亚急性皮肤型红斑狼疮外周血T细胞DNA甲基化异常的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景亚急性皮肤型红斑狼疮(subacute cutaneous lupuserythematosus,SCLE)是红斑狼疮(lupus erythematosus,LE)的一个亚型,与系统性红斑狼疮(Systemic lupus erythematosus,SLE)患者相比,大部分SCLE患者病情一般进展较慢或者相对温和,很少出现严重内脏器官受累的情况,如SLE患者经常出现的肾脏受累、心血管受累或中枢神经系统受累等。但是,也有部分SCLE患者的病情在经过多年的慢性发展过程后,会逐渐转变成SLE,并出现与SLE患者一样的系统受累的情况。尽管LE的病因尚不清楚,但近年来,越来越多的研究表明表观遗传机制,特别是T细胞DNA低甲基化在T细胞基因调控及SLE发病中起着十分重要的作用,而T细胞DNA低甲基化是否在SCLE的发生、发展中起作用?目前国内外尚无相关的研究报道。
     DNA甲基化是重要的表观遗传学机制之一,在胚胎发育、遗传印记、X染色体失活、染色质重塑等方面起重要作用。DNA甲基化是指以S-腺苷甲硫氨酸(SAM)作为甲基供体,将其甲基转移到DNA脱氧胞嘧啶(deocytosine)的第5位碳原子,形成5-甲基胞嘧啶(5-mC)的化学修饰过程,通常发生在二核苷酸CpG中的胞嘧啶。基因启动子和增强子区域CpG岛的甲基化可以使一些转录因子无法与DNA结合而抑制基因的转录。
     DNA甲基化状态受到DNA甲基转移酶(DNA methyltransferase,DNMT)的调控,人类DNMT家族成员主要包括DNMT1、DNMT3a和DNMT3b。DNMT1为维持型甲基转移酶,即使半甲基化的双链DNA变成完全甲基化的双链DNA,确保体内特异甲基化方式在DNA复制过程中得到传递;而DNMT3a与DNMT3b属于新生型甲基转移酶,即催化非甲基化的DNA成为甲基化的DNA状态。近年来,研究结果表明SLE患者T细胞中DNA甲基转移酶(DNMT)活性仅为正常人的1/3-1/2,DNMT1的表达下降,在SLE患者T细胞的甲基化中起重要作用。甲基化修饰后的DNA对基因表达的调控还需要特异结合于甲基化CpG位点(methyl-CpG,mCpG)的蛋白因子参与,因为这些都含有一同样的甲基CpG结合结构域(methyl CpG bindingdomain,MBD),又被称为MBD蛋白家族,包括MBD1,MBD2,MBD3,MBD4和MeCP2。MBD蛋白通过选择性结合甲基化的DNA,与一些相关蛋白协同影响DNA甲基化、染色质构型和基因转录。有报道SLE患者CD4+T细胞MBD2和MBD4的表达增加,并认为其在T细胞的甲基化中发挥重要的作用。
     近年来的越来越多的研究结果表明T细胞DNA甲基化异常在SLE发病中起十分重要的作用。用DNA甲基化抑制剂处理鼠或人T细胞后,可以使T细胞发生低甲基化,诱发狼疮样的自身免疫反应。而SLE病人T细胞亦表现出总体的基因组低甲基化和自身免疫相关基因的低甲基化,这些基因包括CD11a(ITGAL)、CD70(TNFSF7)、CD40L(TNFSF5)和Perforin(PRF1),过度表达这些基因的T细胞具有自身反应性,杀伤自身巨噬细胞或辅助B细胞产生大量的自身抗体,在SLE的发生、发展中起十分重要的作用。
     SCLE发病的遗传与表观遗传因素目前仍不清楚。为了探讨DNA甲基化异常在SCLE发病中的作用及机制,本课题研究了SCLE患者外周血T细胞基因组DNA总体甲基化水平以及DNMTs mRNA和MBDsmRNA表达水平,同时检测了CD11a、CD70、CD40L和Perforin这些自身免疫密切相关基因的表达水平及其调节序列的甲基化状态,并分析基因调节序列的甲基化水平与其表达水平的关系。
     第一部分SCLE患者外周血T细胞DNA总体甲基化异常的研究
     目的研究亚急性皮肤型红斑狼疮患(SCLE)患者T细胞DNA总体甲基化状态以及甲基化相关调控基因的表达,从而探讨SCLE的表观遗传学改变。
     方法密度梯度离心分离12例SCLE患者和9例正常人的外周血单个核细胞,磁珠分选CD4+和CD8+T细胞,然后用总体甲基化定量试剂盒检测SCLE患者和正常对照CD4+和CD8+T细胞的DNA总体甲基化水平,实时定量聚合酶链反应(real-time RT-PCR)检测DNA甲基转移酶(DNMTs)和甲基结合蛋白(MBDs)的mRNA表达。
     结果与正常对照组相比,SCLE患者CD4+T细胞基因组DNA总体低甲基化(P=0.002),而CD8+T细胞的基因组DNA总体甲基化水平无明显变化(P=0.231);SCLE患者CD4+T细胞DNMT1和DNMT3a的mRNA水平明显降低(P值分别为p=0.027和p=0.004),MBD1,MBD3和MBD4 mRNA明显增高(P值分别为p<0.001,p<0.001和p=0.001);SCLE患者CD8+T细胞MECP2 mRNA和MBD4 mRNA表达水平较正常对照组明显增高(P值均为p=0.001);我们还发现SCLE患者CD4+T细胞DNA总体甲基化水平与DNMT1mRNA表达水平呈正相关(r=0.590,p=0.044)。
     结论SCLE患者CD4+T细胞基因组DNA低甲基化,且甲基化相关调控基因表达异常。
     第二部分SCLE患者T细胞自身免疫反应相关基因表达及其调节序列甲基化状态的研究
     目的研究SCLE患者外周血T细胞CD11a,CD70,CD40L及Perforin表达及其调节序列的甲基化状态。
     方法密度梯度离心分离12例SCLE患者和9例正常人的外周血单个核细胞,用流式细胞检测PBMC中CD11a,CD70,CD40L及Perforin蛋白在CD4+和CD8+T细胞中的表达水平;磁珠分选CD4+和CD8+T细胞,实时定量聚合酶链反应(real-time RT-PCR)检测CD11a,CD70,CD40L及Perforin的mRNA表达水平;western-blot检测Perforin的蛋白表达水平;亚硫酸氢钠测序检测表达有差异的蛋白的基因调节序列的甲基化状态。
     结果与正常对照组相比,SCLE患者CD4+T细胞CD70和Perforin表达增高,且其基因调节序列呈明显的低甲基化。
