强流脉冲电子束表面改性Al-Si-Pb合金摩擦学性能及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文主要研究热挤压态Al–Si–Pb合金经强流脉冲电子束HCPEB(High Current Pulsed Electron Beam)改性后的摩擦学性能及数值模拟。摩擦磨损试验是在干摩擦条件下在销-盘磨损试验机上进行的。用于处理试样的HCPEB(High Current Pulsed Electron Beam)参数是:电子能量:15-25 keV;能量密度:1.5–2.5 J/cm2;脉冲周期1.5μs;脉冲次数:15。熔坑的形成表明了HCPEB辐射改变了Al–Si–Pb合金的表面形貌。对比未辐射和辐射试样的断面EPMA和SEM图象,可以看出显微组织明显改善,相应地引起机械性能的提高。电子能量束密度为2.0J/cm2 and 2.5 J/cm2辐射的Al–Si–Pb合金的耐磨性显著提高。光学观察和X射线光电子分析表明: Al–Si–Pb合金在能量密度大于1.5J/cm2辐射的条件下,在高载荷作用下,表现出的低水平的磨损率和摩擦系数主要是由于在磨损表面形成几乎覆盖整个表面的润滑膜。这种薄膜是含有不同成分的Al, Fe, Si, O和Pb的混合物,其中铅的存在形式是Pb4SiO6。随着所施加载荷的增加,磨损形式依次表现为氧化磨损、薄膜剥落及粘着磨损。
     通过数值计算方法对Al-Si-Pb合金的温度场和应力场进行模拟,给出了最先熔化的位置、形成熔坑的最大深度、熔化区的最大深度以及准静态热应力的分布。通过合金的数值模拟结果和实验结果对比,揭示了表面熔坑的形成机制和剖面硬度分布特征。
This dissertation focuses on the tribological properties of as-cast and hot extruded Al–Si–Pb alloys irradiated by high current pulsed electron beam (HCPEB). All experiments were investigated under dry sliding conditions using a pin-on-disc type wear testing machine. The HCPEB parameters used to treat the samples are: electron energy: 15–25 keV; energy density: 1.5–2.5 J/cm2; pulse duration: 1.5 As; number of pulses: 15. The formation of craters reveals that HCPEB irradiation changed the surface morphology of Al–Si–Pb alloy considerably. Cross-sectional EPMA and SEM images of the untreated and irradiated samples give a direct observation on microstructures suggests a corresponding improvement in mechanical properties. These factors contribute to great increase in wear resistance of HCPEB irradiated Al–Si–Pb alloys at 2.0J/cm2 and 2.5 J/cm2. Optical observation and X-ray photoelectron spectroscopy (XPS) analysis reveal that the low wear rate and lowest level in coefficient of friction at high load levels for Al–Si–Pb alloys HCPEB irradiated with more than 1.5 J/cm2 are due to a film of lubricant covering almost the entire worn surface. This film is a mixture of different constituents containing Al, Fe, Si, O and Pb, in which Pb exists in the form of Pb4SiO6. With the applied load increased, the dominant wear modes exhibit successively the oxidative wear, film spalling, and adhesive wear.
     Based on experimental investigation and physical models, the temperature field and stress field are simulated for Al-Si-Pb alloy. The starting melting position, the largest crater depth, melting layer thickness, and quasistatic stress distribution are obtained. These results reveal the mechanism of crater formation on the surface and hardness characteristics along the depth.
引文
1. Mohan S, Agarwala V, Ray S. The effect of lead content on the wear characteristics of stir-cast Al-Pb alloy [J]. Wear, 1990,140, 83-92.
    2. Srivastava S K, Mohan S, Agarwala V, Agarwala R C. The effect of aging on wear characteristics of rheocast-leaded aluminum alloys [J]. Metall. Mater. Trans. A, 1994, 25, 851-856.
    3. Ojha S N, Pandey O P, Tripathi B, Kuma r M, Ramachandra C. Microstructure and wear characteristics of an Al-4Cu-20Pb alloy produced by spray deposition [J]. Trans. JIM, 1992, 33, 519-524.
    4. Zhao J Z, Drees S, Ratke L. Strip casting of Al-Pb alloys-a numeral analysis [J]. Mater. Sci and Eng. A, 2000, 282, 262-269.
    5. Bhattacharya V, Chattopadhyay K. Microstructura and wear behavior of aluminum alloys containing embedded nanoscaled lead dispersoids [J]. Acta Mater., 2004, 52, 2293-2304.
    6. Mohan S, Agarwala V, Ray S. Trans JIM 1992;33:861–9.
    7. R.B.Miller, An introduction to the physics of intense charged particle beams, Plenum Press, New York, 1982.
    8. J.K.Hirvonen, J.M.Poate, A.Greenwald and R.Little, Pulsed electron beam irradiation of ion-implanted copper single crystals, Appl. Phys. Lett., 1980, 36(7), 564-566.
