牛膝多肽神经保护作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     观察牛膝多肽(A. bidentata polypeptides, ABPP)的神经保护作用及其相关作用机制。
     方法:
     (1)采用大脑中动脉线栓法建立大鼠局灶性脑缺血再灌注模型,通过测定神经功能缺陷评分、脑梗死百分比(TTC法),在体观察牛膝多肽的神经保护作用。
     (2)以体外原代培养胎鼠海马神经元为研究对象,建立N-甲基-D-天冬氨酸(N-methyl-D-aspartate, NMDA)损伤模型。通过MTT检测,离体观察牛膝多肽的神经保护作用。
     (3)Hoechst33258/PI双染色、PI流式细胞仪检测、LDH检测、DNA ladder检测等观察牛膝多肽对NMDA诱导的海马神经元调亡的影响。
     (4)利用钙离子荧光探针Fluo-3/AM标记海马神经元,通过激光共聚焦显微镜检测,观察牛膝多肽对NMDA引起的海马神经元胞内钙离子浓度的影响。
     (5)通过Western blot,观察牛膝多肽对NMDA引起的海马神经元Bax蛋白过表达的影响。
     (6)通过Caspase-3活性检测,观察牛膝多肽对NMDA引起的海马神经元Caspase-3蛋白活性增高的影响。
     (7)采用亲脂性阳离子荧光染料Rhodamine123、分子探针DCFH-DA标记海马神经元,通过多功能酶标仪检测NMDA引起的海马神经元线粒体跨膜电位、活性氧自由基含量的变化。同时观察牛膝多肽对NMDA引起的海马神经元线粒体跨膜电位、活性氧自由基含量的影响。
     (8)采用全细胞膜片钳技术,观察牛膝多肽对NMDA电流峰值、平台期电流值、失敏系数的影响。
     (9)采用了含NR2A、NR2B两种不同亚单位类型NMDA受体的选择性抑制剂:Ro-256981、NVP-AAM007,及两种不同培养时间的海马神经元:体外培养8天、13-14天,通过MTT检测,观察两种不同的选择性抑制剂对NMDA诱导神经元损伤的影响,同时观察牛膝多肽对NMDA诱导神经元损伤的影响。
     (10)应用钙离子荧光探针Fluo-3/AM标记通过激光共聚焦显微镜检测,观察含NR2A、NR2B两种不同亚单位类型NMDA受体的选择性抑制剂:Ro-256981、NVP-AAM007,对NMDA和Bicuculline引起的海马神经元胞内钙离子浓度的影响,并观察牛膝多肽对含NR2A、NR2B两种不同亚单位类型NMDA受体介导的胞内钙离子浓度的影响。
     (11)采用全细胞膜片钳技术,观察含NR2A、NR2B两种不同亚单位类型NMDA受体的选择性抑制剂:Ro-256981、NVP-AAM007,对NMDA电流峰值、平台期电流值、失敏系数的影响,并观察牛膝多肽对含NR2A、NR2B两种不同亚单位类型NMDA受体介导的NMDA电流峰值、平台期电流值、失敏系数的影响。
     结果:
     (1)局灶性脑缺血再灌注损伤能引起大鼠死亡,死亡率达到50%,对存活的大鼠,其神经功能缺陷评分明显增高(p<0.01)和脑梗死百分比增加(p<0.01),尾静脉给予牛膝多肽(0.2mg/kg)治疗,可以降低神经功能缺陷评分,降低脑梗死百分比(p<0.01)。
     (2)通过MTT检测结果显示,NMDA能降低培养的海马神经元的活力,而且随着NMDA浓度的增加、作用时间的延长,神经元的活力逐渐下降。牛膝多肽能抑制NMDA引起的海马神经元活力下降,并与其剂量相关。
     (3)Hoechst33258/PI双染色、PI流式细胞仪检测、LDH检测、DNA ladder检测结果显示,NMDA能诱导海马神经元调亡,牛膝多肽(1μg/ml)能拮抗NMDA诱导的海马神经元调亡。
     (4)钙实时成像结果显示,NMDA能引起海马神经元胞内钙荧光强度增加,并随着NMDA浓度增加,荧光强度增强。AP-V、MK801能抑制胞内钙荧光强度增高。预先、同时、后加入牛膝多肽都能减弱NMDA引起海马神经元胞内钙荧光强度增加,并随着浓度增高,抑制程度增加。
     (5)通过MTT检测结果显示,Bax通道阻断剂能拮抗NMDA引起的海马神经元活力的降低。RT-PCR和Western blot结果提示,海马神经元Bax mRNA及其蛋白表达随着NMDA作用时间的变化而变化,其中作用30min Bax蛋白表达明显增加(p<0.05)。牛膝多肽能拮抗NMDA损伤引起的海马神经元Bax蛋白表达增高。
     (6)多功能酶标仪实时测定结果显示,分子探针DCFH-DA氧化后形成的荧光产物DCF的荧光强度,随着NMDA浓度的增加而逐渐增高,而牛膝多肽能抑制NMDA引起的荧光强度增强,并随着其浓度的增加,其抑制程度逐渐增强。
     (7)多功能酶标仪实时测定线粒体跨膜电位,结果显示NMDA能引起线粒体跨膜电位明显下降,而牛膝多肽能拮抗线粒体跨膜电位的下降。
     (8)Caspase-3活性检测结果显示,NMDA能引起海马神经元Caspase-3蛋白活性增强,牛膝多肽能拮抗NMDA引起海马神经元Caspase-3活性增强(p<0.05)。
     (9)通过MTT检测结果显示,体外培养8天、13-14天的海马神经元,NMDA都能引起细胞活力急性下降,Ro-256981、NVP-AAM007能拮抗NMDA引起的细胞活力下降(p<0.05),然而牛膝多肽不能抑制NMDA引起的急性细胞活力下降。体外培养8天、13-14天的海马神经元,Ro-256981能拮抗NMDA引起的迟发性细胞活力下降(p<0.05)。体外培养8天的海马神经元,NVP-AAM007能拮抗NMDA引起的迟发性细胞活力下降(p<0.05),牛膝多肽(0.1μg/ml)能拮抗NMDA引起的迟发性细胞活力下降(p<0.01),而牛膝多肽(10μg/ml)不能拮抗NMDA引起的细胞活力迟发性下降,但NVP-AAM007能恢复牛膝多肽拮抗NMDA引起的迟发性细胞活力下降作用。体外培养13-14天的海马神经元,NVP-AAM007能加剧NMDA引起的细胞活力迟发性下降(p<0.01)。牛膝多肽(10μg/ml)能明显抑制NMDA引起的迟发性细胞活力下降(p<0.01)。
     (10)钙实时成像结果显示,NVP-AAM007、Ro-256981能部分抑制NMDA引起的海马神经元胞内钙荧光强度增加。当NVP-AAM007存在的时候,牛膝多肽能抑制NMDA引起的海马神经元胞内钙荧光强度增加。当Ro-256981存在的时候,牛膝多肽能增强NMDA引起的海马神经元胞内钙荧光强度增加。NVP-AAM007、Ro-256 981能部分抑制Bicuculline引起的海马神经元胞内钙荧光强度增加。当NVP-AAM007存在的时候,牛膝多肽能抑制Bicuculline引起的海马神经元胞内钙荧光强度增加。当Ro-256981存在的时候,牛膝多肽能增强Bicuculline引起的海马神经元胞内钙荧光强度增加。
     (11)全细胞模式记录NMDA电流,结果显示:体外培养8天的海马神经元,牛膝多肽能降低NMDA平台期电流值,增加其失敏系数;培养13-14天的海马神经元,牛膝多肽能使NMDA电流峰值、平台期电流值增高,但降低其失敏系数。Ro-256981、NVP-AAM007能降低NMDA电流峰值、平台期电流值。当NVP-AAM007存在的时候,牛膝多肽能减低NMDA电流峰值、平台期电流值、失敏系数;当Ro-256981存在的时候,牛膝多肽能增强NMDA电流峰值、平台期电流值,降低其失敏系数。
     结论:
     (1)牛膝多肽在离体和在体具有神经保护作用。
     (2)牛膝多肽通过抗神经元调亡实现神经保护作用。
     (3)牛膝多肽对NMDA受体过度激活引起的钙超载、ROS形成、Bax过表达、Caspase-3激活具有抑制作用。
