八棱海棠和水稻抗逆相关转录因子的克隆及功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱、高盐和极端温度非生物胁迫,严重影响了植物的生长和作物的产量。因此,系统研究植物对环境胁迫应答的机制就显得尤为重要。植物在感受环境胁迫信号后,会激活相应的信号传导途径,诱导大量胁迫应答基因表达,产生相应的胁迫应答反应,在这一系列的应答反应过程中,转录因子起着十分关键的作用。根据转录因子结构以及DNA结合活性等特点,将其分成若干个家族,如AP2/EREBP、Myb、HSF、bZIP等,这些转录因子在胁迫响应过程中发挥着重要的作用。本研究从八棱海棠和水稻中共克隆了5个转录因子的基因,它们分别属于AP2/EREBP和HSF类转录因子基因家族,并对它们进行了生物信息学分析和功能鉴定。
     利用RACE(rapid amplification of cDNA ends)技术从八棱海棠cDNA文库中克隆到1个新的编码AP2/EREBP类转录因子的全长cDNA序列,命名为MrDBP1。MrDBP1基因的开放阅读框(ORF)由483bp组成,编码1个由160个氨基酸组成的DREB类转录因子。构建的同源进化树表明,MrDBP1在进化关系上与DREB亚族转录因子较ERF类转录因子更近,属于DREB家族的A5亚群。Southern杂交的结果表明MrDBP1基因在八棱海棠基因组中很可能以多拷贝的形式存在,或者存在两个与MrDBP1基因同源性很高的同源基因。对MrDBP1蛋白的亚细胞定位分析表明,转录因子MrDBP1具有明显的核定位能力。使用实时荧光定量PCR对MrDBP1基因在不同组织中以及不同逆境胁迫下相对的转录水平进行了定量分析。结果表明,MrDBP1基因的表达在种子中最高,并且受干旱的诱导,而与低温和高盐的关系不大。
     利用酵母单杂交方法从水稻cDNA文库中分离了1个AP2/EREBP类和3个HSF类转录因子。这些基因的序列分析表明,这个AP2/EREBP类转录因子属于DREB家族的A1亚群,命名为RCBF2。而这3个HSF类转录因子中,OsHSF6和OsHSF7属于热休克转录因子的A类亚群,而OsHSF12属于C类亚群。对这些基因进行表达谱分析,结果表明低温,干旱和高盐都能够诱导RCBF2基因的表达,并且Ca~(2+)和MeJA也能够轻微诱导RCBF2基因的表达。此外,OsHSF6和OsHSF7对高温应答模式十分相似,即高温处理十分钟内其mRNA的水平均达到了最高,随后逐渐降低。为了进一步分析OsHSF7的功能,我们通过蘸花法转化拟南芥,获得了过量表达OsHSF7基因的拟南芥植株。对转基因植株的分析表明,OsHSF7基因的表达导致了拟南芥植株抗高温能力的增强,这主要是由于在转基因拟南芥植株内OsHSF7促进了下游HSP,GolS等基因的过量表达。
     最后,我们分析了八棱海棠,水稻和拟南芥中DREB1B/CBF1同源基因,即八棱海棠的MrCBF1,水稻的OsDREB1A和拟南芥的AtCBF1功能上的差异。结果表明,这3个基因功能上存在着很大的相似性,但是,也存在着很大的差异。即表型上的差异和诱导下游抗性基因表达强度的差异。三类转基因植株分别均表现出不同程度的生长滞后,D35S∷MrCBF1植株在长日照条件下,播种后六个月仍未抽薹,D35S∷OsDREB1A植株播种后4个月开始抽薹,而D35S∷AtCBF1植株和野生型拟南芥分别四个月和三个月已经完成了一个生命周期。对于诱导下游基因的表达,D35S∷MrCBF1植株中,COR15A,RD29A和KIN1基因的表达明显高于D35S∷AtCBF1和D35S∷OsDREB1A植株中这些基因的表达。
Plants are constantly challenged by various biotic and abiotic stresses such as drought,high salinity,low temperature and disease in their natural environment,which cause adverse effects on the growth of plants and serious reductions in the quantity and quality of agriculturally important crops.Encountering environmental stress,many signal transduction pathways are activated and plenty of genes involved in abiotic stress response are induced to express in plants.In the process of environmental stress response,transcription factors play important role.Till now,a number of transcription factor families have been found involving in plant stress responses,and each contain a different type of DNA-binding domain,including AP2/EREBP,Myb,WRKY,and bZIP and so on.In this study,we isolated five novel transcription factors,MrDBP1 form Malus robusta Rehd.,RCBF2,OsHSF6,OsHSF7,OsHSF12 from Oryza Sativa L, which belonged to AP2/EREBP and HSF,respectively.
     In this study,a novel AP2/EREBP type transcription factor,MrDBP1,was isolated using rapid amplification of cDNA ends(RACE) method.The full-length cDNA of MrDBP1 has a 483bp open reading frame(ORF) and encode a DREB subgroup transcription factor consisting in 160 amino acids.The result of Southern blot showed MrDBP1gene might be has several copies or high level of homologous genes in Malus robusta Rehd.genome.Subcellular location of MrDBP1 showed that the transcription factor MrDBP1 had obvious ability of nucleus location.The result of RT-PCR indicated that the expression of MrDBP1gene was induced by drought stress,but not low-temperature and high salinity and the transcript level of MrDBP1gene was the highest in Malus robusta Rehd.seeds.
