纳米二氧化钛催化光诱导冷蒸气发生原子荧光光谱法测定汞
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米二氧化钛催化光诱导冷蒸气发生(PI-CVG)所生成的产物通过气液分离器进行分离后,将气体导入原子荧光光谱仪中进行测定。在本工作中,低分子量的醇(甲醇、乙二醇、1, 2-丙二醇、丙三醇)、醛(甲醛、乙醛)或酸(乙酸、乙二酸、丙二酸)在紫外光的照射下,可将水溶液中的Hg2+还原成Hg0。实验结果表明,纳米TiO2的加入可提高PI-CVG体系测汞的灵敏度。
     本文详细优化了实验条件,并且在最佳条件下测定了以上九种体系的工作曲线,方法检出限为0.02~0.04μg/L。本文还考察了过渡金属离子Cu2+、Co2+、Ni2+对该体系的干扰情况,结果发现,10 mg/L的Cu2+,50 mg/L的Co2+,100 mg/L的Ni2+对5μg/L Hg2+的测定不产生显著的干扰。另外,还测定了这九种体系分别在加纳米TiO2和不加纳米TiO2条件下的发生效率,初步讨论了PI-CVG体系的发生机理。本文测定七种水样中汞的含量。其中有两种水样计算了其回收率,结果发现:回收率在90%~115%之间。另外五种水样还用原子吸收光谱法进行了结果对照,实验表明:两种方法的结果一致。
     环境废水中通常含有重金属元素、各种有机物及其衍生物。本文利用该法处理了模拟废水。模拟废水由低分子量的醇、醛、酸以及汞组成。在光照不同的时间后,经过气液分离,测定废液中残余的汞的浓度,计算降解效率。结果表明:模拟废水在紫外光照射6小时之后,汞的降解接近100%。
Photo-induced chemical/cold vapor generation (PI-CVG) system was used to produce mercury cold vapor, which was determined by atomic fluorescence spectrometry after gas/liquid separation. Under the UV radiation, Hg2+ in aqueous solution can be converted into Hg0 cold vapor by using an organic reactant of low molecular weight alcohols, aldehydes or carboxylic acids, namely, methanol, formaldehyde, acetaldehyde, glycol, 1,2-propanediol, glycerol, acetic acid, oxalic acid or malonic acid. It was found that the presence of nano-TiO2 nanoparticles (nano-TiO2 later) enhanced the efficiency of the PI-CVG system.
     Under the optimized experimental conditions, the limits of detection (based on three standard deviation of 11 measurements of a blank solution) were around 0.02 to 0.04μg/L, with linear dynamic ranges up to 15μg/L. Also discussed in detail were the interference of transition metals, generation efficiency in above mentioned nine systems and the mechanisms of the PI-CVG system. Preliminary analytical application of the PI-CVG-AFS revealed that it was very promising for water analysis for ultra low level of mercury. Besides, the nano-TiO2 enhanced PI-CVG can be potentially useful for the disposal of mercury-polluted wastewater in the environmental area. The degradation efficiency of mercury (100 ? g/L) with a simulated wastewater approached 100% after 6 hours.
引文
1 Winefordner J D, Vickers T J. Atomic fluorescence spectrometry as a means of chemical analysis. Anal Chem. 1964. 36 (1). 161-165.
    2 Winefordner J D, Stanb R A. Determination of zinc, cadmium and mercury by atomic fluorescence flame spectrometry. Anal Chem. 1964. 36 (1). 165-168.
    3 Nakahara T. Hydride generation techniques in atomic spectroscopy. Adv At Spectrosc. 1995. 2. 139-178.
    4 林守麟, 邱海鸥, 汤志勇. 蒸气收集脉冲进样流动注射氢化物发生-原子荧光法测定痕量锑. 岩矿测试. 1994, 13 (2): 113-117.
