert LE (1999) Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet 98:1072-1078.
    Stephane Rombauts, Yves Van de Peer & Pierre Rouze (2003) AFLPinSilico, simulating AFLP fingerprints. Bioinformatics 19 (6):776-777.
    Stoneking M (2001) Single nucleotide polymorphisms: from the evolutionary past. Nature 409:821-822.
    Theuns, Windels P, Buck S De, Depicker A, Van Bockstaele E & De Loose M (2002) Identification and characterization of T-DNA inserts by T-DNA fingerprinting. Euphytica 123:75-84.
    Thomas C M, Vos P, Zabeau M, Jones D A, Norcott K A, Chadwick B P & Jones J D G (1995) Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato cf-9 gene for resistance to Cladosporium fulvum. Plant J 8:785-794.
    Tohme J. et al. (1996) AFLP analysis of gene pools of a wild bean core collection. Crop Sci.36:1375-1384.
    
    Ulrich G M & Wolfenbarger L L (1999) AFLP genotyping and fingerprinting. TREE 14 (10):389-394.
    van der Wurff AWG, Chan YL, van Straalen NM & Schouten J (2000) TE-AFLP:combining rapidity and robustness in fingerpriting. Nucleic Acids Research 28 (24):el05.
    Vos P, Hogers M, Bleeker M, Rijans M, Van der Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M & Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Reseach 23:4407-4414.
    Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Lubberstedt T, Xia XC, Stam P, Zabeau M & Kuiper M (1999) Two high-density AFLP linkage maps of Zea mays L.: Analysis of distribution of AFLP markers. Theor Appl Genet 99:921-935.
    Wang DG, Fan J-B, Siao C-J, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E & Spencer J (1998) Largescale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077-1082.
    Waugh R, Bonar N, Baird E, Thomas B, Graner A, Hayes P & Powell W (1997) Homology of AFLP products in three mapping populations of barley. Mol Gen Genet 255:311 -321.
    Wei F, Gobelman-Werner K, Morrol SM, Kurth J, Mao L, Wing R, Leister D, Schulze-Lefert P & Wise RP (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929-1949.
    Witsenboer H, Vogel J & Michelmore RW (1997) Identification,genetic localization, and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives(Lactuca spp.). Genome 40:923-936.
    Xiong LZ, Xu CG, Saghai-Maroof MA & Zhang Q (1999a) Patterns of cytosin methylation in an elite rice hybrid and its parental lines, detected by a methylationsensitive amplification polymorphism technique. Molecular Genetics and Genomics 261:439-446.
    Xiong LZ, Xu CG, Saghai Maroof MA & Zhang Q (1999b) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet 261(3):439-446.
    Xu DH & Ban T (2004) Conversion of AFLP markers associated with FHB resistance in wheat into STS markers with an extension-AFLP method. Genome 47 (4):660-665.
    Xu K, Xu X, Ronald PC & Mackill DJ (2000) A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Subl. Mol Gen Genet 263 (4):681-689.
    Xu M L & Koban S S (2000) Saturation mapping of the apple scab resistance gene vf using AFLP markers. Theor Appl Genet 101: 844-851.
    Xu M, Li X & Korban SS (2004) DNA-methylation alterations and exchanges during in vitro cellular differentiation in rose (Rosa hybrida L.). Theor Appl Genet 109 (5):899-910.
    Yah G, Romero S, Walton M, Chadee D & Severson D (1999) Population genetics of the yellow fever mosquito in Trinidad:comparisons of amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers. Mol. Ecol. 8: 951-963.
    Yah Hong & Aaron Chuah (2003) A format for databasing and comparison of AFLP fingerprint profiles. BMC Bioinformatics 4 (7).
    Young WP, Schupp JM & Kiem P (I999) DNA methylation and AFLP marker distribution in the soybean genome. Theor Appl Genet 99: 785-790.
    Zhang QF, Zhou ZQ, Yang GP, Xu CG, Liu KD & Saghai Maroof MA (1996) Molecular marker beterozygosity and hybrid performance in indiea and japonica rice. Theor Appl Genet 93: 1218-1224.
    柴建芳,吴志明,赵和,Andre Laroche & 王海波(2003)利用减法AFLP有效标记小麦中的外源染色体片段.植物学报 45(4):379—383.
