Gadd45a在CD4~+T细胞基因病理性低甲基化及系统性红斑狼疮发病中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统性红斑狼疮(systemic lupus erythematosus,SLE)是一种多器官、多系统受累的自身免疫性疾病。其确切的病因及发病机理至今尚不十分清楚。近年来的研究结果表明T细胞DNA甲基化异常在SLE发病中起十分重要的作用。DNA甲基化是表观遗传学的重要调节机制。基因调节序列甲基化抑制基因转录,而低甲基化则激活基因转录。已有研究表明在体外抑制T细胞DNA甲基化,使T细胞甲基化敏感基因调控序列特定区域低甲基化,从而导致基因过度表达。这些基因包括CD11a(ITGAL)、perforin(PRF1)、CD70(TNFSF7)及CD40 ligand(TNFSF5)。过度表达这些基因的T细胞具有自身反应性,杀伤自身巨噬细胞或辅助B细胞产生大量的自身抗体,在动物体内能诱导狼疮样疾病。而且上述甲基化敏感基因在SLE患者CD4~+T细胞过度表达,基因调控序列特定区域甲基化水平低下,处于低甲基化状态。因此,SLECD4~+T细胞的自身反应性与基因调控序列低甲基化密切相关。目前虽然DNA甲基化转甲基酶机制研究得比较清楚,但是DNA去甲基化的功能和机制仍然属于生物学倍受争议的研究领域。最新的研究结果显示Gadd45a(Growth arrest and DNA-damage-inducible protein 45 alpha,即生长停滞与DNA损伤诱导蛋白)可通过促进DNA修复,去除甲基化标记,从而减少表观遗传基因的沉默。紫外线照射可以诱导Gadd45a表达上调,同时紫外线照射可诱发和加重SLE发病,SLE患者T细胞基因组DNA甲基化水平降低。因此,我们提出SLE发病机理之一可能为:核蛋白Gadd45a过度表达→阻抑T细胞基因调控序列甲基化→T细胞甲基化敏感基因过度表达→杀伤自身巨噬细胞或辅助B细胞产生大量自身抗体→SLE。这一假定的发病机制将通过三个部分的研究来证实:1.Gadd45a在SLE CD4~+T细胞中的表达及与自身免疫的关系;2.紫外线对Gadd45a表达和甲基化水平的影响;3.诱导或抑制Gadd45a的表达对正常人CD4~+T细胞或SLE CD4~+T细胞甲基化敏感基因的表达、调控序列甲基化状态以及自身免疫反应的影响;通过这些研究将进一步揭示导致SLE T细胞基因病理性低甲基化及自身免疫反应的关键环节和分子机制,为SLE治疗寻找有效的新途径提供理论依据。
     第一部分SLE患者CD4~+T细胞Gadd45a的表达
     目的:探讨Gadd45a在SLE CD4~+T细胞中的表达及与自身免疫反应的关系。
     方法:采用Real-time RT-PCR、Western blotting的方法分别从mRNA及蛋白水平检测17例SLE患者和10例正常人CD4~+T细胞中Gadd45a基因的表达,同时检测细胞基因组DNA总体甲基化水平,并分析二者之间的相关性及其与疾病活动性评分(SLEDAI)的相关性。
     结果:和正常人比较,SLE患者CD4~+T细胞Gadd45a mRNA和蛋白水平均显著升高(P<0.01或P<0.05),细胞基因组DNA总体甲基化水平显著降低(P<0.05),SLE患者CD4~+T细胞Gadd45a mRNA水平和SLEDAI评分呈显著正相关(R=0.568,P<0.05);与细胞基因组DNA总体甲基化水平呈显著负相关(R=-0.676,P<0.01)。
     结论:SLE患者CD4~+T细胞Gadd45a表达显著升高,且与DNA低甲基化及疾病活动性关联。
     第二部分紫外线对Gadd45a表达和DNA甲基化水平的影响
     第一节紫外线对Jurkat细胞Gadd45a表达和DNA甲基化水平的影响
     目的:研究紫外线对Jurkat细胞Gadd45a表达和DNA甲基化水平的影响。
     方法:分别以紫外线UVB 1.0J/cm~2和1.5J/cm~2照射Jurkat细胞后,于6小时、12小时、24小时和48小时收集细胞,采用Real-time RT-PCR法检测Gadd45a mRNA水平和甲基化敏感基因CD11a,CD70 mRNA水平,同时检测Jurkat细胞基因组DNA总体甲基化水平的变化。
     结果:
     (1)紫外线UVB1.0J/cm~2照射后6小时,Jurkat细胞Gadd45amRNA水平显著升高(P<0.01),总体甲基化水平显著降低(P<0.05),CD11a,CD70 mRNA水平也升高,但差异无统计学意义(P>0.05)。照射后12小时Jurkat细胞Gadd45a CD11a,CD70 mRNA水平均显著升高(P<0.05),Jurkat细胞总体甲基化水平显著降低(P<0.05)。照射后24小时和48小时,Jurkat细胞Gadd45a mRNA水平升高,CD11a,CD70 mRNA水平升高,基因组DNA总体甲基化水平降低,但差异无统计学意义(P>0.05)。
     (2)紫外线UVB1.5J/cm2照射后6小时、12小时、24小时和48小时,Jurkat细胞Gadd45a,CD11a,CD70 mRNA水平均显著升高(P<0.05或P<0.01),基因组总体甲基化水平显著降低(P<0.05或P<0.01)。
     结论:紫外线能诱导Jurkat细胞Gadd45a表达上调,同时甲基化敏感基因CD11a,CD70 mRNA表达升高,Jurkat细胞基因组DNA低甲基化。
     第二节紫外线对CD4~+T细胞Gadd45a表达和DNA甲基化水平的影响