     结论SCLE患者CD4+T细胞中CD70和Perforin的过度表达与其基因调节序列的低甲基化相关。
Background Subacute cutaneous lupus erythematosus(SCLE) is a subtype of lupus erythematosus(LE).Most patients with SCLE have a chronic or relapsing but benign condition,with few of the serious manifestations associated with systemic lupus erythematosus(SLE),such as renal disease or central nervous system symptoms.However,in some patients SCLE develops into SLE,causing progressive systemic damage over a period of years.Although the genetic and epigenetic factors that trigger SLE or the transition from SCLE to SLE remain unknown,studies indicate the importance of altered DNA methylation,especially hypomethylation in CD4+ T cells,in the pathogehesis of SLE.
     DNA methylation is an epigenetic regulator of several biological processes,including embryonic development,gene transcription,X chromosome inactivation,genomic imprinting and chromatin modification.Methylation involves the transference of a methyl group from the methyl donor S-adenosyl-L-methionine to the 5th carbon position in the cytosine ring of deoxycytosine(dC) bases in CG pairs. Methylation of CpG islands within promoter or enhancer regions suppresses transcription of target genes.
     Patterns of DNA methylation are established and maintained by DNA methyl transferases(DNMTs).In humans,the three enzymes DNMT1,DNMT3a,and DNMT3b are known to have DNA methyltransferase activity.DNMT3a and DMMT3b are responsible for de novo methylation and modify unmethylated DNA whereas DNMT1 is thought to be required for maintaining methylation patterns and acts on hemimethylated DNA.Methylated DNA is recognized by a conserved family of methyl-DNA binding domain(MBD) proteins,of which there are five known members in mammalian genomes:MBD1,MBD2,MBD3, MBD4,and MECP2.All MBDs share a common methyl CpG binding domain and associate with proteins that play active roles in regulating DNA methylation,heterochromatin formation and gene transcription.In CD4+T cells of patients with SLE,MBD2 and MBD4 mRNA expression are elevated,and it has been proposed that this plays an active role in compromising T cell methylation.
     Evidence linking aberrant DNA methylation with SLE has been accumulating over the past two decades.Drugs that inhibit methylation trigger lupus-like autoimmune responses in mice and human lymphocytes, and T cells from patients with active lupus have genome-wide decreases in deoxymethylcytosin and gene-specific hypomethylation.These methylation deficits correlate with upregulated expression of autoimmune-related genes such as CD11a,CD70,perforin and CD40 Ligand.Overexpression this genes inducing excessive B cell stimulation, autoreactive monocyte and macrophage killing and contribute to the disease pathogenesis.