     (4)牛膝多肽对含NR2A、NR2B亚单位的NMDA受体具有不同的调节作用,对含NR2A亚单位的NMDA受体具有增强作用,而对NR2B亚单位NMDA受体具有抑制作用。
Objective:
     To observe the neuroprotective effect of Achyranthes Bidentata ploypeptides (ABPP) and its related mechanisms.
     Methods:
     (1) Middle cerebral artery occlusion (MCAO) was employed to establish focal cerebral ischemia-reperfusion model in rats, then the neurological behavior score and the percentage of cerebral infarction (with 2, 3, 5-triphenyltetrazolium chloride staining) were measured to observe the neuroprotective effect of ABPP in vivo.
     (2) N-methyl-D-aspartate (NMDA)-induced injury model was established in primary cultured rat embryonic hippocampal neurons, and methyl-thiazole-tetrazolium (MTT) assay was used to observe the neuroprotective effect of ABPP in vitro.
     (3) Hoechst33258 and propidium iodide (PI) double fluorescent staining, flow cytometry detection of PI, detection of lactate dehydrogenase and DNA ladder were applied to observe the effect of ABPP against NMDA-induced apoptotic cell death in primary cultured hippocampal neurons.
     (4) The primary cultured hippocampal neurons were loaded with fluo-3/AM (a fluorescent probe of calcium ion), and the dyed cells were used to observe the effect of ABPP on NMDA-induced rise in intracellular calcium ions with a confocal laser scanning microscope.
     (5) Western Blotting detection was performed to examine the effect of ABPP on the overexpression of Bax protein, which was induced by NMDA in cultured hippocampal neurons.
     (6) Caspase-3 activity assay was performed to examine the effect of ABPP on the protein activity levels of Caspase-3, which was enhanced by NMDA in cultured hippocampal neurons.
     (7) The primary cultured hippocampal neurons were loaded with Rhodamine 123 (a lipophilic cation fluorescent dye), and the dyed cells were to observe the effect of ABPP on NMDA-induced changes in the cellular mitochondrial transmembrane potential with a microplate fluorometer. In addition, the primary cultured hippocampal neurons were loaded with 2’,7’-dichlorodihydrofluorescein diacetate (DCFH-DA), and the dyed cells were to observe the effect of ABPP on NMDA-induced changes in the intracellular radical oxygen species (ROS) with a microplate fluorometer.
     (8) With conventioanal whole-cell patch-clamp recording method, NMDA response was measured by amplitude of NMDA-induced peak current and steady-state current and its coefficient of desensitization. The influences of ABPP on these parameters were investigated in the same time.
     (9) By MTT assay, the effect of the two subunit-specific NMDA receptor antagonists, Ro-256981 and NVP-AAM007 on NMDA-induced cellular injury was observed in primary cultured hippocampal neurons in DIV8 and DIV13-14 respectively. Furthermore, the influence of ABPP on NMDA-induced neuronal injury was also investigated at the same time.
     (10) The primary cultured hippocampal neurons were loaded with fluo-3/AM, and the dyed neurons were used to observe the effect of Ro-256981 and NVP-AAM007 on NMDA or Bicuculline induced rise in intracellular calcium ions with a confocal laser scanning microscope. Furthermore, the influence of ABPP on the rise of intracellular calcium ion via NR2A-containing NMDA receptors or NR2B-containing NMDA receptors was also investigated respectively.