     In our study,a transcription factor RCBF2 which interacts with C-repeat/DRE was isolated from Oryza sativa L by yeast one-hybrid method.Analysis of the deduced RCBF2 amino acid sequence revealed that RCBF2 contained a conserved EREBP/AP2 domain of 59aa and a potential nuclear localization sequence.The result of rice semi-quantitative RT-PCR(s-Q RT-PCR) indicated the expression of RCBF2 gene was induced by cold,dehydration and high-salinity,but not by ABA,and the transcription of RCBF2 gene accumulated primarily in rice immature seeds,growing point and shoots. The expression of OsHSF6 and OsHSF7 gene was induced immediately and largely by high temperature,and the mRNA transcript of OsHSF7 was found to be most abundant in leaf.This indicated that OsHSF7 might involve in heat stress reception and response. Over-expression of OsHSF7 in transgenic Arabidopsis could not induced over-expression of most target heat stress-inducible genes of HSFs.However,after two hours heat stress treatment,the transcript of some HSF target genes containing HSE in their promoter regions were more abundant in transgenic plants than in wild type, meanwhile,those transgenic plants also revealed higher tolerance to heat stress. Collectively,our results indicated that OsHSF7 might play an important role in responding high temperature and be potentially useful for producing transgenic monocots,which were induced to over-express some protective genes,such as HSP, GolS,under high temperature stress,and resulted in the tolerance to heat.
     In addition,the function of homologous genes of DREB1B/CBF1 was analyzed and compared in Malus robusta Rehd.,rice and Arabidopsis.The results suggested the function of three genes was similar.However,there were some differences the function of three genes in phenotype and expression of downstream genes.Three types of transgenic plants all presented retardant phenomenon at different extent,respectively. Under long light condition,D35S::MrCBF1 plants had still not flowered after six months development,D35S::OsDREB1A plants started to flower after four months development,while D35S::AtCBF1 plants and wild type plants had finished a life cycle in four or three months,respectively.Furthermore,as the ability about induction of expression of down stream genes as concerned,the level of expression of COR15A, RD29A and KINI genes in D35S::MdCBF plants was higher than that in D35S::AtCBF1 and D35S::OsDREB1A plants.
引文
1.曹冬梅,韩振海,许雪峰,苹果属小金海棠Fe转运蛋白基因的克隆和序列分析[J].农业生物技术学报,2004,12(3):345-346
    2.曹秋芬,田雅人,孟玉平,苹果一个锌指蛋白基因的cDNA克隆及其表达特性分析[J].植物学报,2004,46(9):1091-1099
    3.陈晓军,抗冻蛋白研究进展[J].生命的化学,2000,20:170-173
    4.邓江明,简令成,植物抗冻机理研究新进展:抗冻基因表达及其功能[J].植物学通报,2001.18:521-530
    5.费云标,抗冻蛋白的基因结构与基因工程[J].生物工程进展,1992,12:33-36
    6.费云标,昆虫抗冻蛋白的研究进展[J].昆虫学报,2000,43:98-101
    7.郭三堆,植物Bt抗虫基因工程研究进展[J].中国农业科学,1996,28:8-13
    8.何玉科,巩振辉,高等植物在农杆菌介导下的遗传转化[J].细跑生物学杂志,1991,13(3):97-101
    9.侯扶江,偾桂英,淮虎银,太阳紫外线辐射及植物效应诌议[J].农业环境与发展,1997,2:9-12
    10.简令成,生物膜与植物寒害和抗寒性的关系[J].植物学通报,1983,1:17-23
    11.蒋明义,郭绍川,水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯,1996,32(2):144-150
    12.李虹,浅析气候变暖对我国农业的影响及对策[J].农业经济,1998,12:13-14
    13.李垄宝,童耕雷,郑雪松,试论生物对环境的调节作用[J].生态学杂志,2002,21:49-52
    14.李英慧,分子标记技术在苹果育种中的应用[J].生物技术通报,2002,6:11-14
    15.李振声,李继云,有效利用土壤养分营养元素的作物育种新技术研究[J].中国科学(B)辑,1995,25:41-47
    16.廖名湘,方福德,酵母单杂交体系-一种研究DNA-蛋白质相互作用的有效方法[J].中国医学科学院学报,2000,22:388-391
    17.刘箭,庄野真理子,高温下线粒体小分子热激蛋白对柠檬酸合成酶,线粒体和花粉粒的保护作用[J].植物生理学报,2001,27:375-380
    18.刘强,张贵友,陈受宜,植物转录因子的结构与调控作用[J].科学通报,2000,45(14):1465-1474
    19.刘万勃,宋明,张中灵,周虹,抗冻蛋白的研究进展[J].生物学杂志,2000,17:7-8
    20.卢存福,王红,简令成,匡廷云,植物抗冻蛋白研究进展[J].生物化学与生物物理进展,1998.25:210-216
    21.史刚荣,环境胁迫下的植物细胞程序性死亡及其意义[J].生物学通报,2003,38:3-4
    22.束怀瑞,果树栽培生理[M].农业出版社,1993
    23.孙淑贞,林德球,蒋跃明,植物抗冻蛋白研究进展[J].亚热带植物科学,2002,31:32-36