    9. D.I.Proskurovsky, et al., Pulsed Electron-beam technology for surface modification of metallic material, Surface and Coatings Technology, 1997, 96, 117-122.
    10. 朱俊彪,王明常等,新型电子束源——虚火花放电室设计,光学学报,1995,5,536-539.
    11. 陈思富,丁伯南等,强流短脉冲电子束束剖面的时间分辨率测量,强激光与粒子束,2002,2,317-320.
    12. Ozur, Nadezhda-2 型强流脉冲电子束系统,Tomsk 强流电子束研究所,1995.
    13. 山田隆洋,熊谷泰,电子束表面热处理,兵器材料科学与工程,1989,3,63.
    14. 刘江龙等,高能束热处理,机械工业出版社,1997.
    15. 赵文轸,金属材料表面新技术,西安交通大学出版社,1992.
    16. 赵渭江,颜莎,乐小云,强脉冲离子注入中的脉冲能量效应研究,核技术,2000,10.
    17. 周南,牛胜利,丁升,邱爱慈,强脉冲粒子束辐照热-力学效应研究, 强激光与粒子束,2000, 12(2), 249-253.
    18. 强希文,张健泉,李邦固,刘峰,高功率脉冲激光产生的激波在靶材中的传播,红外与激光工程,2000, 29(2), 41-50.
    19. 熊剑,国外热处理新技术,冶金工业出版社,1990.
    20. 大峰恩,利用电子束加工小孔,国外金属加工,1989,1,17.
    21. A.S.Filippov, V.Yu.Fomichev, Special features of structure formation in carbon steel under irradiation with a 30 MeV electron beam with a power density of approximately 104 W/cm2, Phys. Chem. Mater. Treat., 1990, 24(4), 394-398.
    22. A.Tauqir, I.Salam, F.H.Hashmi, Electron beam surface modification of a porous bronze-graphite composite, Metallurgical and Materials Transactions A, 1995, 26A(5), 1297-1304.
    23. 丛欣等,电子束淬火在 9SiCr 冷挤模具上的应用,新技术新工艺,1992,6,7.
    24. 谭家骏译,铝合金的电子束合金化,国外金属热处理,1994,4,44.
    25. 唐敦乙,林书铨,刘志敏,强流荷电粒子束技术与应用,电子工业出版社,1995.
    26. 方青,激光在铝靶中形成应力波的传播,强激光与粒子束,1992,8,438.
    27. Jun Cheol Oh, Kwangjun Euh, et al., Hardness improvement of TiB2/Ti surface-alloyed material fabricated by high-energy electron beam irradiation, Scripta Material. 1998, 39(10), 1389-1394.
    28. J.I.戈尔茨坦等,张大同译,扫描电子显微镜技术与 X 射线显微分析,科学出版社,1988.
    29. R.B.Oswald Jr., F.B.McLean, D.R.Schallhorn, T.R.Oldham, Dynamic response of aluminum to pulsed energy deposition in the melt-dominated regime, J. Appl. Phys., 1973, 44(8), 3563-3574.
    30. A.B.Markov, V.P.Rotshtein, Calculation and experimental determination of dimensions of hardening and tempering zones in quenched U7A steel irradiated with a pulsed electron beam, Nucl. Instr. and Meth. in Phys. Res. B, 1997, 132, 79-86.
    31. S.Z.Hao, S.Yao, J.Guan, A.M.Wu, P.Zhong, C.Dong, Surface treatment of Aluminum by High Current Pulsed Electron Beam, Current Applied Physics, 2001, 1(2-3), 203-208.
    32. 郝胜智,吴爱民,钟溥,董闯,一种新型的材料表面改性装置——强流脉冲电子束装置,真空,2000, 2, 16-19.
    33. 刘振民,郝胜智,史维东,陈立,董闯 钛离子注入 9Cr18 钢的强流脉冲电子束后处理, 核技术,2000, 7, 447-451
    34. C.Dong, A.M.Wu, S.Z.Hao, J.X.Zou etc., Surface treatment by high current pulsed electron beam,Surface and Coatings technology, 2003, 163-164, 620-624
    35. C.Dong, A.M.Wu, S.Z.Hao, Enhanced Diffusion Induced by High-Current Pulsed Electron Beam, Journal of the Korean Vacuum Society, 2002
    36. 吴爱民,刘捍卫,邹建新,周仲荣,董闯,D2 钢电子束表面改性抗微动磨损性能研究,核技术,2002, 9, 758-765
    37. 邹建新,吴爱民,刘振民,李茂源,董闯,H13 钢电弧镀铝及强流脉冲电子束后处理的复合改性研究,真空科学与技术, 2003, 2, 91-95.