    洪棋斌 & 裴炎(2001)大麦DNA单限制性酶切选择性扩增多态性技术及其优化.遗传 23(5):477-479.
    姜长鉴 & 莫惠栋(1998)DNA分子标记信息不完全的统计处理.中国科学C辑 28(6):529-535.
    凌杏元,周培疆 & 朱英国(1999)一种新的适于线粒体RNA差异展示的方法.科学通报 44:747-750.
    吴敏生 & 戴景瑞(2000)AFLP标记与玉米杂种产量、产量杂种优势的预测.植物学报 42(6):600-604.
    张春庆 & 贾继增(2002)水稻AFLP指纹图谱的引物选择研究.中国农业科学 35(7):733-737.
    Bennett FGA (1984) Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathology 33:279-300.
    Bogdanove A (2002) Protein-protein interactions in pathogen recognition by plants. Plant Mol Biol 50:981-989.
    
    Conn J, Sessa G & Martin GB (2001) Innate immunity in plants. Cwr. Opin. Immunol 13:55-62.
    Dangl JL, Dietrich RA & Richberg MH (1996) Death don't have no mercy: cell death programs in plant - microbe interactions. Plant Cell 8:1793-1807.
    Dangl JL & Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826-833.
    Farmer EE, Almeras E & Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372-378.
    Flor HH (1971) The current status of the gene for gene concept. Ann Rev Phytopath 9 (12):275-296.
    Glazebrook J (2005) Contrasting mechenisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205-227.
    Hammond-Kosak KE & Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177-193.
    Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Cwr Opin Plant Biol 3:315-319.
    Huang XQ, Hsam SLK & Zeller FJ (1997) Chromosomal location of genes for resistance to powdery mildew in common wheat {Triticum aestivum L. em. Thell.) 4. Gene Pm24 in Chinese landrace Chiyacao. Theor Appl Genet 95:950-953.
    Huang XQ, Hsam SLK, Zeller FJ, Wenzel G & Mohler V (2000) Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101:407-414.
    Huang XQ & Roder MS (2004) Moleculer mapping of powdery mildew resistance genes in wheat: A review. Euphytica 137:203-223.
    Lutz J, Hsam SLK, Limpert E & Zeller FJ (1995) Chromosomal location of powdery mildew resistance genes in Triticum aestivum L.(common wheat) 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 74:152-156.
    Lutz J, Limpert E & Zeller FJ (1992) Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.) I.czechoslovakian cultivars. Plant Breeding 108:33-39.
    McIntosh RA & Baker EP (1970) Cytogenetic studies in wheat Ⅳ. Chromosomal location and linkage studies involving the Pm 2 locus for powdery mildew resistance. Euphytica 19: 71-77.
    Mysore KS & Ryu Choong-Min (2004) Nonhost resistance:how much do we know? TRENDS in Plant Science 9 (2):97-104.
    Rao SQ & Li X (2000) Strategies for genetic mapping of categoricai traits. Genetica 109: 183-197.
    Rowland GG & Kerber ER (1974) Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Canadian Journal of Genetics and Cytology 16: 137-144.
    Van der Biezen EA & Jones JDG (1998) Plant disease-resistance proteins and the gene-for-gene concept. Trends BiochemSci 23: 454-456.
    Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M & Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291: 118-120.
    Xu C, Zhang YM & Xu S (2005) An EM algorithm for mapping quantitative resistance loci. Heredity 94: 119-128.
    董玉琛 & 郑殿升(1998)中国小麦遗传资源.北京:中国农业出版社.
    方中达(1996)植病研究方法.北京:中国农业出版社.
    钟冠昌,穆素梅 & 张正斌(2002)麦类远缘杂交.北京:科学出版社.
    周益林,段霞瑜,陈刚,盛宝钦 & 张莹(2002)40个小麦优良品种资源的抗白粉病基因推导.植物病理学报 32(4):301-305.
    庄巧生(2003)中国小麦改良及系谱分析.北京:中国农业出版社.
    Becker J, Vos P, Kuiper M, Salamini F & Heun M (1995) Combined mapping of AFLP markers in barley. Molecular Genetics and Genomics 249: 65-73.