    24.唐克轩,开国银,张磊,潘征,赵凌侠,孙小芬,郑金贵,RACE的研究及其在植物基因克隆上的应用[J].复旦学报(自然科学版),2002,41:704-709
    25.吴楚,王政权,拟南芥中CBF对COR基因表达的调控[J].植物生理学通讯,2001,37:365-368
    26.吴乃虎,基因工程原理(第二版)[M].科学出版社,1998
    27.郗荣庭,果树栽培学总论(第三版)[M].中国农业出版社,1997
    28.许智宏,植物发育与生殖的研究:进展与展望[J].植物学报,1999,41(9):909-920e
    29.叶陈亮,柯玉琴,陈伟.大白菜耐热性的生理研究[J].福建农业大学学报,1997,26:498-501
    30.尹明安,崔鸿文,樊代明,郭立,抗冻蛋白及其在植物抗冻基因工程中的应用[J].西北植物学报,2001,21:8-13
    31.张燕,方力,李天飞,钙对低温胁迫的烟草幼苗某些酶活性的影响[J].植物学通报,2002,19::342-347
    32.张正斌,植物对环境胁迫整体抗逆性研究若干问题[J].西北农业学报,2000,9:112-116
    33.张宗申,高温胁迫下辣椒叶片CiSH和ASA的变化[J].中国农业科学,2001,24(1):213-217
    34.周盛梅,宿红艳,王磊,苹果apetala2同源基因的克隆和转化研究[J].园艺学报,2006,33(2):239-243
    35.Abe H,Urao T,Ito T,Seki M,Shinozaki K,Arabidopsis AtMYC2(bHLH) and AtMY]32(MYB) function as transcriptional activators in abscisic acid signaling.Plant Cell,2003,15:63-78
    36.Abe H,Yamaguchi-Shinozaki K,Urao T,Role of Arabidopsis MYC and MYI3 homologs in drought-and abscisic acid-regulated gene expression.Plant Cell,1997,9:1859-1868
    37.Abel S,Theologis A,A polymorphic bipatite motif signals nuclear targeting of early auxin-inducible proteins related to PS-IAA4 from pea(Pisum sativum).Plant J.,1995,8:87-96
    38.Alexander MK,Bourns BD,Zakian VA,One-hybrid systems for detecting protein-DNA interactions.Methods Mol.Biol.,2001,177:241-259
    39.Allen MD,Yamasaki K,Ohme-Takagi M,A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA.EMBO J.,1998,17:5484-5496
    40.Anderson JP,Badruzsaufari E,Schenk PM,Manners JM,Desmond O J,Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell, 2004, 16:3460-79
    41. Anil G, Avnish K, Understanding molecular alphabets of the plant abiotic stress responses. Current Science, 2001, 80(2):206-215
    42. Apse MP, Aharon GS, Snedden WA, Blumwald E, Salt tolerance conferred by overexpression of a vacuolar Na+/H+antiport in Arabidopsis. Science, 1999, 285:1256 - 1258
    43. Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Zielinski D, von Koskull-Doring P, Heat stress response in plants: a complex game with chaperones and more than 20 heat stress transcription factors. J. Biosci., 2004,29:471-487
    44. Blumwald E, Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol., 2000, 12:431 -434
    45. Bohnert HJ, Donals N, and Richard GJ, Adaptations to environmental stress. Plant cell, 1995, 7:1099-1111
    46. Bohnert HJ, Sheveleva E, Plant stress adaptations-making metabolism move. Curr. Opin. Plant Biol., 1998, 1:267-274
    47. Busch W, Wunderlich M, Schoffl F, Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J., 2005, 41:1-14.
    48. Casaretto J, Ho TH, The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell, 2003, 15:271-84
    49. Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT, A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol., 2007, 143:251-62
    50. Chattopadhyay S, Ang LH, Puente P, Arabidopsis bZIP protein HY5 directly interacts with light-responsive promaters in mediating light control of gene expression. Plant Cell, 1998, 10: 673-683
    51. Cheng SH, Willmann MR, Chen HC, Sheen J, Calcium signaling through protein kinases: the Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol., 2002, 129: 469-485
    52. Chien CT, Bartel PL, Sternglanz R, Fields S, The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA, 1991,88:9578-9582
    53. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Gene Dev., 2003, 17:1043 - 54
    54. Choi DW, Rodriguez EM, Close TJ, Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol., 2002,129:1781-87