     (11) With whole-cell patch-clamp recording technique, the effect of Ro-256981 and NVP-AAM007 on NMDA induced current was measured by amplitude of NMDA-induced peak current and steady-state current and its coefficient of desensitization. Furthermore, the influence of ABPP on the NMDA induced current via NR2A-containing NMDA receptors or NR2B-containing NMDA receptors was also investigated by these parameters respectively.
     Results:
     (1) Focal cerebral ischemia-reperfusion, induced by MCAO, resulted in the mortality of 50%, and promoted the neurology deficit score of the survival rats and the percentage of cerebral infarction (p<0.01). ABPP (0.2mg/kg, iv) decreased the neurology deficit score and the percentage of cerebral infarction (p<0.01). (2) The results of MTT assay showed that NMDA could lower the activity of the primary cultured hippocampal neurons. Furthermore, with the increase of the concentration of NMDA or the incubation time the neuronal activity was fall-off. On the other hand, ABPP could inhibit the decrease of the neuonal activity in a concentration-dependent manner.
     (3) Hoechst33258 and propidium iodide (PI) double fluorescent staining, flow cytometry detection of PI, detection of lactate dehydrogenase and DNA ladder showed that NMDA could induce the apoptotic cell death in primary cultured hippocampal neurons, and ABPP (1μg/ml) could inhibit the apoptotic neuronal cell death.
     (4) Imaging of intracellular calcium ([Ca~(2+)]_i) displayed that NMDA leaded to enhancement of intracellular fluorescence intensity in a concentration-dependent manner. Both AP-V and MK801 can inhibit the rise of the fluorescence intensity. Pre-, concurrent and post-treatment with ABPP could attenuate the enhanced fluorescence intensity induced by NMDA in concentration-dependent manner.
     (5) The Bax channel blocker can inhibit the NMDA-induced cell viability decrease by MTT assay. The results of RT-PCR and Western blot showed that NMDA could augment the expression of Bax in time dependence, and when the primary cultured hippocampal neurons incubated for 30min, the expression of Bax was significantly increased. Furthermore, ABPP could antagonize the up-regulation of Bax protein induced by NMDA (p<0.05).
     (6) Molecular probes DCFH-DA was used to monitor alterations of intracellular ROS levels. Exposure of the primary cultured hippocampal neurons to NMDA caused an elevation of ROS production in a concentration-dependent manner, and ABPP inhibited the elevation of ROS levels induced by NMDA, also showing a concentration-dependent pattern.
     (7) After exposure to NMDA, the mitochondrial membrane potential of cultured hippocampal neurons was lower than that in normal extracellular solution. ABPP inhibited the lowering of mitochondrial membrane potential induced by NMDA.
     (8) A three fold increase in caspase-3 activity was found after exposure of cultured hippocampal neurons to NMDA, but pretreatment with ABPP (1μg/ml) or MK-801 (10μM) protected neurons against the NMDA-induced increase in caspase-3 activity (p<0.05).
     (9) The results of MTT assay showed that either Ro-256981 or NVP-AAM007 could inhibit the acute lowering of cell viability induced by NMDA in primary cultured hippocampal neurons at DIV8 and DIV13-14 (p<0.05). However, ABPP could not inhibit the acute lowering of cell viability induced by NMDA. In primary cultured hippocampal neurons at DIV8, Ro-256981 and NVP-AAM007 could inhibit the delayed lowering of cell viability induced by NMDA (p<0.05). In addition, ABPP (0.1μg/ml) could inhibit the delayed lowering of cell viability induced by NMDA (p<0.01), but ABPP (10μg/ml) could not inhibit the delayed lowering of cell viability induced by NMDA, which was recovered by NVP-AAM007 (p<0.05). On the contrary, in primary cultured hippocampal neurons at DIV13-14, NVP-AAM007 could intensify the delayed lowering of cell viability induced by NMDA (p<0.01) and ABPP (10μg/ml) could inhibit the delayed lowering of cell viability induced by NMDA (p<0.01).
     (10) During the sustained exposure of hippocampal neurons to NMDA, the addition of NVP-AAM077 alone lowered the [Ca~(2+)]_i, and the simultaneous addition of NVP-AAM077 and ABPP further lowered the [Ca~(2+)]_i. On the contrary, during the sustained exposure of hippocampal neurons to NMDA, the addition of Ro25-6981 alone lowered the [Ca~(2+)]_i, but the simultaneous addition of Ro25-6981 and ABPP inversely raised the [Ca~(2+)]_i. In addition, during the sustained exposure of hippocampal neurons to bicuculline, the addition of NVP-AAM077 alone lowered the [Ca~(2+)]_i, and the simultaneous addition of NVP-AAM077 and ABPP further lowered the [Ca~(2+)]_i. On the contrary, during the sustained exposure of hippocampal neurons to bicuculline, the addition of Ro25-6981 alone lowered the [Ca~(2+)]_i, and the simultaneous addition of Ro25-6981 and ABPP inversely raised the [Ca~(2+)]_i, which can be blocked by NVP-AAM077.
     (11) ABPP could decrease the amplitude of NMDA-induced steady-state current and increase its coefficient of desensitization in cultured hippocampal neurons in DIV8. On the contrary, ABPP could enhance amplitude of NMDA-induced peak current and steady-state current and decrease its coefficient of desensitization in cultured hippocampal neurons in DIV13-14. In addition, treatment of Ro25-6981 alone can decrease amplitude of NMDA-induced peak current and steady-state current, and the simultaneous treatment of Ro25-6981 and ABPP could enhance amplitude of NMDA-induced peak current and steady-state current and decrease coefficient of desensitization of NMDA current. Furthermore, treatment of NVP-AAM007 alone can decrease amplitude of NMDA-induced peak current and steady-state current, and the simultaneous treatment of NVP-AAM007 and ABPP could reduce amplitude of NMDA-induced peak current and steady-state current and its coefficient of desensitization.