    5 郭小伟, 郭旭明. 断续流动氢化物发生法在 AAS/AFS 中的应用. 光谱学与光谱分析. 1995, 15 (3): 97-101.
    6 段忆翔, 杜晓光, 刘军, 金钦汉. 气动雾化进样微波等离子体炬原子荧光光谱法测定锌的研究. 分析化学. 1993, 21 (5): 610-614.
    7 刘汉东, 汤志勇, 张惰成, 金泽祥, 秦红. 悬浮液氢化物发生原子荧光光谱法测定化探样品种痕量铋. 光谱实验室. 1996, 13 (2): 12-15.
    8 刘成佐, 罗明标, 刘海齐. 氟化钠和8-羟基喹啉联合掩蔽氢化物发生原子荧光光谱法直接测定环境水样中的 Sb(Ⅲ )和解 Sb(Ⅴ ). 稀有金属. 2004, 28 (6): 1095-1098.
    9 郭小伟, 胡晓温, 陈德芳. 氢化物发生-火焰分子发射法测定地质样品中的砷. 岩矿测试. 1991, 10(1): 1-5.
    10 D’Ulivo A, Dědina J. Interferences in hydride atomization studied by atomic absorption and atomic fluorescence spectrometry. Spectrochim Acta B. 1996. 51 (5). 481-498.
    11 韩恒斌, 王卫东. 氢化物-无色散原子荧光法测定河水和废水中的砷(Ⅲ )、砷(Ⅴ )、锑(Ⅲ ) 、锑(Ⅴ )、硒(Ⅳ )、硒(Ⅵ ). 环境化学. 1985, 4 (2): 54-59.
    12 李娜. 氢化物发生-原子荧光光谱法测定中药中不同形态的砷. 微量元素与健康研究. 2005, 22 (3): 51-52.
    13 杨莉丽, 李娜, 张德强, 高丽荣, 康海彦. 蒸气发生-原子荧光光谱法测定中草药中不同形态的汞. 光谱学与光谱分析. 2005, 25 (2): 286-289.
    14 Moreda-Pineiro J, Cervera M L, De la Guardia M. Direct determination of arsenic insea-water by continuous-flow hydride generation atomic fluorescence spectrometry. J Anal At Spectrom.1997. 12. 1377-1380.
    15 Brindle I D, Laughlin R M, Tangtreamjitmun N. Determination of lead in calcium carbonate by flow-injection hydride generation with dc plasma atomic emission detection. Spectrochim Acta Part B. 1998. 53. 1121-1129.
    16 彭兰乔,姚金玉. 氢化物发生石墨炉原子吸收光谱法直接测定高温镍基合金中的硒.分析化学. 1994, 22 (11): 1135-1137.
    17 Burguera M, Burguera J L, Rivas C, Carrero R, Brunetto R, Gallignani M. Time-based device used for the determination of tin by hydride generation flow injection atomic absorption techniques. Anal Chim Acta. 1995. 308. 339-348.
    18 Guo X M, Sturgeon R E, Mester Z, Gardner G J. UV vapor generation for determination of selenium by heated quartz tube atomic absorption spectrometry. Anal Chem. 2003. 75. 2092-2099.
    19 Skogerboe R K, Dick D L, Pavlica D A, Lichte F E. Injection of samples into flames and plasmas by production of volatile chlorides. Anal Chem. 1975. 47. 568-570.
    20 Lopez-Molinero A, Benito M, Aznar Y. Villareal A, Castillo J R. Volatile species of arsenic() with fluoride for gaseous sample introduction into the inductively coupled plasma. J Anal At Spectrom 1998. 13. 215-219.
    21 Docekal B, Marek P, Vobecky M. Radiotracer investigation of nickel tetracarbonyl generation and in situ nickel deposition within a graphite furnace. J Anal At Spectrom. 2000. 15. 131-135.