    55. Choi H, Hong J, Ha J, Kang J, Kim SY, ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem., 2000, 275:1723-30
    56. Chong JA, Tapia-Ramirez J, Kim S, REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell, 1995, 3: 947-957
    57. Cook D, Fowler S, Fiehn O, Thomashow MF, A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc. Natl. Acad. Sci. USA, 2004, 101:15243-48
    58. Cushman JC, Bohnert HJ, Genome approaches to plant stress tolerance. Curr. Opin. Plant Biol., 2000,3:117-24
    59. Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R, Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell, 2005, 17:268-281
    60. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt and cold-responsive gene expression. Plant J., 2003, 33:751-63
    61. Ellis RJ, Chaperone substrates inside the cell. Trends Biochem. Sci., 2000, 25:210-212
    62. Finkelstein RR, Lynch TJ, The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 2000, 12:599-609
    63. Freeman JP, Draper J, Davey MR, A comparison of method for plasmid delivery into plant protoplasts. Plant Cell Physiol., 1984,25:1353-1365
    64. Fromm ME, Taylor LP, Wallot V, Expression of genes electroporated into monocot and dicot plant cells. Proc. Natl. Acad. Sci.USA, 1985, 82:5824-5828
    65. Frydman J, Folding of newly translated proteins in vivo: The role of molecular chaperones. Annu. Rev. Biochem., 2001, 70:603-647
    66. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K and Yamaguchi-Shinozaki K, AREB1 is a transcription activator of novel ABRE-dependent ABA-signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 2005, 17:3470-3488
    67. Gao Mi, Allard G, Byass L, Flanagan AM, Singh J, Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol. Biol., 2002, 49:459-71
    68. Cattivelli L, Bartels D, Molecular cloning and characterization of cold regulated genes in barley. Plant Physiol., 1990,93:1504-1510
    69. Gavel Y, Heijine GV, A conserved cleavage-site motif in chloroplast transit peptide, FEBS Lett., 1990,261:455-458
    70. Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM and Thomashow MF, Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J., 1998,16: 433-443.
    71. Giraudat J, Parcy F, Bertauche N, Current advances in abscisic acid action and signaling. Plant Molecular Biology, 1994, 26:1557-1577
    72. Goff SA, Cone KC, Chandler VL, Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev., 1992, 6:64-875
    73. Gong D, Guo Y, Schumaker KS, Zhu JK, The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiol., 2004, 13:919-926
    74. Gubler F, Millar AA, Jacobsen JV, Dormancy release, ABA and pre-harvest sprouting. Curr. Opin. Plant Biol., 2005, 8:183-187
    75. Guiltinan MJ, Marcotte WR, Quatrano RS, A plant leucine zipper protein that recognizes an abscisic and response element. Science, 1990, 250:267-270
    76. Guo H, Ecker JR, The ethylene signaling pathway: new insights. Curr. Opin. Plant Biol., 2004, 7:40-49
    77. Guo ZJ, Chen XJ, Wu XL, Ling JQ, Xu P, Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Molecular Biology, 2004, 55:607-618
    78. Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ, Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol., 2000, 130:639-648
    79. Hao DY, Ohmetakagi M, Sarai A, Unique mode of GCC box recognition to the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J. Biol. Chem., 1998,273:2657-2661
    80. He YK, Wang JY, Gong ZH, Root development initiated by exogenous auxins synthesis genes in Brassica sp. crops. Plant Physiol. Biochem., 1994, 32(4):493-500
    