    Bennett FGA (1984) Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathology 33: 279-300.
    Boyko E, Kalendar R, Korzun V, Fellers J, Korol A, Schulman AH & Gill BS (2002) A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Mol Biol 48 (5-6): 767-790.
    Bradeen JM & Simon PW (1998) Conversion of an AFLP fragment linked to the carrot Y2 locus to a simple, codominant, PCR-based marker form. Theor Appl Genet 97: 960-967.
    Briggle LW (1966) Three loci in wheat involving resistance to Erysiphe grarninis f. sp. tritici. Crop Sci 6: 461-465.
    Brugmans Bart, van der Hulst Ron GM, Visser Richard GF, Lindhout Pim & van Eck Herman J (2003) A new and versatile method for the successful conversion of AFLF markers into simple single locus markers. Nucleic Acids Research 31 (10): e55.
    Caldwell KS, Dvorak J, Lagudah ES, Akhunov E, Luo MC, Wolters P & Powell W (2004) Sequence Polymorphism in Polyploid Wheat and Their D-Genome Diploid Ancestor. Genetics 167: 941-947.
    Chantret N, Mingeot D, Sourdille P, Bernard M, Jacquemin JM & Doussinault G (2001) A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat. Theor Appl Genet 103: 962-971.
    Chantret N, Sourdille P, Roder M, Tavaud M, Bernard M & Doussinault G (2000) Location and mapping of the powdery mildew resistance gene MIRE and detection of a resistance QTL by bulked segregant analysis (BSA) with microsatellites in wheat. Theor Appl Genet 100: 1217-1224.
    Devos KM & Gale MD (1992) The use of random amplified polymorphic DNA markers in wheat. Theor Appl Genet 84: 567-572.
    Dilbirligi M, Erayman M, Sandhu D, Sidhu D & Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166: 461-481.
    Donini P, Elias L & Bougourd S (1997) AFLP fingerprinting reveals pattern differences between template DNA extracted from different plant organs. Genorne 40: 521-526.
    Esquibet Magali, Grenier Eric, Plantard Olivier, Andaloussi Fouad Abbad & Caubel Georges (2003) DNA polymorphism in the stem nematode Ditylenchus dipsaci: development of diagnostic markers for normal and giant races. Genorne 46 (6): 1077-1083.
    Eujayi I, Sorrells ME, Baum M, Wolters P & Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104 (2-3): 399-407.
    Fads JD, Haen KM & Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154: 823-835.
    Gao LF, Jing RL, Huo NX, Li Y, Li XP, Zhou RH, Chang XP, Tang JF, Ma ZY & Jia JZ (2004) One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat.Theor Appl Genet 108 (7): 1392-1400.
    Gill KS, Gill BS, Endo TR & Boyko EV (1996) identification and High-Density Mapping of Gene-Rich Regions in Chromosome Group 5 of Wheat. Genetics 143:1001-1012.
    Gupta K, Balyan S, Edwards J, Isaac P, Korzun V, Roder M, Gautier MF, Joudrier P, Schlatter R, Dubcovsky J, De La Pena C, Khairaliah M, Penner G, Hayden J, Sharp P, Kelier B, Wang C,Hardouin P, Jack P & Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. 105 (2-3):413-422.
    Guyomarc'h H, Sourdille P, Charmet G, Edwards J & Bernard M (2002) Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104 (6-7): 1164-1172.
    Hartl L, Mohler V & Zeller F J (1999) Identification of AFL P markers closely linked to the powdery mildew resistance genes Pmlc and Pm4a in common wheat (Triticum aestivum L.). Genome 42:322-329.
    Hsam SKL, Huang XQ, Ernst F, Haiti L & Zeller FJ (1998) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L, em. Thell).5.AIlels at the Pm1 locus. TheorAppl Genet 96:1129-1134.
    Hsam SKL, Huang XQ & Zeller FJ (2001) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L, em. Thell).6.Allels at the Pm5 locus. Theor Appl Genet 102:127-133.
    Hsam SKL, Mohler V, Hartl L, Wenzel G & Zeller FJ (2000) Mapping of powdery mildew and leaf rust resistance genes on the wheat-rye translocated chromosome T1BL.1RS using molecular and biochemical markers. Plant Breed 119:87-89.