     目的:研究紫外线对正常人CD4~+T细胞Gadd45a表达和DNA甲基化水平的影响。
     方法:免疫磁珠法从3例正常人外周血中分离CD4~+T细胞,紫外线UVB 1.5J/cm~2照射正常人CD4~+T细胞后,分别于6小时、24小时、48小时收集细胞,采用Real-time RT-PCR法检测Gadd45a mRNA,甲基化敏感基因CD11a,CD70 mRNA的表达,采用Western blotting法检测Gadd45a蛋白水平,同时检测CD4~+T细胞基因组DNA总体甲基化水平的变化。
     结果:紫外线照射后6小时、24小时、48小时的CD4~+T细胞Gadd45a,CD11a,CD70 mRNA水平均显著升高(P<0.05),且Gadd45a蛋白表达显著升高(P<0.05),基因组DNA总体甲基化水平降低,第48小时总体甲基化水平显著降低,差异有统计学意义(P<0.05)。
     结论:紫外线能诱导CD4~+T细胞Gadd45a表达上调,同时甲基化敏感基因CD11a,CD70 mRNA表达升高,细胞基因组DNA总体甲基化水平下调。
     第三部分Gadd45a表达异常与自身免疫关系的研究
     第一节Gadd45a过表达诱导自身免疫反应
     目的:诱导Gadd45a过表达对正常人CD4~+T细胞甲基化敏感基因的表达、调控序列甲基化状态以及自身免疫反应的影响。
     方法:构建Gadd45a表达质粒PCDNA3.1-Gadd45a,电穿孔法瞬时转染正常人CD4~+T细胞,采用Real-time RT-PCR法检测甲基化敏感基因CD11a,CD70 mRNA的表达,ELISA法检测细胞增殖活性、自身B细胞IgG抗体产量,试剂盒检测细胞基因组DNA总体甲基化水平及亚硫酸氢钠基因组测序法检测CD11a(ITGAL)序列特异性甲基化状态的改变。
     结果:转染PCDNA3.1-Gadd45a的CD4~+T细胞Gadd45a,CD11a,CD70 mRNA水平升高,细胞增殖活性及自身B细胞的IgG抗体产量增加,总体甲基化水平降低,差异均有显著统计学意义(P<0.05)。重亚硫酸氢钠测序结果显示ITGAL启动子调控序列平均甲基化水平显著降低(P<0.01),七个CG位点中有六个位点(-1263,-1255,-1191,-1159,-1121,-1111bp)发生了低甲基化。
     结论:Gadd45a过表达可诱导正常CD4~+T细胞发生低甲基化,与自身免疫密切相关的甲基化敏感基因表达升高,细胞产生自身免疫性。
     第二节下调Gadd45a抑制自身免疫反应
     目的:抑制Gadd45a表达对SLE CD4~+T细胞甲基化敏感基因的表达、调控序列甲基化状态以及自身免疫反应的影响。
     方法:设计针对Gadd45a的小干扰RNA,电穿孔法瞬时转染活动性SLE患者的CD4~+T细胞,采用Real-time RT-PCR法检测Gadd45amRNA,甲基化敏感基因CD11a,CD70 mRNA的表达,流式细胞仪检测CD11a,CD70蛋白水平,ELISA法检测细胞增殖活性和IgG抗体产量。同时检测细胞基因组DNA总体甲基化水平及ITGAL特异性序列甲基化状态的改变。
     结果:转染后CD4~+T细胞Gadd45a,CD11a,CD70 mRNA水平降低,CD11a染色细胞百分率减少,CD70平均荧光强度降低,细胞增殖活性及自身B细胞的IgG抗体产量下降(P<0.05)。细胞基因组DNA总体甲基化水平升高,但差异无显著性。重亚硫酸氢钠测序结果显示CD11a(ITGAL)启动子特异性序列平均甲基化水平显著升高(P<0.05),七个CG位点中有四个位点(-1263,-1223,-1159,-1121)发生了高甲基化。
     结论:抑制Gadd45a的表达可逆转SLE患者CD4~+T细胞的异常低甲基化,下调与自身免疫密切相关的甲基化敏感基因表达,抑制自身免疫反应。
Systemic lupus erythematosus(SLE) is a autoimmune disease which involved multiple organ systems.Its etiology and pathogenesis is unclear. Recent studies have shown that the T cell DNA demethylation play an important role in the pathogenesis of SLE.DNA methylation is one of many epigenetic factors that are important for cellular differentiation,gene regulation and genomic imprinting.In general,DNA hypomethylation is associated with gene transcription activation.Studies from Lu et al.showed that inhibiting T cell DNA methylation in vitro causes demethylation of regulatory sequences,contributes to increasing gene promoter activity,and thus leads to increasing gene expression.These genes include CD11a(ITGAL),perforin(PRF1),CD70(TNFSF7) and CD40 ligand(TNFSF5).Overexpression