    22 Valdes-Hevia Temprano M C, Fernandez de la Campa M R, Sanz-Medel A. Sensitive inductively coupled plasma atomic emission spectrometric determination of cadmium by continuous alkylation with sodium tetraethylborate. J Anal At Spectrom. 1994. 9. 231-236.
    23 Ceulemans M, Adams F C. Integrated sample preparation and speciation analysis for the simultaneous determination of ethylated species of tin, lead and mercury in water by purge-and-trap injection-capillary gas chromatography-atomic emission spectrometry. J Anal At Spectrom. 1996. 11. 201-206.
    24 Yang L, Mester Z, Abranko L, Sturgeon R E. Determination of total chromium by isotopedilution sector filed ICPMS using GC sample introduction. Anal Chem. 2004. 76. 3510-3516.
    25 Abranko L, Yang L, Sturgeon R E, Fodor P, Mester Z. Solid phase micro extraction for the determination of chromium in sea-water,. J Anal At Spectrom. 2004. 19. 1098-1103.
    26 Holak W. Gas – sampling technique for arsenic determination by atomic absorption spectrophotometry. Anal Chem. 1968. 4. 1712-1715.
    27 Cacho J, Beltran I, Nerin C. Generation of a volatile cadmium species in an organic medium. J Anal At Spectrom. 1989. 4. 661-663.
    28 郭小伟,郭旭明. 硼氢化钠与锌在水溶液中的反应及其分析应用. 分析化学. 1998. 26 (6): 674-678.
    29 Sturgeon R E, Liu J, Boyko V J. Determination of copper in environmental matrices following vapor generation. Anal Chem. 1996. 68. 1883-1887.
    30 Moor C, Lam J W H, Sturgeon R E. A novel introduction system for hydride generation – inductively coupled plasma mass spectrometry of selenium in biological materials. J Anal At Spectrom. 2000. 15. 143-149.
    31 邓勃. 应用原子吸收与原子荧光光谱分析. 北京化学工业出版社化学与应用化学出版中心.2003, 40.
    32 Lin Y H, Zhuang Z X, Wang X R, Huang B L. Proceedings of international third Beijing conference and exhibition on instrumental analysis, Beijing, China. 1989, 221.
    33 陈德芳,李师鹊,戚苓,金念祖,汤国才. 电解氢化物发生-原子吸收法测定人尿中的砷. 分析试验室. 1990, 9 (2): 63-64.
    34 Pyell U, Dworschak A, Nitschke F, Neidhart B. Flow injection electrochemical hydride generation atomic absorption spectrometry (FI-EHG-AAS) as a simple device for the speciation of inorganic arsenic and selenium. Fresenius’Z Anal Chem. 1999. 363. 495-498.
    35 Bings N H, Stefanka Z, Mallada S R. Flow injection electrochemical hydride generation inductively coupled plasma time-of-flight mass spectrometry for the simultaneous determination of hydride forming elements and its application to the analysis of fresh water samples. Anal Chim Acta. 2003. 479. 203-214.
    36 Ding W W, Sturgeon R E. Interference of copper and nickel on electrochemical hydridegeneration. J Anal At Spectrom. 1996. 11. 421-425.
    37 Denkhaus E, Golloch A, Guo X M, Huang B L. Electrolytic hydride generation (EC-HG)-a sample introduction system with some special features. J Anal At Spectrom. 2001. 16. 870-878.
    38 Arbab-Zavar M H, Chamsaz M, Youssefi A, Aliakbari M. Electrochemical hydride generation atomic absorption spectrometry for determination of cadmium. Anal Chim Atca. 2005. 546. 126-132.
    39 Feng Y L, Lam J W, Sturgeon R E. A novel approach to the estimation of aqueous solubility of some noble metal vapor species generated by reaction with tetrahydroborate (III). Spectrochim Acta Part B. 2004. 59. 667-675.
    40 Arbab-Zavar M H, Hashemi M. Evaluation of electrochemical hydride generation for spectrophotometric determination of As(III) by silver diethyldithiocarbamate. Talanta. 2001. 52. 1007-1014.