    Huang XQ, Hsam SKL & Zeller FJ (1997) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.).4. Gene Pm24 in Chinese landrance 'Chiyacao'. Theor Appl Genet 95:950-953.
    Huang XQ, Hsam SKL, Zeller FJ & Wenzel FJ (2000a) Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101:407-414.
    Huang XQ, Hsam SLK & Zeller FJ (2000b) Chromosomal location of two novel genes for resistance to powdery mildew in Chinese landraces (Triticum aestivum L. em. Thell.). Journal of Genetics and Breed 54:311 -317.
    Huang XQ & Roder MS (2003) High-density genetic and physical mapping of the powdery mildew resistance gene Pm24 on chromosome ID of wheat. Paper read at Proceedings of the 10th Internation Wheat Genetics Symposium, at Paestum,Italy.
    Huang XQ & Roder MS (2004a) Molecular mapping of powdery mildew resistance genes in wheat: A review. Euphytica 137:203-223.
    Huang XQ & Roder MS (2004b) Moleculer mapping of powdery mildew resistance genes in wheat: A review. Euphytica 137:203-223.
    Kam-Morgan LNW, Gill BS & Muthukrishham S (1989) DNA resitriction fragment length polymorphisms: a strategy for genetic mapping of D genome of wheat. Genome 32:724-732.
    Kantety RV, La Rota M, Matthews DE & Sorrells ME (2002.) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Molecular Biology 48: 501-510.
    Knott DR (1989) The Wheat Rusts: Breeding for Resistance. Springer-Verlag, Berlin&Heidelberg.
    Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12: 172-195.
    Lazo GR, Chao S, Hummel DD, Edwards H., Crossman CC, Lui N & Matthews DE (2004) Development of an Expressed Sequence Tag (EST) Resource for Wheat (Triticum aestivum L.): EST Generation, Unigene Analysis, Probe Selection and Bioinformatics for a 16, 000-Locus Bin-Delineated Map. Genetics 168: 585-593.
    Liu Z, Sun Q, Ni Z, Nevo E & Yang TM (2002) Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123: 21-29.
    Lutz J, Hsam SLK, Limpert E & Zeller FJ (1995) Chromosomal location of powdery mildew resistance genes in Triticum aestivum L.(common wheat) 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 74: 152-156.
    Maheswaran M, Subadhi P K & Nandi S (1997) Polymophism distribution and segreation of AFLP markers in a doubled haploid rice population. TheorAppl Genet 94: 39-45.
    Melntosh RA & Baker EP (1970) Cytogenetieal studies in wheat. Ⅳ. Chromosome location and linkage studies involving the Pro2 locus for powdery mildew resistance. Euphytica 19: 71-77.
    Meksem K, Ruben E, Hyten D, Triwitayakorn K & Lightfoot DA (2001) Conversion of AFLP bands into high-throughput DNA markers. Mol Genet Genomics 265 (2): 207-214.
    Michelmore RW.. Paran I & Kessel RV (1991) Identification of markers linked to disease risistenee genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating population. Proc. Nati. Acad. Sci, 88 (3): 175-182.
    Mienie CMS, Fourie H, Smit MA, Van Staden J & Botha FC (2000) Identification of AFLP markers in soybean linked to resistance to Meloidogyne javanica and conversion to Sequence Characterized Amplified Regions (SCARs). Plant Growth Regul 37: 157-166.
    Mingeot D, Chantret N, Baret PV, Dekeyser A, Boukhatem N, Sourdille P, Doussinault G & Jaequemin JM (2002) Mapping QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 in two susceptible genetic backgrounds. Plant Breed 121: 133-140.
    Negi MS, Devic M, Delseny M & Lakshmikumaran M (2000) Identification of AFLP fragments linked to seed coat colour in B.juncea and conversion to SCAR marker for rapid selection. Theor Appl Genet 101 (1/2): 146-152.
    Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M & Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109 (4): 800-805.
    Nyquist WE (1963) Inheritance of powdery mildew resistance in hybrids involving a common wheat strain derived from Tritivum timopheevi. Crop Sci 3: 40-43.
    Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B & Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107 (7): 1235-1242.