    81. Hiei Y, Ohta S, Komati T, Efficient transformation of rice (O ry z a sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T2DNA. Plant J., 1994, 6: 271-282
    82. Holmberg N, Bulow L, Improving stress tolerance in plants by gene transfer. Trends Plant Sci., 1998,3:61-66
    83. Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol., 2002a, 129: 1086-94
    84. Hsieh TH, Lee JT, Charng YY, Chan MT, Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol., 2002b, 130: 618-26
    85. Hobo T, Kowyama Y, Hattori T, A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc. Natl. Acad. Sci. USA, 1999, 96:15348-53
    86. Ingram J, Bartels D, The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Biol., 1996, 47:377-403
    87. Ishitani M, Xiong L, Stevenson B, Zhu JK, Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic aciddependent and abscisic acid-independent pathways. Plant Cell, 1997, 9:1935-49
    88. Ishitani M, Xiong L, Lee H, Stevenson B, Zhu JK, HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell, 1998, 10:1151-61
    89. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF, Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280:104-106
    90. Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol., 2001,127:910-17
    91. Jiang C, Iu B, Singh J, Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol. Biol., 1996, 30:679-84
    92. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K, A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol., 2004, 45:346 -50
    93. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K, Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol., 1999, 17:287-291
    94. Kathy SW, Thomashow MF, Arabidpsis thaliana cor15b, an apparent homologue of cor15a is strangly responsive to cold and ABA, but not drought. Plant Mol. Biol., 1993, 23:1073-1077
    95. Kitashiba H, Ishizaka T, Isuzugawa K, Nishimura K, Suzuki T, Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance. Plant Physiol., 2004, 161:1171-76
    96. Knight H, Knight MR, Abiotic stress signaling pathways: specificity and cross-talk. Trends Plant Sci., 2001, 6:262-267
    97. Konstantinova T, Parvanova D, Atanassov A, Djilianov D, Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Sci., 2002, 163:157-164
    98. Lang V, Palve E, The expression of a rab- related is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol., 1992, 20:951-962
    99. Lee GJ and Vierling E, A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol., 2000, 122:189-198
    100. Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK, The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev., 2001, 15:912-924
    101. Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu JK, LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-funcional enolase. EMBO J., 2002, 21:2692-2702
    102. Leyman B, Van Dijck P, Thevelein JM, An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci., 2001, 6:510-513
    103. Li C, Chen Q, Gao X, Qi B, Chen N, Xu S, Chen J, Wang X, AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Sci. China C. Life Sci., 2005,48: 540-550
    104. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10:1391-406
    105. Mak KL, Longcor LC, Johnson SE, Lemercier C, Konieczny SF, Examination of mammalian basic helix-loophelix transcription factors using a yeast one-hybrid system. DNA Cell Biol., 1996, 15:1-8
    106. Marcotte JWR, Russell SH, Quatrano RS, Abscisic acid responsive sequences from the Em gene of wheat. Plant Cell, 1998, 23: 969-976
    107. Martin C, Transcription factors and the manipulation of plant traits. Curr. Opin. Biotech., 1996, 7:130-1387(1):40-9
    108. Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Identification of cold inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two micro array systems. Plant J., 2004, 38:982-93
    109. Medina J, Bargues M, Terol J, Perez-Alonso M, Salinas J, The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol., 1999, 119:463-469
    110. Meissner RC, Jin H, Cominelli E, Denekamp M, Function starch in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell, 25:1827-1840.
    111. Menkens AE, Schindler U, Cashmore AR, The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem. Sci., 1995, 20:506-510
    112. Mine T, Hiyoshi T, Kasaoka K, Ohyama A, CIP353 encodes an AP2/ERF-domain protein in potato (Solarium tuberosum L.) and responds slowly to cold stress. Plant Cell Physiol., 2003, 44:10-15
    113. Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, and Scharf KD, In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermo tolerance in tomato. Genes Dev., 2002, 16:1555-1567
    114. Miller G, Mittler R, Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann. Bot., 2006,98:279-288
    115. Monroy AF, Dhindsa RS, Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees. Plant Cell, 1995, 7:321-331
    116. Morimoto RI, Regulation of the heat shock transcriptional response: cross talk between family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev., 1998, 12:3788-3796