     SCLE is characterized by clinical features distinct from those of SLE and the genetic and epigenetic factors causing the disorder are unknown. In this work,we set out to investigate whether T cell hypomethylation is a determinant of the pathogenesis of other,less severe forms of erythematosus lupus conditions such as SCLE.Firstly we investigated the global DNA methylation levels as well as the expression of DNMTs and MBDs in CD4+ and CD8+ T cells of patients with SCLE,secondly we compared the expression level of some autoimmune-related genes such as CD11a,CD70,perforin and CD40 Ligand in CD4+ and CD8+ T cells of patients with SCLE and normal controls,and lastly we investigated whether gene-specific hypomethylation induces autoimmune-related genes overexpression in SCLE CD4+ T Cells.
     Part one Abnormal DNA methylation in T cells from patients with subacute cutaneous lupus erythematosus
     Objective To investigate the global DNA methylation and the expression of genes that regulate methylation in T cells of patients with SCLE.
     Methods PBMC(peripheral blood mononuclear cells) cells were isolated from the peripheral venous blood of 12 SCLE patients and 9 healthy donors by density gradient centrifugation.CD4+ and CD8+T cells were isolated from the PBMC using magnetic cell separation technique.We quantified global methylcytosine levels in CD4+ and CD8+T cells from patients with SCLE and healthy controls using the Methylamp~(TM) Global DNA Methylation Quantification Kit.mRNA levels of DNA methyltransferases(DNMTs) and methylated CpG binding proteins(MBDs) were measured by real-time quantitative polymerase chain reaction(RT-PCR).
     Results Global DNA methylation was significantly reduced in CD4+ T cells from SCLE patients relative to controls(P=0.002).No statistically significant differences were found between patients and controls when the methylation status of CD8+ T cells was assessed(p=0.231).DNMT1 and DNMT3a mRNA levels were significantly lower in CD4+T cells from SCLE patients than that in controls(P=0.027;P=0.004, respectively).MBD1,MBD3 and MBD4 mRNA levels were significantly higher in CD4+ T cells from SCLE patients compared to controls (p<0.001;p<0.001 and p=0.001,respectively).Additionally,MECP2 and MBD4 mRNA expression was also significantly increased in CD8+ T cells from SCLE patients than that in controls(p=0.001;p=0.001, respectively).We also found DNMT1 mRNA expression and CD4+T cell DNA methylation to be positive correlated within our SCLE patient cohort(r=0.590,P=0.044).
     Conclusion These data suggest that globe DNA hypomethylation in CD4+T cells contributes to the development of SCLE.
     Part two Abnormal expression and methylation pattern of regulatory sequences of some autoimmune-related genes in T cells from patients with subacute cutaneous lupus erythematosus
     Objective To investigate the expression levels and methylation patterns of some autoimmune-related genes in CD4+ T cells from SCLE patients.
     Methods PBMC(peripheral blood mononuclear cells) cells were isolated from the peripheral venous blood of 12 SCLE patients and 9 healthy donors by density gradient centrifugation.CD4+ and CD8+T cells were isolated from the PBMC using magnetic cell separation technique.Using the flowcytometry to detect the expression levels of CD11a,CD70,CD40L and Perforin in CD4+ and CD8+T cells,mRNA levels of CD11a,CD70,CD40L and Perforin were measured by real-time quantitative polymerase chain reaction(RT-PCR).Perforin protein was analysed by western-blot.Bisulfite sequencing was used to determine the methylation status of the regulatory sequence in which gene the expression are significantly difference.
     Results CD70 and Perforin is overexpressed on SCLE CD4+T cells. Demethylation of the CD70 and Perforin promoter regulatory sequence were seen in CD4+T cells from patients with SCLE.
     Conclusion Demethylation of regulatory sequence contributes to CD70 and Perforin overexpression in SCLE CD4+T cells.
引文
[1] Sontheimer RD, Thomas JR, Gilliam JN. Subacute cutaneous lupus erythematosus: a cutaneous marker for a distinct lupus erythematosus subset.Arch Dermatol 1979; 115: 1409-15.
    [2] Weinstein CL, Littlejohn GO, Thomson NM et al. Severe visceral disease in subacute cutaneous lupus erythematosus. Arch Dermatol 1987; 123: 638-40.
    [3] Cohen MR, Crosby D. Systemic disease in subacute cutaneous lupus erythematosus: a controlled comparison with systemic lupus erythematosus. J Rheumatol 1994; 21: 1665-9.
    [4] Sekigawa I, Kawasaki M, Ogasawara H et al. DNA methylation: its contribution to systemic lupus erythematosus. Clin Exp Med 2006; 6: 99-106.
    [5] Wolffe AP, Marzke MA. Epigenetics: regulation through repression. Science,1999; 286:481-486.
    [6] Rountree MR, Bachman KE, Herman JG et al. DNA methylation, chromatin inheritance, and cancer. Oncogene 2001; 20: 3156-65.
    [7] Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet 2001; 2: 21-32.
    [8] Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 2002; 3: 662-73.
    [9] Surani MA. Imprinting and the initiation of gene silencing in the germ line. Cell 1998; 93: 309-12.