    41 Zhang W B, Gan W E, Lin X Q. Electrochemical hydride generation atomic fluorescence spectrometry for the simultaneous determination of arsenic and antimony in Chinese medicine samples. Anal Chim Acta. 2005. 539. 335-340.
    42 Sima J, Rychlovsky P, Dedina J. The efficiency of the electrochemical generation of volatile hydrides studied by radiometry and atomic absorption spectrometry. Spectrochim Acta Part B. 2004. 59. 125-133.
    43 Tao G H, Willie S N, Sturgeon R E. Determination of inorganic mercury in biological tissues by cold vapor atomic absorption spectrometry following tetramethylammonium hydroxide solubilization. J Anal At Spectrom. 1999. 14. 1929-1931.
    44 Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995. 95. 69-96
    45 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972. 238. 37-38.
    46 Zhang Y, Crittenden J C, Hand D W. The solar photocatalytic decontamination of water. Chem indus. 1994. 32. 714-716.
    47 Malato S, Blanco J, Richter C, Curcó D, Giménez J. Low-concentrating CPC collectors forphotocatalytic water detoxification: comparison with a medium concentrating solar collector. Water Sci. Technol. 1997. 35. 157-159.
    48 Guo X M, Sturgeon R E, Mester Z, Gardner G J. Vapor generation by UV irradiation for sample introduction with atomic spectrometry. Anal Chem. 2004. 76. 2401-2405.
    49 Guo X M, Sturgeon R E, Mester Z, Gardner G J. UV light-mediated alkylation of inorganic selenium. Appl. Organomet. Chem. 2003. 17. 575-579.
    50 Guo X M, Sturgeon R E, Mester Z, Gardner G J. Photochemical alkylation of inorganic selenium in the presence of low molecular weight organic acid. Environ Sci Technol. 2003. 37. 5645-5650.
    51 Figueroa R, García M, Lavilla I, Bendicho C. Photoassisted vapor generation in the presence of organic acids for ultrasensitive determination of Se by electrothermal-atomic absorption spectrometry following headspace single-drop microextraction. Spectrochim Acta Part B. 2005. 60. 1556-1563.
    52 Guo X M, Sturgeon R E, Mester Z, Gardner G J. UV photosynthesis of nickel carbonyl. Appl Organomet Chem. 2004. 18. 205-211.
    53 Guo X M, Sturgeon R E, Mester Z, Gardner G J. Photochemical alkylation of inorganic arsenic Part 1. Identification of volatile arsenic species. J Anal At Spectrom. 2005. 20. 702-708.
    54 Zheng C B, Li Y, He Y H, Ma Q, Hou X D. Photo-induced chemical vapor generation with formic acid for ultrasensitive determination of mercury: potential application to mercury speciation in water. J Anal At Spectrom. 2005. 20. 746-750.
    55 Li Y, Zheng C B, Ma Q, Wu L, Hu C W, Hou X D. Sample matrix-assisted photo-induced chemical vapor generation: a reagent free green analytical method for ultrasensitive detection of mercury in wine or liquor samples. J Anal At Spectrom. 2006. 21. 82-85.
    56 段长强,孟庆芳,张泰,曹素忱,丁漪。现代化学试剂手册,第一分册 通用试剂。1986, 62-146.
    57 Dennis L M, Johnson E B. Germanium V. Extraction from germanium-bearing zinc oxide. Direct preparation of germanium dioxide free from arsenic. Detection of minute amounts of arsenic in germanium dioxide. J Am Chem Soc. 1923. 45. 1380-1391.
    58 Skogerboe P K, Dick D L, Pavlica D A, Lichte F E. Injection of samples into flames and plasmas by production of volatile chlorides. Anal Chem. 1975. 47. 568-570.