     Conclusions:
     (1) Achyranthes Bidentata ploypeptides (ABPP) have the neuroprotective effect in vivo and in vitro.
     (2) The protective effect of ABPP is probably related to its anti-apoptosis in primary cultured hippocampal neurons.
     (3) ABPP can inhibit the excess Ca~(2+) influx, intracellular ROS production, Bax protein over-expression, the activity of Caspase-3 and mitochondrial dysfunction, which were induced by over-stimulation of NMDA receptors.
     (4) ABPP can modulate NR2A- and NR2B-containing NMDA receptors differentially.
引文
1. Daher M. Overview of the world health report 2000 health systems: Improving performance. J Med Liban. 2001;49:22-24
    2. Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: A review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003;2:43-53
    3. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev. 2007;54:34-66
    4. Richard Green A, Odergren T, Ashwood T. Animal models of stroke: Do they have value for discovering neuroprotective agents? Trends Pharmacol Sci. 2003;24:402-408
    5. Sacchetti ML. Is it time to definitely abandon neuroprotection in acute ischemic stroke? Stroke. 2008;39:1659-1660
    6. Hazell AS. Excitotoxic mechanisms in stroke: An update of concepts and treatmentstrategies. Neurochem Int. 2007;50:941-953
    7. Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci. 2004;61:657-668
    8. Nishizawa Y. Glutamate release and neuronal damage in ischemia. Life Sci. 2001;69:369-381
    9. Choi DW, Weiss JH, Koh JY, Christine CW, Kurth MC. Glutamate neurotoxicity, calcium, and zinc. Ann N Y Acad Sci. 1989;568:219-224
    10. Eimerl S, Schramm M. The quantity of calcium that appears to induce neuronal death. J Neurochem. 1994;62:1223-1226
    11. Hartley DM, Kurth MC, Bjerkness L, Weiss JH, Choi DW. Glutamate receptor-induced 45ca2+ accumulation in cortical cell culture correlates with subsequent neuronal degeneration. J Neurosci. 1993;13:1993-2000
    12. Sattler R, Tymianski M. Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med. 2000;78:3-13
    13. Adams HP, Jr., Adams RJ, Brott T, del Zoppo GJ, Furlan A, Goldstein LB, Grubb RL, Higashida R, Kidwell C, Kwiatkowski TG, Marler JR, Hademenos GJ. Guidelines for the early management of patients with ischemic stroke: A scientific statement from the stroke council of the american stroke association. Stroke. 2003;34:1056-1083
    14. Ikonomidou C, Turski L. Why did nmda receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 2002;1:383-386
    15. Kemp JA, McKernan RM. Nmda receptor pathways as drug targets. Nat Neurosci. 2002;5 Suppl:1039-1042
    16. Cull-Candy S, Brickley S, Farrant M. Nmda receptor subunits: Diversity, development and disease. Curr Opin Neurobiol. 2001;11:327-335
    17. Paoletti P, Neyton J. Nmda receptor subunits: Function and pharmacology. Curr Opin Pharmacol. 2007;7:39-47
    18. Papadia S, Hardingham GE. The dichotomy of nmda receptor signaling. Neuroscientist. 2007;13:572-579
    19. Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, Wu DC, Lu J, Tymianski M, Craig AM, Wang YT. Nmda receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci. 2007;27:2846-2857
    20. Zhou M, Baudry M. Developmental changes in nmda neurotoxicity reflect developmental changes in subunit composition of nmda receptors. J Neurosci. 2006;26:2956-2963
    21. Chen M, Lu TJ, Chen XJ, Zhou Y, Chen Q, Feng XY, Xu L, Duan WH, Xiong ZQ. Differential roles of nmda receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke. 2008;39:3042-3048
    22. Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic nmdars oppose synaptic nmdars by triggering creb shut-off and cell death pathways. Nat Neurosci. 2002;5:405-414
    23. Zhang SJ, Steijaert MN, Lau D, Schutz G, Delucinge-Vivier C, Descombes P, Bading H. Decoding nmda receptor signaling: Identification of genomic programs specifying neuronal survival and death. Neuron. 2007;53:549-562
    24. Hardingham GE, Bading H. The yin and yang of nmda receptor signalling. Trends Neurosci. 2003;26:81-89
    25. Ivanov A, Pellegrino C, Rama S, Dumalska I, Salyha Y, Ben-Ari Y, Medina I. Opposing role of synaptic and extrasynaptic nmda receptors in regulation of the extracellular signal-regulated kinases (erk) activity in cultured rat hippocampal neurons. J Physiol. 2006;572:789-798
    26. Kim MJ, Dunah AW, Wang YT, Sheng M. Differential roles of nr2a- and nr2b-containing nmda receptors in ras-erk signaling and ampa receptor trafficking. Neuron. 2005;46:745-760
    27. Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, Pellegrino C, Ben-Ari Y, Clapham DE, Medina I. The nmda receptor is coupled to the erk pathway by a direct interaction between nr2b and rasgrf1. Neuron. 2003;40:775-784
    28. von Engelhardt J, Coserea I, Pawlak V, Fuchs EC, Kohr G, Seeburg PH, Monyer H. Excitotoxicity in vitro by nr2a- and nr2b-containing nmda receptors. Neuropharmacology. 2007;53:10-17
    29. Feigin VL. Herbal medicine in stroke: Does it have a future? Stroke. 2007;38:1734-1736
    30. Harvey AL. Medicines from nature: Are natural products still relevant to drug discovery? Trends Pharmacol Sci. 1999;20:196-198