    Peng JI & Lapitan NL (2005) Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics 5 (2):80-96.
    Piao ZY, Deng YQ, Choi SR, Park YJ & Lim YP (2004) SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp.pekinensis). Theor Appl Genet 108 (8):1458-1465.
    Poncet V, Hamon P, Sauvage de Saint Marc MB, Bernard T, Hamon S & Noirot M (2005) Base Composition of Coffea AFLP Sequences and Their Conservation Within the Genus. Journal of Heredity 96 (1):59-65.
    Pulgsley AT & Carter MV (1953) Resistance of twelve varieties of Triticum vulgare to Erysiphe graminis tritici. Aust J of Biol Sci:335-346.
    Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD & Akhunov ED (2004) A Chromosome Bin Map of 16,000 Expressed Sequence Tag Loci and Distribution of Genes Among the Three Genomes of Polyploid Wheat. Genetics 168: 701-712.
    Qi LL, Zhou B, Zhang SZ, Chen PD, Liu DJ, Sheng BQ, Qi XJ, Duan XY & Zhou YL (1998)
    
    Transfer of a gene to powdery mildew resistance from Triticum ararticum Jakubz to Triticum aestivum L. I. Studies on cytogenetics and identification of powdery mildew resistance in hybrid progenies of T. aestivum and T. araraticum. (in Chinese). Acta Genetica Sinica 25 (1):59-66.
    Qi X, Stam P & Lindhout P (1998) Use of locus specific AFLP markers to construct a high-density map in barley. Theor Appl Genet 96:376-384.
    Roder MS, Korzun V, Gill BS & Ganal MW (1998a) The physical mapping of microsatellite markers in wheat. Genome 41:278-283.
    Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P & Ganal MW (1998b) A Microsatellite Map of Wheat. Genetics 149:2007-2023.
    Sabharwall V, Negi MS, Banga SS & Lakshmikumaran M (2004) Mapping of AFLP markers linked to seed coat colour loci in Brassica juncea (L.) Czern. 109 (1): 160 - 166.
    Sambrook J & Russell D (2001) Molecular Cloning: A Laboratry Manual. 2 ed. Cold Spring Harbor: Cold Spring Harbor Lab(CSHL) Press.
    Sears ER (1954) The aneuploids of common wheat. Missouri Agricultural Experiment Station Research Bulletin 572:59.
    Shan X, Blake TK & Talbert LE (1999) Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet 98:1072-1078.
    Sharp PJ, Kreis M, Shewry PR & Gale D (1988) Location of b-amylase sequences in wheat and its relatives. Theor Appl Genet 75:286-290.
    Singrun Ch, Hsam SKL, Hartl L, Zeller FJ & Mohler V (2003) Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell). Theor Appl Genet 106:1420-1424.
    Somers DJ, Isaac P & Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109 (6): 1105-1114.
    Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R & Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet.
    Tosa Y, Tokunaga H & Ogura H (1988) Identification of a gene for resistance to wheatgrass powdery mildew fungus in the common wheat cultivar Chinese Spring. Genome 30:612-614.
    Tosa Y, Tsujimoto H & Ogura H (1987a) Agcne involved in the resistance of wheat to wheatgrass powdery mildew fungus. Genome 29:850-852.
    Tosa Y, Tsujimoto H & Ogura H (1987b) A gene involved in the resistance of wheat to wheatgrass powdery mildew fungus. Genome 29:850-852.
    Vos P, Hogers M, Bleeker M, Rijans M, Van der Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M & Zabeau M (1995a) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Reseach 23: 4407-4414.
    Vos P, Hogers R, Bleeker M, Rijans M, VandeLee T, Hornes M, Frijters A, Pot J, Kuiper M & Zabeau M (1995b) AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407-4414.
    Wei F, Gobelman-Werner K, Morrol SM, Kurth J, Mao L, Wing R, Leister D, Schulze-Lefert P & Wise RP (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153: 1929-1949.
    Werner JE, Endo TR & Gill BS (1992) Toward a cytogenetically based physical map of the wheat genome. PNAS 89: 11307-11311.
    Xie C, Sun Q, Ni Z, Yang T, Nero E & Fahima T (2003) Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers. Theor Appl Uenet 106: 341-345.