    59 Tesfalidet S, Irgrum K. Volatilization of arsenic as the trichloride for sample introduction in atomic spectroscopy. Anal Chem. 1988. 60. 2031-2035.
    60 Guo X W, Guo X M. Interference-free atomic spectrometric method for the determination of trace amounts of germanium by utilizing the vaporization of germanium tetrachloride. Anal Chim Acta. 1996. 330. 237-243.
    61 Lopez-Molinero A, Martinez L, Villareal A, Castillo J R. Silicon determination by inductively coupled plasma atomic emission spectrometry after generation of volatile silicon tetrafluoride. Talanta. 1998. 45. 1211-1217.
    62 Mester Z, Sturgeon R E, Lam J W, Maxwell P S, Péter L. Speciation without chromatography Part 1. Determination of tributyltin in aqueous samples by chloride generation headspace solid-phase microextraction and inductively coupled plasma time of flight mass spectrometry. J Anal At Spectrom. 2001. 161. 313-1316.
    63 Scriver C, Mester Z, Sturgeon R E, Péter L, Willie S. Speciation without chromatography Part 2. Determination of tributyltin by chloride generation flow injection atomic absorption spectrometry. J Anal At Spectrom. 2002. 17. 1511-1515.
    64 Vijian P N. Feasibility of determining ultratrace amounts of nickel by carbonyl generation and atomic absorption spectrometry. At Spectrosc. 1980. 1. 143-144.
    65 Feldmann J. Determination of Ni(CO)4, Fe(CO)5, Mo(CO)6, and W(CO)6 in sewage gas by using cryotrapping gas chromatography inductively coupled plasma mass spectrometry. J Environ Monit. 1999. 1. 33-37.
    66 Lee S D. Determination of nickel in seawater by carbonyl generation. Anal Chem. 1982. 54. 1182-1184.
    67 Drews W, Weber G, T?lg G. Flow-injection system for the determination of nickel by means of MIP-OES after conversion to Ni(CO)4. Fresenius’Z. Anal. Chem. 1989, 332, 862-865.
    68 Alary L, Vandaele J, Escrieut C. Determination of trace amounts of nickel by atomic absorption spectrometry after carbonyl generation. Talanta. 1986. 33. 748-750.
    69 Sturgeon R E, Willie S N, Berman S S. Graphite furnace atomic absorption spectrometrydetermination of Ni at sub ng levels in marine samples by carbonyl generation with in-situ preconcentration. J Anal At Spectrom. 1989. 4. 443-446.
    70 Marrero J, Smichowisk P. Evaluation of vapor generation for the determination nickel by inductively coupled plasma-atomic emission spectrometry. Anal Bioanal Chem. 2002. 374. 196-202.
    71 Alary J, Vandaele J, Escrieut C. Determination of trace amounts of nickel by atomic absorption spectrometry after carbonyl generation. Talanta. 1986. 33. 748-750.
    72 Johansson M, Hansson R, Snell J, Frech W. Determination of nickel using electrochemical reduction and carbonyl generation with in situ trapping electrothermal atomic absorption spectrometry. Analyst. 1998. 123. 1223-1228.
    73 Honeycutt J B, Riddle Jr J M. Preparation and reactions of sodium tetraethylborate and related compounds. J Am Chem Soc. 1961. 83. 369-373.
    74 Radojevi? M, Allen A, Rapsomanikis S, Harrison R M. Propylation technique for the simultaneous determination of tetraalkyllead and ionic alkyllead species by gas chromatography/atomic absorption spectrometry. Anal Chem. 1986. 58. 658-661.
    75 Chau Y K, Wong P T S, Bengert G A, Dunn J L. Determination of dialkyllead, trialkyllead, and lead(II) compounds in sediment and biological samples. Anal Chem. 1984. 56. 271-274.
    76 Calle-Gunti?as de la M B, Adams F C. Selective determination of Sb(III) by gas chromatography-quartz furnace atomic absorption spectrometry after derivatization with triphenylmagnesium bromide. J Chromatogr A. 1997. 764. 169-175.