    31. Deng HB, Cui DP, Jiang JM, Feng YC, Cai NS, Li DD. Inhibiting effects of achyranthes bidentata polysaccharide and lycium barbarum polysaccharide on nonenzymeglycation in d-galactose induced mouse aging model. Biomed Environ Sci. 2003;16:267-275
    32. Han SB, Lee CW, Yoon YD, Lee JH, Kang JS, Lee KH, Yoon WK, Lee K, Park SK, Kim HM. Prevention of arthritic inflammation using an oriental herbal combination bdx-1 isolated from achyranthes bidentata and atractylodes japonica. Arch Pharm Res. 2005;28:902-908
    33. Jin LQ, Zheng ZJ, Peng Y, Li WX, Chen XM, Lu JX. Opposite effects on tumor growth depending on dose of achyranthes bidentata polysaccharides in c57bl/6 mice. Int Immunopharmacol. 2007;7:568-577
    34. Lin YC, Wu CR, Lin CJ, Hsieh MT. The ameliorating effects of cognition-enhancing chinese herbs on scopolamine- and mk-801-induced amnesia in rats. Am J Chin Med. 2003;31:543-549
    35. Lu T, Mao C, Zhang L, Xu W. [the research on analgestic and anti-inflammatory action of different processed products of achyranthes bidentata]. Zhong Yao Cai. 1997;20:507-509
    36. Sun HX. Adjuvant effect of achyranthes bidentata saponins on specific antibody and cellular response to ovalbumin in mice. Vaccine. 2006;24:3432-3439
    37. Gong X, Sucher NJ. Stroke therapy in traditional chinese medicine (tcm): Prospects for drug discovery and development. Phytomedicine. 2002;9:478-484
    38. Ding F, Cheng Q, Gu X. The repair effects of achyranthes bidentata extract on the crushed common peroneal nerve of rabbits. Fitoterapia. 2007;79:161-167
    39. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20:84-91
    40. O'Donnell ME, Tran L, Lam TI, Liu XB, Anderson SE. Bumetanide inhibition of the blood-brain barrier na-k-cl cotransporter reduces edema formation in the rat middle cerebral artery occlusion model of stroke. J Cereb Blood Flow Metab. 2004;24:1046-1056
    41. El Idrissi A, Trenkner E. Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci. 1999;19:9459-9468
    42. Laing RJ, Jakubowski J, Laing RW. Middle cerebral artery occlusion without craniectomy in rats. Which method works best? Stroke. 1993;24:294-297; discussion 297-298
    43. Nagasawa H, Kogure K. Correlation between cerebral blood flow and histologicchanges in a new rat model of middle cerebral artery occlusion. Stroke. 1989;20:1037-1043
    44. Dhar-Mascareno M, Carcamo JM, Golde DW. Hypoxia-reoxygenation-induced mitochondrial damage and apoptosis in human endothelial cells are inhibited by vitamin c. Free Radic Biol Med. 2005;38:1311-1322
    45. Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP. Neuroprotection in ischemia: Blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118:687-698
    46. Schaller B, Graf R. Cerebral ischemia and reperfusion: The pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab. 2004;24:351-371
    47. Huang H, Barakat L, Wang D, Bordey A. Bergmann glial glyt1 mediates glycine uptake and release in mouse cerebellar slices. J Physiol. 2004;560:721-736
    48. Olney JW, Rhee V, Gubareff TD. Neurotoxic effects of glutamate on mouse area postrema. Brain Res. 1977;120:151-157
    49. Choi DW. Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett. 1985;58:293-297
    50. Djebaili M, De Bock F, Baille V, Bockaert J, Rondouin G. Implication of p53 and caspase-3 in kainic acid but not in n-methyl-d-aspartic acid-induced apoptosis in organotypic hippocampal mouse cultures. Neurosci Lett. 2002;327:1-4
    51. Kajta M, Lason W, Kupiec T. Effects of estrone on n-methyl-d-aspartic acid- and staurosporine-induced changes in caspase-3-like protease activity and lactate dehydrogenase-release: Time- and tissue-dependent effects in neuronal primary cultures. Neuroscience. 2004;123:515-526
    52. Lee J, Son D, Lee P, Kim SY, Kim H, Kim CJ, Lim E. Alkaloid fraction of uncaria rhynchophylla protects against n-methyl-d-aspartate-induced apoptosis in rat hippocampal slices. Neurosci Lett. 2003;348:51-55
    53. Choi DW. Calcium-mediated neurotoxicity: Relationship to specific channel types and role in ischemic damage. Trends Neurosci. 1988;11:465-469
    54. Choi DW. Excitotoxic cell death. J Neurobiol. 1992;23:1261-1276
    55. Du Y, Bales KR, Dodel RC, Hamilton-Byrd E, Horn JW, Czilli DL, Simmons LK, Ni B, Paul SM. Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons. Proc Natl Acad Sci U S A. 1997;94:11657-11662
    56. Tymianski M. Cytosolic calcium concentrations and cell death in vitro. Adv Neurol. 1996;71:85-105
    57. Dargusch R, Piasecki D, Tan S, Liu Y, Schubert D. The role of Bax in glutamate-induced nerve cell death. J Neurochem. 2001;76:295-301
    58. Djebaili M, Rondouin G, Baille V, Bockaert J. P53 and Bax implication in nmda induced-apoptosis in mouse hippocampus. Neuroreport. 2000;11:2973-2976
    59. Bombrun A, Gerber P, Casi G, Terradillos O, Antonsson B, Halazy S. 3,6-dibromocarbazole piperazine derivatives of 2-propanol as first inhibitors of cytochrome c release via Bax channel modulation. J Med Chem. 2003;46:4365-4368
    60. Antonsson B, Montessuit S, Sanchez B, Martinou JC. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem. 2001;276:11615-11623