    [10] Attwood JT, Yung RL, and Richardson BC. DNA methylation and the regulation of gene transcription. Cell Mol Life Sci, 2002; 59(2): 241-257.
    [11] Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999; 99(3): 247-257.
    [12] Pradhan S, Bacolla A, Wells RD, Roberts RJ. Recombinant human DNA (cytosine-5) methyl -transferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem, 1999; 274(46): p.33002-10.
    [13]Reik W,Dean W,Walter J.Epigenetic reprogramming in mammalian development.Science,2001.293:1089-1093.
    [14]Jaenisch R and Bird A.Epigenetic regulation of gene expression:how the genome integrates intrinsic and enviromental signals.Nat Genet,2003;33:245-254.
    [15]Hendrich B,Bird A.Identification and characterization of a family of mammalian methyl-CpG binding proteins.Mol Cell Biol 1998;18:6538-47.
    [16]Lu Q,Kaplan M,Ray D,Zacharek S,Gutsch D,Richardson B.Demethylation of ITGAL(CD11a) regulatory sequences in lupus.Arthritis Rheum,2002,46(5):1282-91
    [17]Kaplan M,Lu Q,Wu A,Attwood J,Richardson B.Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4~+lupus T cells.J Immunol,2004,172(6):3652-61
    [18]Oelke K,Lu Q,Richardson D,Wu A,Richardson B.Overexpression of CD70and overstimulation of IgG synthesis by lupus T cells and T cells treated with DNA methylation inhibitors.Arthritis Rheum,2004,50(6):1850-60
    [19]Qianjin Lu,Ailing Wu,Bruce Richardson.Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T Cells treated with lupus-inducing drugs.J Immunol,2005,174(10):6212-6219
    [20]Lu Q,Wu A,Tesmer L,Ray D,Yousif N,Richardson B.Demethylation of CD40LG on the Inactive X in T Cells from Women with Lupus.J Immunol.2007 Nov 1;179(9):6352-8
    [21]Yung R L,Chang S,Hemati N,et al.Mechanisms of drug-induced lupus.Ⅳ.Compafision of procainamide and hydralazine with analogs in vitro and in vivo.Arthritis Rheum,1997 Aug;40(8):1436-1443.
    [22]Richardson BC,Strahler JR,Pivirotto TS,et al.Phenotypic and functional similarities between 5-azacytidine-treated T cells and a T cell subset in patients with active systemic lupus erythematosus.Arthritis Rheum,1992 Jun;35:647-662
    [23]Sontheimer RD,Maddison PJ,Reichlin M et al.Serologic and HLA associations in subacute cutaneous lupus erythematosus,a clinical subset of lupus erythematosus.Ann Intern Med 1982;97:664-71.
    [24] Chlebus E, Wolska H, Blaszczyk M et al. Subacute cutaneouslupus erythematosus vs. systemic lupus erythematosus: diagnostic criteria and therapeutic implications. J Am Acad Dermatol 1998;38:405-12.
    [25] Tan EM, Cohen AS, Fries JF et al. The 1982 revised criteria for theclassification of systemic lupus erythematosus. Arthritis Rheum1982;25:1271-7.
    [26] Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum, 1990;33:1665-1673
    [27] McCurdy D. Genetic susceptibility to the connective tissue diseases. Curr Opin Rheumatol. 1999 Sep;11(5):399-407.
    [28] Januchowski R, Prokop J, Jagodzinski PP. Role of epigenetic DNA alterations in the pathogenesis of systemic lupus erythematosus. J Appl Genet.2004;45(2):237-248.
    [29] Doerfler W. On the biological significance of DNA methylation. Biochemistry,2005; 70:505-524.
    [30] Bird AP, Wolffe AP. Methylation-induced repression-belts, braces, and chromatin. J Cell, 1999; 99: 451-454.
    [31] Deng C, Lu Q, Zhang Z, et al. Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis Rheum, 2003; 48: 746-756.
    [32] Comb MH, Goodman M. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. J Nucleic Acids J Res,1990;18:3975-3981.
    [33] Nguyen CT, Gonzales FA, Jones PA. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res,2001; 29:4598-4606.
    [34] Choon Ping Tan and Sara Nakielny. Control of the DNA Methylation System Component MBD2 by Protein Arginine Methylation.Mol Cell Biol, 2006 Oct;26(19): 7224-7235.
    [35] Bhattacharya SK, Ramchandani S, Cervoni N, et al. A mammalian protein with specific demethylase activity for mCpG DNA. Nature, 1999 Feb 18;397(6720): 579-583.
    [36]Fang JY,Cheng ZH,Chen YX.Expression of Dnmt1,demethylase,MeCP2and methylation of tumor-related genes in human gastric cancer.World J Gastroenterol,2004 Dec 1;10(23):3394-3398.