of these genes results in T cells autoreactivity,spontaneous monocyte/macrophage killing,B cell immunoglobulin overproduction.DNA methylation inhibitors could induce lupus-like autoimmunity in vitro and in vivo.Furthermore,T cells from patients with active lupus have genome-wide decrease in deoxymethylcytosin,and gene-specific hypomethylation.DNA hypomethylation induces autoimmune-related genes overexpression,and causes autoreactive monocyte/macrophage killing and excessive B cell stimulation.DNA demethylation also contributes to the striking female predilection of this disease.The mechanisms of demethylation in lupus T cells remain unknown.Recent study showed that Gadd45a can promote DNA repair,remove methylation marks,thereby reduce epigenetic silence of genes.Ultraviolet irradiation can upregulate expression of Gadd45a, and make SLE condition worse.Therefore,we propose the pathogenesis of SLE as follows:overexpression of nuclear protein Gadd45a can inhibit methylation at regulatory sequence of T cell methylation-sensitive genes, result in upregulated expression of the genes,then leads to spontaneous monocyte/macrophage killing and overstimulation of IgG synthesis, finally causes SLE.To prove the hypothesis,we used the following approach:firstly,to investigate the expression of Gadd45a in SLE CD4~+ T cells;secondly,to study the effect of UV on Gadd45a expression and DNA methylation;and thirdly,to examine the effect of upregulated and downregulated expression of Gadd45a on normal or SLE CD4~+ T cells. These studies would further reveal the mechanisms of demethylation of T cell genes in lupus,and provide a theoretical basis for more effective therapy of SLE.
     PartⅠExpression of Gadd45a in CD4~+ T cells from SLE patients
     Objective:To investigate the expression of Gadd45a in SLE CD4~+T cells.
     Methods:Peripheral blood mononuclear cells(PBMCs) from 17 SLE patients and 10 healthy controls were isolated by Ficoll-Hypaque density gradient centrifugation,CD4+ subsets were isolated by positive selection using Miltenyi beads.Expression of Gadd45a mRNA in CD4~+T cells was detected by real-time RT-PCR,and western blotting was used for protein expression in the same samples.The global methylation level was measured by DNA global methylation kit.The correlation between Gadd45a mRNA,global methylation level and systemic lupus erythematosus disease activity index(SLEDAI) were analyzed.