    117. Munnik T, Ligterink W, Meskiene I, Calderini O, Beyerly J, Musgrave A, Hirt H, Distinct osmo-sensing protein kinase pathways are involved in signaling moderate and severe hyper-osmotic stress. Plant J., 1999,20:381 - 388
    118. Nakano T, Suzuki K, Fujimura T, Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol., 2006, 140(2): 411-432
    119. Nakashima K, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K, A nuclear gene, erdl, encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally upregulated during senescence in Arabidopsis thaliana. Plant J., 1997, 12:851 - 61
    120. Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration and high-salinity-responsive gene expression. Plant Mol. Biol., 2000,42:657 - 65
    121. Nakashima K, Tran PL-S, Nguyen DV, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K and Yamaguchi-Shinozaki K, Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J., 2007, in press
    122. Nanjo T, Kobayashia M, Yoshibab Y, Kakubaric Y, Yamaguchi-Shinozaki K, Shinozaki K. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett., 1999, 461:205 - 210
    123. Nishiyama C, Takahashi K, Ohtake Y, Yokota T, Okumura K, Ogawa H, Ra C, Analysis of transactivation region of EIf-1 by using a yeast one-hybrid system. Biosci. Biotechnol Biochem., 2002,66:1105-1107
    124. Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S, Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J., 2006,48:535-47
    125. Niu X, Renshaw-Gegg L, Miller L, Bipartite determinants of DNA-binding specificity of plant basic leucine zipper protein. Plant Molecular Biology, 1999, 41:1-13
    126. Novillo F, Alonso JM, Ecker JR, Salinas J, CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA, 2004, 101:3985-90
    127. Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf KD, Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones, 2001, 6:177-189
    128. Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku DK, The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. USA, 1997, 13: 7076-7081
    129. Ouellet F, Vazquez-Tello A, Sarhan F, The wheat wcs120 promoter is cold inducible in both monocotyledonous and dicotyledonous species. FEBS Lett., 1998, 423:324 - 28
    130. Panikulangara RJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schoffl F, Galactinol synthase1: a novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol., 2004, 136:3148-3158
    131. Park WP, Schenk PM. Molecular cloning and characterization of four cDNAs encoding the isoforms of NAD-dependent sorbitol dehydrogenase from the Fuji apple. Plant Sci., 2002, 162: 513-519
    132. Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Stress induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome, 2004, 47:493-500
    133. Pitcher LH, Zilinskas BA, Overexpression of copper/zinc superoxide dismutase in the cytosol of transgenic tobacco confers partial resistance to ozone-induced foliar necrosis. Plant Physiol., 1996, 110:583-588
    134. Pra¨ndl R, Hinderhofer K, Eggers-Schumacher G, Scho¨ffl F, HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol. Gen. Genet., 1998, 258:269-278
    135. Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol., 2004, 45:1042-52
    136. Raineri DM, Bottino P, Gordon MP, Agrobacterium mediated transformation of rice (Oryza sativa L.). Bio. Tech., 1990, 8: 33-38
    137. Ramanjulu S, Bartels D, Drought- and desiccation-induced modulation of gene expression in plants Plant, Cell & Environment, 2002, 25 (2): 141-151
    138. Rashid H, Yokoi S, Toriyama K, Transgenic plant product ion mediated by Agrobacterium in indica rice. Plant Cell Rep., 1996, 15:727-730
    139. Reich TJ, Lyer VN, Miki BL, Efficient transformation of alfafa protoplasts by the intranuclear microinjection of Ti plasmid. Biotechnology, 1986,4:1001-1003
    140. Riechmann JL, Heard J, Martin G, Reuber L, Arabidopsis Transcription Factors: Genome-Wide Comparative Analysis Among Eukaryotes. Science, 2000, 290:2105-2110
    141. Riechmann JL, Meyerowitz, The AP2/EREBP family of plant transcription factors. Biol. Chem., 1998,379,633-646
    142. Roxas VP, Smith RKJ, Allen ER, Allen RD, Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotech., 1997, 15:988-991
    143. Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought-, cold-, and high-salinity-stress conditions. Plant Physiol., 2004, 136:2734-46
    144. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun., 2002, 290:998-1009
    145. Sainz MB, Goff SA, Chandler VL, Extensive mutagenesis of a transcriptional activation identifies single hydrophobic and acidic amino acids important for activation in vivo. Mol. Cell Biol., 1997, 17:115-122
    146. Sanchez-Barrens MJ, Martinez-Ripoll M, Zhu JK, Albert A, SOS3 (salt overly sensitive 3) from Arabidopsis thaliana: expression, purification, crystallization and preliminary X-ray analysis. Acts. Crystallogr. D., 2004, 60:1272-1274
    