    61. Hetz C, Vitte PA, Bombrun A, Rostovtseva TK, Montessuit S, Hiver A, Schwarz MK, Church DJ, Korsmeyer SJ, Martinou JC, Antonsson B. Bax channel inhibitors prevent mitochondrion-mediated apoptosis and protect neurons in a model of global brain ischemia. J Biol Chem. 2005;280:42960-42970
    62. Hsu YT, Wolter KG, Youle RJ. Cytosol-to-membrane redistribution of Bax and bcl-x(l) during apoptosis. Proc Natl Acad Sci U S A. 1997;94:3668-3672
    63. MacDonald JF, Xiong ZG, Jackson MF. Paradox of ca2+ signaling, cell death and stroke. Trends Neurosci. 2006;29:75-81
    64. Weinberger JM. Evolving therapeutic approaches to treating acute ischemic stroke. J Neurol Sci. 2006;249:101-109
    65. Pastorino JG, Chen ST, Tafani M, Snyder JW, Farber JL. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem. 1998;273:7770-7775
    66. Saeed SA, Shad KF, Saleem T, Javed F, Khan MU. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke. Exp Brain Res. 2007;182:1-10
    67. Zhang WH, Wang X, Narayanan M, Zhang Y, Huo C, Reed JC, Friedlander RM. Fundamental role of the rip2/caspase-1 pathway in hypoxia and ischemia-induced neuronal cell death. Proc Natl Acad Sci U S A. 2003;100:16012-16017
    68. Hardingham GE, Arnold FJ, Bading H. Nuclear calcium signaling controlscreb-mediated gene expression triggered by synaptic activity. Nat Neurosci. 2001;4:261-267
    69. Thomas CG, Miller AJ, Westbrook GL. Synaptic and extrasynaptic nmda receptor nr2 subunits in cultured hippocampal neurons. J Neurophysiol. 2006;95:1727-1734
    1. Daher M. Overview of the world health report 2000 health systems: Improving performance. J Med Liban. 2001;49:22-24
    2. Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: A review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003;2:43-53
    3. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev. 2007;54:34-66
    4. Richard Green A, Odergren T, Ashwood T. Animal models of stroke: Do they have value for discovering neuroprotective agents? Trends Pharmacol Sci. 2003;24:402-408
    5. Hazell AS. Excitotoxic mechanisms in stroke: An update of concepts and treatment strategies. Neurochem Int. 2007;50:941-953
    6. Maragakis NJ, Rothstein JD. Glutamate transporters: Animal models to neurologic disease. Neurobiol Dis. 2004;15:461-473
    7. Shashidharan P, Plaitakis A. Cloning and characterization of a glutamate transporter cdna from human cerebellum. Biochim Biophys Acta. 1993;1216:161-164
    8. Danbolt NC, Storm-Mathisen J, Kanner BI. An [na+ + k+]coupled l-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience. 1992;51:295-310
    9. Furuta A, Rothstein JD, Martin LJ. Glutamate transporter protein subtypes are expressed differentially during rat cns development. J Neurosci. 1997;17:8363-8375
    10. Pines G, Danbolt NC, Bjoras M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI. Cloning and expression of a rat brain l-glutamate transporter. Nature. 1992;360:464-467
    11. Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science. 1989;244:1360-1362
    12. Schmitt A, Asan E, Lesch KP, Kugler P. A splice variant of glutamate transporterglt1/eaat2 expressed in neurons: Cloning and localization in rat nervous system. Neuroscience. 2002;109:45-61
    13. Furuta A, Martin LJ, Lin CL, Dykes-Hoberg M, Rothstein JD. Cellular and synaptic localization of the neuronal glutamate transporters excitatory amino acid transporter 3 and 4. Neuroscience. 1997;81:1031-1042
    14. Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature. 1995;375:599-603
    15. Arriza JL, Eliasof S, Kavanaugh MP, Amara SG. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci U S A. 1997;94:4155-4160
    16. Pow DV, Barnett NL. Developmental expression of excitatory amino acid transporter 5: A photoreceptor and bipolar cell glutamate transporter in rat retina. Neurosci Lett. 2000;280:21-24
    17. Fukamachi S, Furuta A, Ikeda T, Ikenoue T, Kaneoka T, Rothstein JD, Iwaki T. Altered expressions of glutamate transporter subtypes in rat model of neonatal cerebral hypoxia-ischemia. Brain Res Dev Brain Res. 2001;132:131-139
    18. Rao VL, Bowen KK, Dempsey RJ. Transient focal cerebral ischemia down-regulates glutamate transporters glt-1 and eaac1 expression in rat brain. Neurochem Res. 2001;26:497-502
    19. Raghavendra Rao VL, Rao AM, Dogan A, Bowen KK, Hatcher J, Rothstein JD, Dempsey RJ. Glial glutamate transporter glt-1 down-regulation precedes delayed neuronal death in gerbil hippocampus following transient global cerebral ischemia. Neurochem Int. 2000;36:531-537
    20. Inage YW, Itoh M, Wada K, Takashima S. Expression of two glutamate transporters, glast and eaat4, in the human cerebellum: Their correlation in development and neonatal hypoxic-ischemic damage. J Neuropathol Exp Neurol. 1998;57:554-562
    21. Namura S, Maeno H, Takami S, Jiang XF, Kamichi S, Wada K, Nagata I. Inhibition of glial glutamate transporter glt-1 augments brain edema after transient focal cerebral ischemia in mice. Neurosci Lett. 2002;324:117-120
    22. Rao VL, Dogan A, Todd KG, Bowen KK, Kim BT, Rothstein JD, Dempsey RJ. Antisense knockdown of the glial glutamate transporter glt-1, but not the neuronalglutamate transporter eaac1, exacerbates transient focal cerebral ischemia-induced neuronal damage in rat brain. J Neurosci. 2001;21:1876-1883