     Results:The expression of Gadd45a mRNA and protein in CD4+T cells from SLE patients were significantly elevated,Compared with controls(P<0.01,P<0.05,respectively).Global hypomethylation was observed in lupus CD4~+ T cells,compared with controls(P<0.05).There was a significant negative correlation between Gadd45a mRNA expression and global methylation level(R=-0.676,P<0.01).Furthermore, the Gadd45a mRNA level was positively correlated with increased disease activity in lupus patients as measured by SLEDAI(R=0.813,P <0.05).
     Conclusion:Gadd45a expression were significantly increased in lupus CD4~+ T cells,which is associated with demethylation and increased disease activity in SLE.
     PartⅡEffect of ultraviolet(UV) radiation on the expression of Gadd45a gene and methylation levels in Jurkat cells and CD4~+T cells
     SectionⅠEffect of UV on the expression of Gadd45a gene and methylation levels in Jurkat cells
     Objective:To explore the effect of UV on the expression of Gadd45a gene and methylation levels in Jurkat cells.
     Methods:Jurkat cells were irradiated with 1.0J/cm2 and 1.5J/cm2 UVB respectively,and collected at 6 hours,12 hours,24 hours and 48 hours after UVB irradiation.Real-time RT-PCR was used to detect the expression of Gadd45a mRNA and methylation sensitive genes CD11a, CD70 mRNA.Global methylation level was measured in the same samples.
     Results:
     (1) The expression of Gadd45a mRNA in Jurkat cells was significantly increased at 6 hours after UVB(1.0J/cm~2) irradiation (P<0.01),accompanied with global demethylation((P<0.05).The expression of CD11a,CD70 mRNA was upregulated,but the differences had no statistically significant.The expression of Gadd45a,CD11a,CD70 mRNA was signifcantly increased in Jurkat cells after 12 hours with irradiation UVB 1.0J/cm2(P<0.05),and the global methylation level was significantly reduced(P<0.05).24 hours and 48 hours after irradiation, Increased mRNA expression of Gadd45a,CD11a,CD70 mRNA and decreased global demethylation in Jurkat cells were also found at 24 and 48 hours after UVB(1.0J/cm~2) irradiation,but the differences had no statistically significant.
     (2) The expression of Gadd45a mRNA in Jurkat cells was significantly increased at 6,12,24 and 48 hours after UVB1.5 J/cm~2 irradiation,accompanied with significantly upregulated expression of CD11a,CD70 mRNA(P<0.05 or P<0.01).The global methylation level was significantly reduced at each time point after UVB1.5 J/cm~2 irradiation(P<0.05 or P<0.01).
     Conclusion:UVB can upregulate the expression of Gadd45a, CD11a and CD70 mRNA,and decrease global methylation in Jurkat cells
     SectionⅡEffect of UV on the expression of Gadd45a gene and methylation levels in CD4~+T cells
     Objective:To explore the effect of UV on the expression of Gadd45a gene and methylation levels in CD4~+T cells.
     Methods:PBMCs from 3 healthy controls were isolated by Ficoll-Hypaque density gradient centrifugation,CD4~+ subsets were isolated by positive selection using Miltenyi beads.CD4~+T cells were irradiated with 1.5J/cm2 UVB,and collected at 6 hours,24 hours,48 hours after UVB irradiation.Real-time RT-PCR was used to detect the expression of Gadd45a mRNA and methylation sensitive genes CD11a, CD70 mRNA,while Gadd45a protein expression and global methylation level were measured in the same samples.
     Results:The expression of Gadd45a mRNA was significantly increased in CD4~+T cells at 6 hours,24 hours,48 hours after irradiation UVB 1.5 J/cm2(P<0.05),accompanied with significantly upregulated expression of CD11a,CD70 mRNA(P<0.05).Expression of Gadd45a protein was also upregulated.Meanwhile,the global methylation level decreased at 48 hours after irradiation(P<0.05).
     Conclusion:UVB can upregulate expression of Gadd45a,CD11a and CD70,and reduce global methylation in CD4~+T cells.