    77 Jiang G B, Adams F C. Evaluation of gas chromatography with a flame photometric detector based on quartz surface-induced emission for determining the speciation of inorganic and methylgermanium compounds. Anal Chim Acta. 1997. 337. 83-91.
    78 Emteborg H, Snell J, Qian J, Frech W. Sources of systematic errors in mercury speciation using Grignard reagents and capillary gas chromatography coupled to atomic spectrometry. Chemosphere. 1999. 39. 1137-1152.
    79 Bouyssiere B, Baco F, Savary L, ?obiński R. Speciation analysis for mercury in gas condensates by capillary gas chromatography with inductively coupled plasma mass spectrometric detection. J Chromatogr A. 2002. 976. 431-439.
    80 ?obiński R, Dirkx W M R, Ceulemans M, Adams F C. Optimization of comprehensive speciation of organotin compounds in environmental samples by capillary gas chromatography helium microwave-induced plasma emission spectrometry. Anal Chem. 1992. 64. 159-165.
    81 Abalos M, Bayona J M, Quevauviller P. Comprehensive evaluation of the extraction variables affecting the determination and stability of native butyl- and phenyl-tin compounds from sediment. Appl Organomet Chem. 1998. 12. 541-549.
    82 Chau Y K, Wong P T S, Bengert G A. Determination of methyltin(IV) and tin(IV) species in water by gas chromatography/atomic absorption. Anal Chem. 1982. 54. 246-249.
    83 Chakraborti D, De Jonghe W R A, Van Mol W E, Van Cleuvenbergen R J A, Adams F C. Determination of ionic alkyllead compounds in water by gas chromatography/atomic absorption spectrometry. Anal Chem. 1984. 56. 2692-2697.
    84 Rapsomanikis S, Donard O F X, Weber J H. Speciation of lead and methyllead ions in water by chromatography/atomic absorption spectrometry after ethylation with sodium tetraethylborate. Anal Chem. 1986. 58. 35-38.
    85 Sturgeon R E, Willie S N, Berman S S. Atomic absorption determination of lead at pictogram per gram levels by ethylation with in situ concentration in a graphite furnace. Anal Chem. 1989. 61. 1867-1869.
    86 Chau Y K, Yang F, Brown M. Evaluation of derivatization techniques for the analysis of organotin compounds in biological tissue. Anal Chim Acta. 1997. 338. 51-55.
    87 D’Ulivo A, Chen Y W. Determination of cadmium in aqueous samples by vapor generation with sodium tetraethylborate(III) reagent. J Anal At Spectrom. 1989. 4. 319-322.
    88 Xu X K, Sturgeon R E. Flow injection chemical vapor generation of Au using a mixed reductant. Spectrochim Acta Part B. 2005. 60. 101-107.
    89 V?lim?ki I, Per?m?ki P. Determination of mercury species by capillary column GC-QTAAS with purge and trap preconcentration technique. Microchim Acta. 2001. 137. 191-201.
    90 Carlier-Pinasseau C, Lespes G, Astruc M. Determination of butyl- and phenyltin compounds in sediments by GC-FPD after NaBEt4 ethylation. Talanta. 1997. 44. 1163-1171.
    91 Allabashi R, Rendl J, Grasserbauer M. Selenium determination using ethylation and on-linetrapping/detection by graphite furnace atomic absorption spectrometry. Fresenius’ Z Anal Chem. 1998. 360. 723-725.
    92 Górecki T, Pawliszyn J. Determination of tetraethyllead and inorganic lead in water by solid phase microextraction/gas chromatography. Anal Chem. 1996. 68. 3008-3014.
    93 Yu X M, Yuan H D, Górecki T, Pawliszyn J. Determination of lead in blood and urine by SPME/GC. Anal Chem. 1999. 71. 2998-3002.