    23. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter glt-1. Science. 1997;276:1699-1702
    24. Szatkowski M, Barbour B, Attwell D. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature. 1990;348:443-446
    25. Attwell D, Barbour B, Szatkowski M. Nonvesicular release of neurotransmitter. Neuron. 1993;11:401-407
    26. Bonvento G, Sibson N, Pellerin L. Does glutamate image your thoughts? Trends Neurosci. 2002;25:359-364
    27. Dawson LA, Djali S, Gonzales C, Vinegra MA, Zaleska MM. Characterization of transient focal ischemia-induced increases in extracellular glutamate and aspartate in spontaneously hypertensive rats. Brain Res Bull. 2000;53:767-776
    28. Phillis JW, Ren J, O'Regan MH. Transporter reversal as a mechanism of glutamate release from the ischemic rat cerebral cortex: Studies with dl-threo-beta-benzyloxyaspartate. Brain Res. 2000;868:105-112
    29. Mitani A, Tanaka K. Functional changes of glial glutamate transporter glt-1 during ischemia: An in vivo study in the hippocampal ca1 of normal mice and mutant mice lacking glt-1. J Neurosci. 2003;23:7176-7182
    30. Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature. 2000;403:316-321
    31. Swanson RA. Astrocyte glutamate uptake during chemical hypoxia in vitro. Neurosci Lett. 1992;147:143-146
    32. Swanson RA, Farrell K, Stein BA. Astrocyte energetics, function, and death under conditions of incomplete ischemia: A mechanism of glial death in the penumbra. Glia. 1997;21:142-153
    33. Longuemare MC, Rose CR, Farrell K, Ransom BR, Waxman SG, Swanson RA. K(+)-induced reversal of astrocyte glutamate uptake is limited by compensatory changes in intracellular na+. Neuroscience. 1999;93:285-292
    34. Gemba T, Oshima T, Ninomiya M. Glutamate efflux via the reversal of thesodium-dependent glutamate transporter caused by glycolytic inhibition in rat cultured astrocytes. Neuroscience. 1994;63:789-795
    35. Dronne MA, Grenier E, Dumont T, Hommel M, Boissel JP. Role of astrocytes in grey matter during stroke: A modelling approach. Brain Res. 2007;1138:231-242
    36. Takahashi S, Shibata M, Gotoh J, Fukuuchi Y. Astroglial cell death induced by excessive influx of sodium ions. Eur J Pharmacol. 2000;408:127-135
    37. Kosugi T, Kawahara K. Reversed actrocytic glt-1 during ischemia is crucial to excitotoxic death of neurons, but contributes to the survival of astrocytes themselves. Neurochem Res. 2006;31:933-943
    38. Trotti D, Rizzini BL, Rossi D, Haugeto O, Racagni G, Danbolt NC, Volterra A. Neuronal and glial glutamate transporters possess an sh-based redox regulatory mechanism. Eur J Neurosci. 1997;9:1236-1243
    39. Trotti D, Danbolt NC, Volterra A. Glutamate transporters are oxidant-vulnerable: A molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci. 1998;19:328-334
    40. Trotti D, Rossi D, Gjesdal O, Levy LM, Racagni G, Danbolt NC, Volterra A. Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem. 1996;271:5976-5979
    41. Tamahara S, Inaba M, Sato K, Matsuki N, Hikasa Y, Ono K. Non-essential roles of cysteine residues in functional expression and redox regulatory pathways for canine glutamate/aspartate transporter based on mutagenic analysis. Biochem J. 2002;367:107-111
    42. Rao SD, Yin HZ, Weiss JH. Disruption of glial glutamate transport by reactive oxygen species produced in motor neurons. J Neurosci. 2003;23:2627-2633
    43. Swanson RA, Farrell K, Simon RP. Acidosis causes failure of astrocyte glutamate uptake during hypoxia. J Cereb Blood Flow Metab. 1995;15:417-424
    44. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG. Glutamate-mediated astrocyte-neuron signalling. Nature. 1994;369:744-747
    45. Araque A, Sanzgiri RP, Parpura V, Haydon PG. Calcium elevation in astrocytes causes an nmda receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J Neurosci. 1998;18:6822-6829
    46. Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature. 1998;391:281-285
    47. Parpura V, Haydon PG. Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci U S A. 2000;97:8629-8634
    48. Hua X, Malarkey EB, Sunjara V, Rosenwald SE, Li WH, Parpura V. C(a2+)-dependent glutamate release involves two classes of endoplasmic reticulum ca(2+) stores in astrocytes. J Neurosci Res. 2004;76:86-97
    49. Golovina VA. Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum. J Physiol. 2005;564:737-749
    50. Malarkey EB, Ni Y, Parpura V. Ca2+ entry through trpc1 channels contributes to intracellular ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia. 2008;56:821-835
    51. Montana V, Ni Y, Sunjara V, Hua X, Parpura V. Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci. 2004;24:2633-2642
    52. Crippa D, Schenk U, Francolini M, Rosa P, Verderio C, Zonta M, Pozzan T, Matteoli M, Carmignoto G. Synaptobrevin2-expressing vesicles in rat astrocytes: Insights into molecular characterization, dynamics and exocytosis. J Physiol. 2006;570:567-582
    53. Maienschein V, Marxen M, Volknandt W, Zimmermann H. A plethora of presynaptic proteins associated with atp-storing organelles in cultured astrocytes. Glia. 1999;26:233-244
    54. Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, Volterra A. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci. 2004;7:613-620