    [37]Sansom OJ,Zabkiewicz J,Bishop SM,et al.MBD4 deficiency reduces the apoptotic response to DNA-damaging agents in the murine small intestine.Oncogene,2003 Oct 16;22(46):7130-7136.
    [38]Millar CB,Guy J,Sansom OJ.Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice.Science,2002 Jul 19;297(5580):403-405.
    [39]Balada E,Ordi-Ros J,Vilardell-Tarr(?)s M.DNA methylation and systemic lupus erythematosus.Ann N Y Acad Sci.2007 Jun;1108:127-136.
    [40]Lens SM,Tesselaar K,van Oers MH et al.Control of lymphocyte function through CD27-CD70 interactions.Semin Immunol 1998;10:491-9.
    [41]Agematsu K,Nagumo H,Oguchi Y et al.Generation of plasma cells from peripheral blood memory B cells:synergistic effect of interleukin-10 and CD27/CD70 interaction.Blood 1998;91:173-80.
    [42]Nagumo H,Agematsu K.Synergistic augmentative effect of interleukin-10and CD27/CD70 interactions on B-cell immunoglobulin synthesis.Immunology 1998;94:388-94.
    [43]Liu CC,Walsh CM,Young JD.Perforin:structure and function.Immunol.Today 1995 16(4) 194-201
    [44]D.Kagi,B.Ledermann,K.Burki,P.Seiler,B.Odermatt,K.J.Olsen,E.R.Podack,R.M.Zinkernagel,H.Hengartner,Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice,Nature 369(1994) 31-37.
    [45]Stenger,S.et al.Granulysin:a lethal weapon of cytolytic T cells.Immunol.Today 1999(20),390-394
    [46]Matloubian,M.et al.A role for perforin in downregulating T-cell responses during chronic viral infection.J.Virol.1999(73),2527-2536
    [47]Rossi,C.P.et al.Theiler's virus infection of perforin-deficient mice.J.Virol.1998(72),4515-4519
    [48]Stenger,S.and Modlin,R.L.Cytotoxic T cell responses to intracellular pathogens.Curr.Opin.Immunol.1998(10),471-477
    [49] Mevorach, D., J. L. Zhou, X. Song, and K. B. Elkon. Systemic exposure to irradiated apoptotic cells induces autoantibody production. J. Exp. Med. 1998.188:387.
    [50] I. Voskoboinik, M.J. Smyth, J.A. Trapani, Perforin-mediated target-cell death and immune homeostasis, Nat. Rev. Immunol. 6 (2006) 940-952.
    [51] D. Kagi, F. Vignaux, B. Ledermann, K. Burki, V. Depraetere, S. Nagata, H.Hengartner, P. Golstein, Fas and perform pathways as major mechanisms of T cell-mediated cytotoxicity, Science 265 (1994) 528-530.
    [52] Richardson BC, Powers D, Hooper F, Yung RL, O'Rourke K. Lymphocyte function-associated antigen 1 overexpression and T cell autoreactivity.Arthritis Rheum 1994;37:1363-72.
    [53] Yung R, Powers D, Johnson K, Amento E, Carr D, Laing T, et al. Mechanisms of drug-induced lupus. Ⅱ. T cells overexpressing lymphocyte function-associated antigen 1 become autoreactive and cause a lupuslike disease in syngeneic mice. J Clin Invest 1996;97:2866-71.
    [54] Clayton TH, Ogden S, Goodfield MD. Treatment of refractory subacute cutaneous lupus erythematosus with efalizumab. J Am Acad Dermatol 2006;54: 892-5.
    [55] Higuchi T, Aiba Y, Nomura T, Matsuda J, Mochida K, Suzuke M, Kikutani H,Honjo T, Nishioka K, Tsubata T. Cutting Edge: Ectopic expression of CD40 ligand on B cells induces lupus-like autoimmune disease.J Immunol,2002,168(1):9-12
    [56] Yazdany J, Davis J. The role of CD40 ligand in systemic lupus rythematosus.Lupus, 2004,13(5):377-380
    [1] Okano M, Bell DW, Haber DA et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99: 247- 57.
    [2] Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet 2001; 2:21-32.
    [3] Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 2002; 3: 662- 73.
    [4] Surani MA. Imprinting and the initiation of gene silencing in the germ line. Cell 1998; 93: 309-12.
    [5] Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6-21
    [6] Jones PA and Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415- 428
    [7] Herman JG and Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349: 2042- 2054
    [8] Attwood, J.T., Yung, R.L., Richardson, B.C., 2002. Cell. Mol. Life Sci. 59,241-257.
    [9] Pradhan S, Bacolla A, Wells RD et al. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 1999; 274: 33002-10.
    [10] Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol. 1998; 18: 6538- 47.