    147. Sanchez-Barrens MJ, Matinez-Ripoll M, Zhu JK, Albert A, The Structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. J. Mol. Biol., 2005,345:1253-1264
    
    148. Schmidt RJ, Burr FA, Aukerman MJ, Maize regulatory gene opaque-2 encodes a protein with a 'leucine zipper' motif that binds to zein DNA. Proc. Natl. Acad. Sci. USA, 1990, 87:46-50
    
    149. Schmidt RJ, Burr FA, Burr B, Transposon tagging and molecular analysis of the maize regulatory locus opaque-2 . Science, 1987, 238:960-963
    
    150. Schoffl F, Prandl R, Reindl A, Regulation of the heat-shock response. Plant Physiol., 1998, 117:1135-1141
    
    151. Schwech HC, Bevan M, The regulation of transcription factor activity in plants. Trend in Plant Science, 1998, 3(10):278-283
    
    152. Serrano R, Mulet JM, Rios G, Marquez JA, de Larrinoa IF, Leube MP, Mendizabal I, Pascual-Ahuir A, Profit M, Ros R, Montesinos C, A glimpse of the mechanisms of ion homeostasis during salt stress. J. Exp. Bot., 1999, 50:1023-1036
    
    153. Shen Q, Zhang P, Ho TH, Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell, 1996, 8:1107 - 19
    
    154. Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor. Appl. Genet., 2003a, 106:923 - 30
    
    155. Sheveleva E, Chmara W, Bohnert HJ, Jensen RG, Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol., 1997, 115:1211 - 1219
    