    38. J. An, C. Dong, Q.Y. Zhang, Tribol. Int. 36 (2003) 25.
    39. M. Zhu, M.Q. Zeng, Y. Gao, Wear 253 (2002) 832.
    40. J. An, Y.B. Liu Y B, Sun D R. Mechanism of bonding of Al-Pb alloy strip and hot dip aluminized steel sheet by hot rolling [J]. Mater. Sci. Technol., 2001, 17 (4), 451-454.
    41. J. An, Y. Lu, D.W. Xu, Y.B. Liu, D.R. Sun, J. Mater. Eng. Perform. 10 (2001) 131.
    42. D.I.Proskurovsky, V.P.Rotshtein, et al., Pulsed electron-beam technology for surface modification of metallic materials, J. Vac. Sci. Technol. A, 1998, 16(4), 2480-2488.
    43. Robert Stark, Jens Christiansen, et al., IEEE TRANSACTIONS ON PLASMA SCIENCE, 1995, 23(3), 258-264.
    44. T.Witke, A.Lenk, B.Schultrich, IEEE TRANSACTIONS ON PLASMA SCIENCE, 1996, 24(1), 61-62.
    45. C.Dong, A.M.Wu, S.Z.Hao, J.X.Zou etc., Surface treatment by high current pulsed electron beam,Surface and Coatings technology, 2003, 163-164, 620-624
    46. J.Z.Zou, Y.Qin, C.Dong, X.G.Wang, S.Z.Hao, A.M.Wu, Numerical simulation of Thermal-mechanical process during High Current Pulsed Electron Beam (HCPEB) treatment,J of Vac Sci & Tech. A, 2004, 22(3), 545-552.
    47. Ying Qin, Chuang Dong, Xiaogang Wang, Shengzhi Hao, Aimin Wu, Jianxin Zou, Yue Liu,Temperature profile and crater formation induced in high-current pulsed electron beam processing,J. Vac. Sci. Technol. A21(6), Nov/Dec 2003,1934-1938
    48. K.I. Moor, D.L. Zhang, B. Cantor, Acta Metall. Mater. 38 (1990)1327.
    49. Proskurosky D L. J. Vac. Sci. Technol[J], 1998, A 16: 2480.
    50. Siegfried S et al. Electron Beam Technology [M]. New York, John Wiley & Sons, 1982: 29.
    51. A.D.Pogrebnjak, S.Bratushka, V.I.Boyko, A review of mixing process in Ta/Fe and Mo/Fe systems treated by high current electron beams, Nucl. Instrum. Methods phys. Res. B, 1998, 145, 373-390
    52. A.B.Markov, V.P.Rotshtein, Calculation and experimental determination of dimensions of hardening and tempering zones in quenched U7A steel irradiated with a pulsed electron beam, Nucl. Instr. and Meth. in Phys. Res. B, 1997, 132, 79-86
    53. D.I.Proskurovsky, V.P.Rotshtein, et al., Pulsed electron-beam technology for surface modification of metallic materials, J. Vac. Sci.Technol. A, 1998, 16(4), 2480-2488
    54. 严宗达,王洪礼,热应力,高等教育出版社,1993
    55. M.Laugier, An analysis of substrate bending during evaporation of thin films due to a small temperature difference between the substrate faces, Thin Solid Films, 1980, 66, L11
    56. 李立康,於崇华,朱政华,微分方程数值解法,复旦大学出版社,1999
    57. M.NECATI ?ZISIK, Heat conduction, A WILEY-Interscience Publication(John Wiley & Sons),1980, 490-494
    58. 宫野,计算物理,大连理工大学出版社,1986,123-136
    59. 李荣华,冯果忱,微分方程数值解法,人民教育出版社,1980
    60. 况蕙孙,蒋伯诚,张树发,计算物理引论,湖南科学出版社,1985
    61. William H.Press,Saul A.Teukolsky 等著,胡健伟等译,C++数值算法(第二版),2005
    62. Johu H.Matthews,Kurtis D.Fink 著,周璐等译,数值方法(MATLAB版)(第四版),2005
    63. D.R.克罗夫特,D.G.利利著,张风禄等译,传热的有限差分方程计算,冶金工业出版社,1982
    64. 郑贤淑,铸造应力数值模拟,大连理工大学铸造工程中心,1997
    65. Jianxin Zou, Ying Qin, Chuang Dong, Xiaogang Wang, Shengzhi Hao, Aimin Wu, Numerical simulation of Thermal-mechanical process during High Current Pulsed Electron Beam (HCPEB) treatment,J. Vac. Sci. Technol. A (SCI 检索期刊), 2004, 22(3), 545-552

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700