    [11] Eden A, Gaudet F, Waghmare A, Jaenisch R Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003; 300: 455.``
    [12] Villar-Garea A, Fraga MF, Espada J, Esteller M Procaine is a DNA demethylating agent with growth inhibitory effects in human cancer cells.Cancer Res. 2003; 63: 4984- 4989.
    [13] Bestor T, Laudano A, Mattaliano R, Ingram V Cloning and sequencing of a cDNA encoding DNA methyltransferases of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol. 1988; 203: 971- 983.
    [14] Pradhan S, Talbot D, Sha M, Benner J, Hornstra L, Li E, Yaenisch R and Roberts RJ. Nucleic Acids Res. 1997; 25: 4666 - 4673.
    [15] Pradhan S, Bacolla A, Wells RD and Roberts RJ. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem. 1999 Nov 12; 274(46):33002-10
    [16] Yoder JA, Soman NS, Verdine GL, Bestor TH DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J Mol Biol. 1997; 270: 385- 395.
    [17] Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA and Jones PA. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors.Nucleic Acids Res. 1999; 27:2291- 2298.
    [18] Flynn J, Glickman JF, Reich NO. Murine DNA cytosine-C5 methyltransferase:pre-steady- and steady-state kinetic analysis with regulatory DNA sequences.Biochemistry. 1996; 35: 7308- 7315
    [19] Yen RW, Vertino PM, Nelkin BD, Yu JJ, el-Deiry W, Cumaraswamy A,Lennon GG, Trask BJ, Celano P, Baylin SB. Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Res. 1992 May 11; 20(9): 2287-91.
    [20] Margot JB, Aguirre-Arteta AM, Di Giacco BV, Pradhan S, Roberts RJ,Cardoso MC, Leonhardt H Structure and function of the mouse DNA methyltransferases gene: Dnmtl shows a tripartite structure. J Mol Biol. 2000;297: 293-300.
    [21] Araujo FD, Croteau S, Slack AD, Milutinovic S, Bigey P, Price GB,Zannis-Hajopoulos M, Szyf M The DNMT1 target recognition domain resides in the N terminus. J Biol Chem. 2001; 276: 6930- 6936.
    [22] Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAFl. Science. 1997;277:1996-2000.
    [23] Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP,DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet. 2000 Jul; 25(3):338- 42.
    [24] Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet. 2000 Jul; 25(3): 269- 77.
    [25] Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005; 74: 481- 514.
    [26] Liu Y, Oakeley EJ, Sun L, Jost JP. Multiple domains are involved in the targeting of the mouse DNA methyltransferases to the DNA replication foci.Nucleic Acids Res. 1998; 26: 1038-1045.
    [27] Chuang LS, Ng HH, Chia JN, Li BF. Characterisation of independent DNA and multiple Zn-binding domains at the N terminus of human DNA-(cytosine-5) methyltransferase: modulating the property of a DNAbinding domain by contiguous Zn-binding motifs. J Mol Biol. 1996; 257:935-948.
    [28] Callebaut I, Courvalin JC, Mornon JP. The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Lett. 1999; 446: 189-193.
    [29] Zimmermann C, Guhl E, Graessmann A. Mouse DNA methyltransferase (MTase) deletion mutants that retain the catalytic domain display neither de novo nor maintenance methylation activity in vivo. Biol Chem 1997; 378:393-405.
    [30] Fatemi M, Hermann A, Pradhan S, Jeltsch A, The activity of the murine DNA methyltransferase Dnmtl is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J Mol Biol. 2001; 309: 1189-1199.
    [31] Beard C, Li E, Jaenisch R. Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev. 1995 Oct 1; 9(19): 2325- 34.
    [32] Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992 Jun 12; 69(6): 915- 26.
    [33] Li E, Beard C, Forster AC, Bestor TH, Jaenisch R. DNA methylation,genomic imprinting, and mammalian development. Cold Spring Harb Symp Quant Biol. 1993; 58:297-305
    [34] Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R. DNA hypomethylation leads to elevated mutation rates. Nature. 1998 Sep 3;395(6697): 89- 93.
    [35] Guo G, Wang W, Bradley A. Mismatch repair genes identified using genetic screens in film-deficient embryonic stem cells. Nature. 2004 Jun 24;429(6994):891- 5.
    [36] Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005 Aug; 6(8): 597- 610.
    [37] Biniszkiewicz D, Gribnau J, Ramsahoye B, Gaudet F, Eggan K, Humpherys D, Mastrangelo MA, Jun Z, Walter J, Jaenisch R Dnmtl overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality.Mol Cell Biol. 2002; 22: 2124-2135.
    [38] Yoder JA, Bestor TH. A candidate mammalian DNA methyltransferase related to pmtlp of fission yeast. Hum Mol Genet. 1998 Feb; 7(2): 279- 84.
    [39] Okano M, Xie S, Li E. Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res. 1998 Jun 1;26(11): 2536-40.
    [40] Hermann A, Gowher H, Jeltsch A. Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 2004; 61: 2571- 2587.