    156. Shi H, Lee BH, Wu SJ and Zhu JK, Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotech., 2003, 21:81 -85
    
    157. Shinozaki K, Yamaguchi-Shinozaki K, Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol., 2000, 3:217-223
    
    158. Smirnoff N, Plant resistance to environmental stress. Curr. Opin. Biotech., 1998, 9:214-219
    
    159. Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE, Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res., 2001,29:1097-1106
    160. Soll J and Schleiff E, Protein import into chloroplasts. Nature Rev. Mol. Cell. Biol., 2004, 5:198-208
    161. Spelt C, Quattrocchio F, Mol JNM, Koes R, Anthocyaninl of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell, 2000, 12:1619-163
    162. Stockinger EJ, Gilmour SJ, Thomashow MF, Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA, 1997, 94:1035 - 40122.
    163. Steponkus PL, Uemura M, Joseph RA, Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 1998, 95: 14570-14575
    164. Tahtiharju S, Palva T, Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J, 2001, 26: 461-470
    165. Theresa C, White, Daina S, Pauline D, Jas S, Regulation of BN115, a low-temperature-responsive gene from Winter Brassica napus. Plant Physiol, 1994,106:917-928
    166. Thomashow MF, Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Biol., 1999, 50:571 - 599
    167. Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Functional analysis of Arabidopsis NAC transcription factors controlling expression of erd1 gene under drought stress. Plant Cell, 2004, 16:2482 - 98
    168. Tran PLS, Nakashima K, Sakuma Y, Fujita Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K and Yamaguchi-Shinozaki K, Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J., 2007, 49:46-63
    169. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA, 2000, 97:11632 - 37
    170. Urao T, Miyata S, Yamaguchi-Shinozaki K, Shinozaki K, Possible His to Asp phosphorelay signaling in an Arabidopsis two-component system. FEBS Lett., 2000, 25: 227-232
    171. Urao T, Yamaguchi-Shinozaki K, Urao S, An Arabidopsis MYB homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 1993, 5(11):1529-1539
    172. Urrutia ME, Duman JG, Knight CA, Plant thermal hysteresis proteins. Biochim. Biophy. Acta., 1992,1121:199-206
    173. Varagona MJ, Schmidt RJ, Raikhel NV, Nuclear localization signals required for nuclear targeting of the maize regulatory protein Opaque-2.Plant Cell, 1992, 4:1213-1227
    174. Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF, Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J., 2005,41:195-211
    175. Walsh J, Waters CA, Freeling M, The maize gene Uguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Genes Devel., 1998, 12:208-218.
    176. Wang MN, Reed RR, Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature, 1993, 6433:121-126
    177. Wei Z, Angerer RC, Angerer LM, Identification of a new seaurchin ets protein, SpEts4, by yeast one-hybrid screening with the hatching enzyme promoter. Mol Cell Biol., 1999, 19:1271-1278
    178. Welin BV, Olson A, Palva ET, Structure and organization of two closely related low-temperature-induced dhn/lea/rab-like genes in Arabidopsis thaliana L. Heynh. Plant Mol. Bio., 1995,29,391-395
    179. Weretilnyk E, Orr W, White TC, Iu B, Singh J, Characterization of three related cDNA low temperature-regulated from winter Brassica napus. Plant Physiol., 1993, 101:171-177
    180. Wilson TE, Day ML, Pexton T, Padgett KA, Johnston M, Milbrandt J, In vivo mutational analysis of the NGFI-A zincfingers. J. Biol. Chem., 1992,267:3718-3724
    181. Wilson TE, Padgett KA, Johnston M, Milbrandt J, A genetic method for defining DNA-binding domains: application tothe nuclear receptor NGFI-B. Proc. Natl. Acad. Sci .USA, 1993, 90:9186-9190
    182. Wittschieben BO, Otero G, de Bizemont T, Fellows J, Erdjument-Bromage H, Ohba R, Li Y, Allis CD, Tempst P, Svejstrup JQ, A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme, Mol Cell, 1999, 4:123-128
    183. Wolfraim LA, Dhindsa RS, Cloning and sequencing of the cDNA cas17, a cold acclimation-specific gene of alfalfa. Plant Physiol., 1993,103:667-668
    184. Xiong L, Zhu JK, Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell and Environment, 2002, 25:131-139
    185. Xue GP, The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J., 2003, 33:373-83
    186. Yadav V, Mallappa C, Gangappa SN, Bhatia S, Chattopadhyay S, A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. Plant Cell, 2005, 17:1953-66
    187. Yamaguchi-Shinozaki K, Shinozaki K, A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell, 1994, 6:251-64
    188. Yamanouchi U, Yano M, Lin H, Ashikari M and Yamada K, A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc. Natl. Acad. Sci. USA, 2002, 99:7530 -7535
    189. Yamaguchi-Shinozaki K and Shinozaki K, Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol., 2006, 57:781-803
    190. Yang HJ, Shcn H, Chen L, Xing Y, Wang ZY, Zhang JL, Hong MM, The OsEBP-89 gene of rice encodes a putative EREBP transcription factor and is temporally expressed in developing endosperm and intercalary meristem. Plant Mol. Biol., 2002, 50: 379-391
    191. Young JC, Barral JM and Hartl UF, More than folding: localized functions of cytosolic chaperones. Trends Biochem. Sci., 2003, 28:541-547
    192. Zarka DG, Vogel JT, Cook D, Thomashow MF, Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol., 2003,133:910-18
    193. Zhang H, Zhang D, Chen J, Yang Y, Huang Z, Huang D, Wang XC, Huang R, Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol. Biol., 2004, 55: 825-834
    194. Zhu B. Chen THH, Lee SP, Li PH, Expression of an ABA-responsive osmotin-like gene during induction of freezing tolerance in Solarium commersionii. Plant Mol. Biol., 1993, 21: 729-735
    195. Zhu J, Shi H, Lee BH, Damsz B, Cheng S, An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc. Natl. Acad. Sci. USA, 2004, 101:9873-78
    196. Zhu J, Verslues PE, Zheng X, Lee BH, Zhan X, HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc. Natl. Acad. Sci. USA, 2005, 102:9966-71
    197. Zhu JK, Plant salt tolerance. Trends Plant Sci., 2001, 6:66-71
    198. Zhu JK, Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol., 2002, 53:247-73
    199. Tornero P, Gadea J, Conejero V, Vera P, Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development. MPMI, 1997, 10:624-634

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700