    94 Bergmann K, Neidhart B. Speciation of organolead compounds in water samples by GC-AAS after in situ butylation with tetrabutylammonium tetrabutylborate. Fresenius’ Z. Anal Chem. 1996. 356. 57-61.
    95 Yang L, Colombini V, Maxwell P, Mester Z, Sturgeon R E. Application of isotope dilution to the determination of methylmercury in fish tissue by solid-phase microextraction gas chromatography-mass spectrometry. J Chromatogr A. 2003. 1011. 135-142.
    96 De Smaele T, Moens L, Dams R, Sandra P, Van der Eycken J, Vandyck J. Sodium tetra(n-propyl)borate: a novel aqueous in situ derivation reagent for the simultaneous determination of organomercury, -lead and -tin compounds with capillary gas chromatography-inductively coupled plasma mass spectrometry. J Chromatogr A. 1998. 793. 99-106.
    97 Luckow V, Rüssel H A. Gas chromatographic determination of trace amounts of inorganic mercury. J Chromatogr. 1978. 150. 187-194.
    98 Brauns C M. A rapid, low-blank technique for the extraction of osmium from geological samples. Chem Geol. 2001. 176. 379-384.
    99 Mallett R C, Royal S J, Steele T W. Determination of osmium by atomic absorption spectrometry. Anal Chem. 1979. 51. 1617-1620.
    100 Hirata T, Masuda A. Determination of rhenium with enhanced sensitivity using inductively coupled plasma mass spectrometry. J Anal At Spectrom. 1990. 5. 627-630.
    101 Wolf W R. Coupled gas chromatography-atomic absorption spectrometry for the nanogram determination of chromium. Anal Chem. 1976. 48. 1717-1720.
    102 Black M S, Browner R.F. Volatile metal-chelate sample introduction for inductively coupled plasma-atomic emission spectrometry. Anal Chem. 1981. 53. 249-253.
    103 中国刑事警察学院毒物分析教研室编. 毒物分析, 群众出版社. 1986, 164-167.
    104 武汉大学 吉林大学编 曹锡章 宋天佑 王杏乔 修订. 无机化学(下册), 高等教育出版社. 2000, 844-845
    105 王永秋, 刘清理, 何晓玲,杨鹏宇. 新试剂 3,3’-二甲基联苯重氮氨基-4-苯基-2-噻唑分光光度法测定废水中微量汞.分析试验室. 2000, 19 (4): 66-68.
    106 GB/T 5009.17-1996. 食品中汞的测定方法[S].
    107 熊珍奎,冯龙飞. VA-90 气态原子化装置与 AAS 联用测定饮用水中汞. 分析测试. 2000, 18 (2): 34-35.
    108 Nagashima K, Murata T, Kurihara K. Pretreatment of water samples using UV irradiation-peroxodisulfate for the determination of total mercury. Anal Chim Acta. 2002. 454. 271-275.
    109 赵爱东,敦惠娟,赵永新, 宋连明. 电感藕合等离子体原子发射光谱法测定痕量汞. 分析化学. 1997, 25 (12): 1469-1471.
    110 谢永臻,庄峙厦,张志刚. 流动注射氢化物发生原子荧光光谱法测定中药中的微量 As、Hg. 分析科学学报. 1997, 13 (4): 296-299.
    111 邱海鸥, 陈群丽, 汤志勇. 流动注射在线离子交换富集-原子荧光光谱法测定环境水样中痕量汞. 安全与环境工程. 2001, 8 (3): 9-11.
    112 江霜英, 刘锦春, 刘良斌, 程介克. 痕量有机汞形态的反相高效液相色谱的研究. 高等学校化学学报. 1992, 13 (6): 759-761.
    113 梁立娜, 江桂斌, 胡敬田. 反相液相色谱法测定化工废水中的无机汞和有机汞. 分析试验室. 2001, 20 (5): 1-3.