    [41] Dong A, Yoder JA, Zhang X, Zhou L, Bestor TH, Cheng X Structure of human DNMT2, an enigmatic DNAmethyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res. 2001; 29: 439- 448.
    [42] Hermann A, Schmitt S, Jeltsch A. The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity. J Biol Chem. 2003; 278:31717-31721.
    [43] Kunert N, Marhold J, Stanke J, Stach D, Lyko F. A Dnmt2-like protein mediates DNA methylation in Drosophila. Development. 2003; 130: 5083-5090.
    [44] Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG,Jacobsen SE, Bestor TH. Methylation of tRNAAsp by the DNA methyltransferases homolog Dnmt2. Science. 2006; 311: 395- 398.
    [45] Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998 Jul; 19(3):219-20.
    [46] Xie S, Wang Z, Okano M, Nogami M, Li Y, He WW, Okumura K, Li E.Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene. 1999 Aug 5; 236(1): 87- 95.
    [47] Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.Cell. 1999; 99: 247- 257.
    [48] Xu GL, Bestor TH, Bourc'his D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ, Viegas-Pequignot E. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature. 1999 Nov 11; 402(6758): 187-91.
    [49] Jeanpierre M, Turleau C, Aurias A, Prieur M, Ledeist F, Fischer A,Viegas-Pequignot E. An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum Mol Genet. 1993 Jun; 2(6):731-5.
    [50] Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, Laird PW,Jones PA. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol. 2002 Jan; 22(2): 480- 91.
    [51] Hsieh CL. The de novo methylation activity of Dnmt3a is distinctly different than that of Dnmtl. BMC Biochem. 2005 Mar 30; 6: 6.
    [52] Rhee I, Jair KW, Yen RW, Lengauer C, Herman JG, Kinzler KW, Vogelstein B, Baylin SB, Schuebel KE. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature. 2000 Apr 27; 404(6781): 1003- 7.
    [53] Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H,Feinberg AP, Lengauer C, Kinzler KW, Baylin SB, Vogelstein B. DNMTl and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002 Apr 4; 416(6880): 552-6.
    [54] Bourc'his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001 Dec 21;294(5551): 2536-9.
    [55] Hata K, Okano M, Lei H, Li E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development. 2002 Apr; 129(8): 1983- 93.
    [56] Aapola U, Kawasaki K, Scott HS, Ollila J, Vihinen M, Heino M, Shintani A,Kawasaki K, Minoshima S, Krohn K, Antonarakis SE, Shimizu N, Kudoh J,Peterson P. Isolation and initial characterization of a novel zinc finger gene,DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. Genomics. 2000 May 1; 65(3): 293- 8
    [57] Slater LM, Allen MD, Bycroft M. Structural variation in PWWP domains. J Mol Biol. 2003 Jul 11; 330(3): 571- 6.
    [58] Aapola U, Liiv I, Peterson P. Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity. Nucleic Acids Res. 2002 Aug 15; 30(16): 3602- 8.
    [59] Hendrich, B. and Tweedie, S. The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet. 2003 May;19(5): 269- 77.
    [60] Lewis JD, et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 1992; 69: 905- 914.
    [61] Nan X, Meehan RR, Bird A. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res 1993; 21: 4886-4892.
    [62] Meehan RR, Lewis JD, Bird AP. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res1992; 20: 5085-5092.
    [63] Nan X, Tate P, Li E, d Bird A. DNA methylation specifies chromosomal localization of MeCP2. Mol Cell Biol 1996; 16: 414- 421.
    [64] Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 1997; 88: 471- 481.
    [65] RI Wakefield, BO Smith, X Nan, A Free, A Soteriou, D Uhrin, AP Bird, PN Barlow. The solution structure of the domain from MeCP2 that binds to methylated DNA. J Mol Biol. 1999; 291: 1055-1065.
    [66] Free A, Wakefield RI, Smith BO, Dryden DT, Barlow PN, Bird AP. DNA recognition by the methyl-CpG binding domain of MeCP2. J Biol Chem.2001; 276: 3353-3360.
    [67] Chandler SP, Guschin D, Landsberger N, Wolffe AP. The methyl-CpG binding transcriptional repressor MeCP2 stably associates with nucleosomal DNA. Biochemistry 1999; 38: 7008- 7018.
    [68] Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N,Strouboulis J, Wolffe AP. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998; 19: 187-191.
    [69] Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998; 393: 386- 389.
    [70] Yu F, Thiesen J, Stratling WH. Histone deacetylase-independent transcriptional repression by methyl- CpG-binding protein 2. Nucleic Acids Res. 2000; 28:2201-2206.
    [71] Kaludov NK, Wolffe AP. MeCP2 driven transcriptional repression in vitro: selectivity for methylated DNA, action at a distance and contacts with the basal transcription machinery. Nucleic Acids Res. 2000; 28: 1921-1928.