    55. Stigliani S, Zappettini S, Raiteri L, Passalacqua M, Melloni E, Venturi C, Tacchetti C, Diaspro A, Usai C, Bonanno G. Glia re-sealed particles freshly prepared from adult rat brain are competent for exocytotic release of glutamate. J Neurochem. 2006;96:656-668
    56. Zhang Q, Pangrsic T, Kreft M, Krzan M, Li N, Sul JY, Halassa M, Van Bockstaele E, Zorec R, Haydon PG. Fusion-related release of glutamate from astrocytes. J Biol Chem. 2004;279:12724-12733
    57. Asai S, Zhao H, Kohno T, Takahashi Y, Nagata T, Ishikawa K. Quantitative evaluation of extracellular glutamate concentration in postischemic glutamate re-uptake, dependent on brain temperature, in the rat following severe global brain ischemia. Brain Res. 2000;864:60-68
    58. Eckert R, Chad JE. Inactivation of ca channels. Prog Biophys Mol Biol.1984;44:215-267
    59. McBain CJ, Mayer ML. N-methyl-d-aspartic acid receptor structure and function. Physiol Rev. 1994;74:723-760
    60. Mody I, MacDonald JF. Nmda receptor-dependent excitotoxicity: The role of intracellular ca2+ release. Trends Pharmacol Sci. 1995;16:356-359
    61. Phillis JW, Perkins LM, Smith-Barbour M, O'Regan MH. Transmitter amino acid release from rat neocortex: Complete versus incomplete ischemia models. Neurochem Res. 1994;19:1387-1392
    62. Phillis JW, Smith-Barbour M, Perkins LM, O'Regan MH. Characterization of glutamate, aspartate, and gaba release from ischemic rat cerebral cortex. Brain Res Bull. 1994;34:457-466
    63. Kimelberg HK. Current concepts of brain edema. Review of laboratory investigations. J Neurosurg. 1995;83:1051-1059
    64. Kimelberg HK. Astrocytic edema in cns trauma. J Neurotrauma. 1992;9 Suppl 1:S71-81
    65. Hansson E, Johansson BB, Westergren I, Ronnback L. Glutamate-induced swelling of single astroglial cells in primary culture. Neuroscience. 1994;63:1057-1066
    66. Kimelberg HK, O'Connor E. Swelling of astrocytes causes membrane potential depolarization. Glia. 1988;1:219-224
    67. Petito CK, Pulsinelli WA. Sequential development of reversible and irreversible neuronal damage following cerebral ischemia. J Neuropathol Exp Neurol. 1984;43:141-153
    68. Pasantes-Morales H, Franco R, Ochoa L, Ordaz B. Osmosensitive release of neurotransmitter amino acids: Relevance and mechanisms. Neurochem Res. 2002;27:59-65
    69. Law RO. Taurine efflux and the regulation of cell volume in incubated slices of rat cerebral cortex. Biochim Biophys Acta. 1994;1221:21-28
    70. Phillis JW, Song D, O'Regan MH. Inhibition by anion channel blockers of ischemia-evoked release of excitotoxic and other amino acids from rat cerebral cortex. Brain Res. 1997;758:9-16
    71. Seki Y, Feustel PJ, Keller RW, Jr., Tranmer BI, Kimelberg HK. Inhibition of ischemia-induced glutamate release in rat striatum by dihydrokinate and an anion channel blocker. Stroke. 1999;30:433-440
    72. Mongin AA, Orlov SN. Mechanisms of cell volume regulation and possible nature of the cell volume sensor. Pathophysiology. 2001;8:77-88
    73. Kimelberg HK, Goderie SK, Higman S, Pang S, Waniewski RA. Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci. 1990;10:1583-1591
    74. Basarsky TA, Feighan D, MacVicar BA. Glutamate release through volume-activated channels during spreading depression. J Neurosci. 1999;19:6439-6445
    75. Liu HT, Tashmukhamedov BA, Inoue H, Okada Y, Sabirov RZ. Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia. 2006;54:343-357
    76. Kimelberg HK. Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia. 2005;50:389-397
    77. Mongin AA, Kimelberg HK. Atp regulates anion channel-mediated organic osmolyte release from cultured rat astrocytes via multiple ca2+-sensitive mechanisms. Am J Physiol Cell Physiol. 2005;288:C204-213
    78. Ellershaw DC, Greenwood IA, Large WA. Dual modulation of swelling-activated chloride current by no and no donors in rabbit portal vein myocytes. J Physiol. 2000;528 Pt 1:15-24
    79. Takano T, Kang J, Jaiswal JK, Simon SM, Lin JH, Yu Y, Li Y, Yang J, Dienel G, Zielke HR, Nedergaard M. Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proc Natl Acad Sci U S A. 2005;102:16466-16471
    80. Eskandari S, Zampighi GA, Leung DW, Wright EM, Loo DD. Inhibition of gap junction hemichannels by chloride channel blockers. J Membr Biol. 2002;185:93-102
    81. Evanko DS, Zhang Q, Zorec R, Haydon PG. Defining pathways of loss and secretion of chemical messengers from astrocytes. Glia. 2004;47:233-240
    82. Tanaka E, Yamamoto S, Inokuchi H, Isagai T, Higashi H. Membrane dysfunction induced by in vitro ischemia in rat hippocampal ca1 pyramidal neurons. J Neurophysiol. 1999;81:1872-1880
    83. Phillis JW, Song D, O'Regan MH. Melittin enhances amino acid and free fatty acid release from the in vivo cerebral cortex. Brain Res. 1999;847:270-275
    84. Pilitsis JG, Diaz FG, O'Regan MH, Phillis JW. Differential effects of phospholipase inhibitors on free fatty acid efflux in rat cerebral cortex during ischemia-reperfusion injury.Brain Res. 2002;951:96-106
    85. Phillis JW, O'Regan MH. Mechanisms of glutamate and aspartate release in the ischemic rat cerebral cortex. Brain Res. 1996;730:150-164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700