    114 戴京晶, 刘奋, 林奕芝, 梁伟. 电感耦合等离子体质谱法测定鱼翅中的总汞. 中国卫生检验杂志. 2004, 11 (2): 149-150.
    115 李保会, 余莉萍, 王朝晖, 刘礼文, 严秀平. 基于低流速雾化器和可拆卸接口的毛细管电泳-电感耦合等离子体质谱联用技术应用于汞的形态分析. 光谱学与光谱分析. 2005, 25 (8): 1336-1338.
    116 胡广林, 王小如. 4 中形态汞正丁基衍生物的气相色谱-质谱分离与鉴定. 分析测试学报. 2000, 19 (4): 16-19.
    117 刘娜, 张兰英, 杜连柱, 张玉玲, 刘瑞, 陈登云. 高效液相色谱-电感耦合等离子体质谱法测定汞的 3 种形态. 分析化学研究简报. 2005, 33 (8): 1116-1118.
    118 王永生, 曾祥月, 陈云生. 动力学-压电石英晶体传感器测定水中微量汞的研究.分析试验室. 1997, 16 (1): 71-74.
    119 袁洪志, 曾雪艳. 离子选择电极法测定水中汞. 环境科学与技术. 1997, 78 (3): 36-38.
    120 庞秀言, 梁淑轩. 气相色谱-原子吸收联用技术测定人体体液中烷基汞. 色谱. 1997, 15 (2): 130-132.
    121 黄卓尔. 水相乙基化 GC-AFS 测定环境及生物样品中甲基汞. 分析测试学报. 1998, 17 (1): 22-25.
    122 秦树林. 含汞废水治理技术的试验研究. 浙江化工. 2005, 36 (10): 35-36.
    123 车荣睿,聂艳梅. 离子交换处理含汞废水的进展. 水处理技术. 1989, 15 (4): 194-200.
    124 吴秀英,吴农忠,赵宏远,隋广安,孙林志. 硫化钠处理含汞废水.中国环境科学. 1995, 15 (2): 128-130.
    125 尚谦,张长水. 含汞废水的污染特征及处理. 有色金属加工. 1997, 5, 52-64.
    126 朱又春,林建民,林美强等. 电池厂含汞废水的微电解处理. 环境保护. 1999, 3, 12-13.
    127 江伟武,雷恒毅,张小红. 沸石分子筛处理含汞废水. 广东工业大学学报. 2000, 7 (3): 97-100.
    128 刘秉涛,邵坚,刘欣. 改性膨润土处理含汞废水研究. 华北水利水电学院学报. 1998, 19 (1): 65-67.
    129 陈宏伟. 抗汞菌株的分离鉴定及特性. 黑龙江大学自然科学学报. 2000, 17 (3): 86-88.
    130 Chen S L, Wilson D B. Genetic engineering of bacteria and their potential for Hg bioremediation. Biodegradation. 1997. 30. 97-103.
    131 Von C H, Kelly S, Li Y, Wagner-D?bler I. Species diversity improves the efficiency of mercury-reducing biofilms ender changing environmental conditions. Appl Environ Microbio. 2002. 68. 2829-2837.
    132 付宏祥,吕功煊,李新勇,李树本. 重金属离子的光催化还原研究进展. 感光科学和光化学. 1995, 13 (4): 325-333.
    133 吴光辉,周韦,钟劲茅,杨莉. Hg2+离子的光催化还原的作用. 环境科学与技术. 2005, 28 (2): 15-16.
    134 Bhatkhande D S, Pangarkar V G, Beenackers AACM. Photocatalytic degradation forenvironmental applications – a review. J Chem Technol Biotechnol. 2002. 77. 102-116.
    135 张池明, 姜月顺, 刘旺, 杨洪茂, 李铁津, 肖良质. TiO2 超微粉光催化还原 Cr2O72-的研究. 太阳能学报. 1991, 12 (2): 176-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700