    Xu ML & Koban SS (2000) Saturation mapping of the apple scab resistance gene vf using AFLP markers. Theor Appl Genet 101: 844-851.
    Yu JK, Dake TM, Singh S, Benscher D, Li W, Gill B & Sorrells ME (2004) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47(5): 805-818.
    Zeller FJ, Kong L, Hartl L, Mohler V & Hsam SKL (2002) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell).7.Gene Pm29 in line Pova. Euphytiea 123: 187-194.
    Zeller FJ, Lutz J & Stephan U (1993) Chromosome location of genes for resistance to powdery mildew in commonm wheat (Triticum aestivum L.).1.Mlk and other alleles at the Pm3 locus. Euphytica 68:223-229.
    Zhang D, Choi DW, Wanamaker S, Fenton RD, Chin A., Malatrasi M & Turuspekov Y (2004) Construction and Evaluation of cDNA Libraries for Large-Scale Expressed Sequence Tag Sequencing in Wheat (Triticum aestivum L.). Genetics 168: 595-608.
    Bent AF (1996) Plant disease resistance:function meets structure. Plant Cell 8: 1757-1771.
    Brommonschenkel SH, Frary A & Tanksley SD (2000) The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant-Microbe Interact 13: 1130-1138.
    Brooks SA, Huang L, Gill BS & Fellers JP (2002) Analysis of 106 kb of contiguous DNA sequence from the D genome of wheat reveals high gene density and a complex arrangement of genes related to disease resistance. Genome 45 (5):963-972.
    Brooks SA, Huang L, Herbel MN, Gill BS, Brown-Guedira G & Fellers JP (2004) Structural variation and evolution of a resistance gene island in natural populations of wild wheat (unpublished results).
    Brueggeman R, Rostoks N, Kudrna D, Killan A & Han F (2002) The barly stem rust resisitance gene Rpg1 is a novel disease resistance gene with homology to receptor kinase. PNAS 99: 9328-9333.
    Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F & Schulze-Lefert P (1997) The Barley Mo Gene: A Novel Control Element of Plant Pathogen Resistance. Cell 88:695-705.
    Caldwell KS, Dvorak J, Lagudah ES, Akhunov E, Luo MC, Wolters P & Powell W (2004) Sequence Polymorphism in Polyploid Wheat and Their D-Genome Diploid Ancestor. 167 941-947.
    Chin DB, Arroya-Garcia R, Ochoa OE, Keselli RV & Lavelle DO (2001) Recombination and spontaneous mutation at the major cluster of resistance genes in lettuce (Lactuca sativa).Genetics 157:831-849.
    Collins NC, Webb CA, Seah S, Ellis JG & Hulbert SH (1998) The isolation and mapping of disease resistance gene analogs in maize. Mol Plant-Microbe Interact 11:968-978.
    Dilbirligi M, Erayman M, Sandhu D, Sidhu D & Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461-481.
    Dilbirligi M & Gill KS (2003) Identification and analysis of expressed resistance gene sequences in wheat. Plant Mol Biol 53:771-787.
    Dodds PN, Lawrence GJ & Ellis JG (2001) Contrasting modes of evolution acting on the complex N locus for rust resistance in flax. Plant J 27:439-453.
    Ernst K, Kumar A, Kriseleit D, Kloos DU, Phillips MS & Ganal MW (2002) The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J 31:127-136.
    Feuillet C, Travella S, Stein N, Albar L, Nublat A & Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum.L) genome.PNAS 100 (25): 15253-15258.
    
    Flor HH (1971) Current status of the gene-for-gene concept. Annu. Rev Plant Pathol 9:275-296.
    Gerard van der Linden C, Wouters DCAE, Mihalka V, Kochieva EZ, Smulders MJM & Vosman B (2004) Efficient targeting of plant disease resistance loci using NBS profiling. Theor Appl Genet 109:384-393.
    Goff SA, Ricke D, Lan TH. Presting G & Wang R (2002) A draft sequence of the rice genome (Oryza sativa L. ssp.japonica). Science 296:92-100.
    Gomez-Gomez L & Boiler T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003-1011.
    
    Guyomarc'h H, Sourdille P, Charmet G, Edwards J & Bernard M (2002) Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104 (6-7): 1164-1172.