    [72] Cross SH, Meehan RR, Nan X, Bird A. A component of the transcriptional repressor MeCPl shares a motif with DNA methyltransferase and HRX proteins. Nat Genet. 1997 Jul; 16(3): 256- 9.
    [73] Fujita N, Takebayashi S, Okumura K, Kudo S, Chiba T, Saya H, Nakao M.Methylation-mediated transcriptional silencing in euchromatin by methyl- CpG binding protein MBD1 isoforms. Mol Cell Biol. 1999 Sep; 19(9): 6415-26.
    [74] Ng HH, Jeppesen P, Bird A. Active repression of methylated genes by the chromosomal protein MBD1. Mol Cell Biol 2000; 20: 1394- 406.
    [75] Fujita N, Shimotake N, Ohki I, Chiba T, Saya H, Shirakawa M, Nakao M. Mechanism of transcriptional regulation by methyl-CpG binding protein MBD1. Mol Cell Biol. 2000; 20: 5107- 5118.
    [76] Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol. 1998; 18: 6538-6547.
    [77] Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F and Wolffe AP. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet. 1999 Sep; 23(1): 62- 6.
    [78] Bhattacharya SK, Ramchandani S, Cervoni N and Szyf M. A mammalian protein with specific demethylase activity for mCpG DNA. Nature. 1999 Feb18; 397(6720): 579-83.
    [79] Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, Tempst P, Reinberg D, Bird A. MBD2 is a transcriptional repressor belonging to the MeCPl histone deacetylase complex. Nat Genet. 1999 Sep;23(1): 58-61.
    [80] Boeke J, Ammerpohl O, Kegel S, Moehren U, Renkawitz R. The minimal repression domain of MBD2b overlaps with the methyl-CpG-binding domain and binds directly to Sin3A. J Biol Chem. 2000 Nov 10; 275(45): 34963- 7.
    [81] Humphrey GW, Wang Y, Russanova VR, Hirai T, Qin J, Nakatani Y, Howard BH. Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-Ll. J Biol Chem. 2001 Mar2; 276(9): 6817-24.
    [82] Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 1999; 13: 1924-1935.
    [83] Wade PA, Jones PL, Vermaak D, Wolffe AP. A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr Biol 1998; 8: 843- 846.
    [84] Ahringer J. NuRD and SIN3 histone deacetylase complexes in development. Trends Genet. 2000; 16: 351- 356.
    [85] Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev 2001; 15: 710- 723.
    [86] Bellacosa A, Cicchillitti L, Schepis F, Riccio A, Yeung AT, Matsumoto Y,Golemis EA, Genuardi M, Neri G. MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1. Proc Natl Acad Sci U S A. 1999 Mar 30; 96(7): 3969- 74.
    [87] Hendrich B, Hardeland U, Ng HH, Jiricny J, Bird A. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature. 1999 Sep 16; 401(6750): 301- 4.
    [88] Petronzelli F, Riccio A, Markham GD, Seeholzer SH, Genuardi M, Karbowski M, Yeung AT, Matsumoto Y, Bellacosa A. Investigation of the substrate spectrum of the human mismatch-specific DNA N-glycosylase MED1 (MBD4): fundamental role of the catalytic domain. J Cell Physiol. 2000 Dec;185(3):473- 80.
    [89] Bader S, Walker M, Hendrich B, Bird A, Bird C, Hooper M, Wyllie A. Somatic frameshift mutations in the MBD4 gene of sporadic colon cancers with mismatch repair deficiency. Oncogene. 1999 Dec 23; 18(56): 8044- 7.
    [90] Riccio A, Aaltonen LA, Godwin AK, Loukola A, Percesepe A, Salovaara R,Masciullo V, Genuardi M, Paravatou Petsotas M, Bassi DE, Ruggeri BA,Klein-Szanto AJ, Testa JR, Neri G, Bellacosa A. The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability. Nat Genet. 1999 Nov; 23(3): 266- 8
    [91] Prokhortchouk A, Hendrich B, Jorgensen H, Ruzov A,Wilm M, Georgiev G,Bird A, Prokhortchouk E. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 2001 Jul 1;15(13): 1613-8.
    [92] Daniel JM, Reynolds AB. The catenin p120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol Cell Biol. 1999 May;19(5): 3614-23.
    [93] Anastasiadis PZ, Reynolds AB. The p120 catenin family: complex roles in adhesion, signaling and cancer. J Cell Sci. 2000 Apr; 113 (Pt 8): 1319- 34.
    [94] van Hengel J, Vanhoenacker P, Staes K, van Roy F. Nuclear localization of the p120(ctn) Armadillo-like catenin is counteracted by a nuclear export signal and by E-cadherin expression. Proc Natl Acad Sci USA. 1999; 96:7980-7985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700