    Hammond-Kosack KE & Jones J (1997) Plant disease resistance genes. Annu Rev Plant Physiol 48: 575-608.
    Huang L, Brooks SA, Li WL, Fellers JP, Trick HN & Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polypioid genome of bread wheat. Genetics 164: 655-664.
    Johal GS & Briggs SP (1992) Reduetase activity encoded by the HM1 disease resistance gene in maize. Science 258: 958-987.
    Kanazin V, Marek LF & Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. PNAS 93: 11746-11750.
    Kang L (2003) Interplay of the arabidopsis nonhost resistant gene NH01 with bacterial virulence. PNAS 100: 3519-3524.
    Kihara H (1944) Discovery of the DD-analyzer, one of the ancestors of vulgare wheat. Agri Hortic 19: 889-890.
    Lagudah ES, Moullet O & Appels R (1997) Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome 40: 659-665.
    Leister D, Ballvora A, Salamini F & Gebhardt C (1996) A PCR based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genetics 14: 421-429.
    Lu M (2001) Arabidopsis NHO1 is required for general against Pseudomonas bacteria. Plant Cell 13: 437-447.
    Maleki L, Faris JD, Bowden RL, Gill BS & Fellers JP (2003) Physical and Genetic Mapping of Wheat Kinase Analogs and NBS-LRR Resistance Gene Analogs. Crop Sci 43:660-670.
    McFadden ES & Sears ER (1946) The origin of Tritieum spita tand its free-threshing bexaploid relatives. J Hered 37: 81-89, 107-116.
    McIntosh RA, Hart GE, Devos KM, Gale MD & Rogers WJ (2000) Catalogue of gene symbols for wheat supplemental, In: Proceedings of the 9th International Wheat Genetics Symposium, edited by AE Slinkard. University Extension Press,University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
    Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW & Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317-332.
    Mohler V, Klahr A, Wenzel G & Schwars G (2002) A resistance gene analoge useful for targeting disease resistance against different pathogens on groups 1S chromosome of barly, wheat and rye. Theor Appl Genet 105:364-368.
    Mondragon-Palomino M, Meyers BC, Michelmore RW & Gaut BS (2002) Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Research 12:1305-1315.
    Panstruga R, Buschges R, Piffanelli P & Schulze-Lefert P (1998) A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res 26:1056-1062.
    Richly E, Kurth J & Leister D (2002) Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Bio Evol 19:76-84.
    SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N & Zakharov D (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765-768.
    Seah S, Sivasithamparam K, Karakousis A & Lagudah ES (1998) Cloning and characterization of a family of disease resistance gene analogs from wheat and barley. Theor Appl Genet 97:937-945.
    Shen KA, Chin DB, Arroyo-Garcia R, Ochoa OE & Lavelle DO (2002) Dm3 is one member of a large constitutively expressed family of nucleotide binding site-leucine-rich repeat encoding genes. Mol Plant-Microbe Interact 15:251 -261.
    Shen KA, Meyers BC, Islam-Faridi MN, Chin DB & Stelly DM (1998) Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant-Microbe Interact 11:815-823.
    Spassieva SD, Markham JE & Hille J (2002) The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death.Plant J 32:561-572.
    Spielmeyer W, Huang L, Bariana H, Larroche A, Gill BS & Lagudah E (2000) NBS-LRR sequence family is associated with leaf and stripe rust resistance on the end of homoeologous chromosome group 1S of wheat. Theor Appl Genet 101:1139-1144.
    Sun Q, Collins NC, Ayliffe M, Simith SM & Drake J (2001) Recombination between paralogues at the Rp1 rust resistance locus in maize. Genetics 158:423-438.
    Tameling W1L, Elzinga SDJ, Darmin PS, Vossen JH, Takken FLW, Haring MA & Cornelissen BJC (2002) The tomato R gene products 1-2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14: 2929-2939.
    Traut TW (1994) The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide binding sites. Euro J Biochem 15: 9-19.
    Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M & Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPWS. Science 291: 118-120.
    Yahiaoui N, Srichumpa P, Dudler R & Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 34: 528-538.
    Yu YG, Buss GR & Maroof MA (1996) Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. PNAS 93: 11751-11756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700