     PartⅢAbnormal Gadd45a gene expression and autoimmunity
     SectionⅠInducing T cells autoreactivity by overexpressing Gadd45a
     Objective:To investigate the effect of overexpression of Gadd45a by transfecting Gadd45a expressed plasmid on expression and methylation status of autoimmunity related genes and autoreactivity in normal CD4~+ T cells.
     Methods:Gadd45a expressed plasmid(PCDNA3.1-Gadd45a) and control plasmid(PCDNA3.1+) were constructed,then transfected into normal human CD4~+ T cells by transient electroporation.Real-time RT-PCR was used to detect the expression of Gadd45a,CD11a and CD70 mRNA.Cell proliferation assay and detection of IgG antibody production were performed following the protocol of kits.The global methylation level and methylation status of ITGAL promoter regulatory elements were detected by the methylation kit and sodium bisulfite sequencing, respectively.
     Results:Compared with CD4~+ T cells transfected control plasmid The expression of Gadd45a,CD11a and CD70 mRNA was upregulated in CD4~+ T cells transfected with PCDNA3.1-Gadd45a(P<0.05).Increased cell proliferation activity and enhanced IgG production,and accompanied with global demethylation were also found in CD4~+T cells transfected with PCDNA3.1-Gadd45a(P<0.05).The average methylation of CpG pairs in ITGAL promoter sequence(-1263 to-1111) was significantly reduced(P<0.01),and six out of seven CpGs(-1263,-1255, -1191,-1159,-1121,-1111) were significantly demethylated in CD4~+ T cells transfected with PCDNA3.1-Gadd45a.
     Conclusion:Overexpression of Gadd45a can upregulate expression of methylation sensitive genes,and increase autoreactivity in CD4+T cells.
     SectionⅡInhibiting T cells autoreactivity by downregulating Gadd45a expression
     Objective:To investigate the effect of downregulating Gadd45a expression by transfecting Gadd45a-siRNA on expression and methylation status of autoimmunity related genes,and autoreactivity in SLE CD4~+T cells.
     Methods:Gadd45a-siRNA was transfected into SLE CD4~+T cells by transient electroporation.Real-time RT-PCR was used to detect the expression of Gadd45a and methylation sensitive genes CD11a and CD70 mRNA.CDlla and CD70 protein levels were measured by flow cytometry.Cell proliferation assay and production of IgG antibody were performed following the protocol of kits.The global methylation level and methylation status of ITGAL promoter regulatory elements were detected by the methylation kit and sodium bisulfite sequencing, respectively.
     Results:The expression of Gadd45a,CD11a and CD70 mRNA were significantly downregulated in SLE CD4~+ T cells transfected with Gadd45a-siRNA(P<0.05).Percent of CD11a staining cells and CD70 MFI(mean fluorescence intensity) were decreased too.Reduced cell proliferation activity and IgG production,and accompanied with global hypermethylation were also found in SLE CD4~+ T cells transfected with Gadd45a-siRNA.The average methylation of CpG pairs at ITGAL promoter sequence(-1263 to-1111) was significantly increased (P<0.05),and four out of seven CpGs(-1263,-1223,-1159,-1121) were significantly hypermethylated in SLE CD4~+ T cells transfected with Gadd45a-siRNA.
     Conclusion:Downregulation of Gadd45a expression can inhibit expression of methylation sensitive genes,and reduce autoreactivity in SLE CD4~+T cells.
引文
[1] Sawalha AH. Epigenetics and T-cell immunity. Autoimmunity,2008;41(4): 245-252
    [2] Januchowski R, Prokop J, Jagodzinski PP..Role of epigenetic DNA alterations in the pathogenesis of systemic lupus erythematosus J Appl Genet,2004,45(2), 237-248
    [3] Turek-Plewa J, Jagodzinski PP. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett, 2005, 10: 631-664
    [4] Richardson B. Impact of aging on DNA methylation. Ageing Res Rev, 2003, 2(3):245-261
    [5] Lu Q,Kaplan M,Ray D,et al. Demethylation of ITGAL (CD11a) regulatory sequences in lupus. Arthritis Rheum, 2002,46(5):1282-1291
    [6] Kaplan M,Lu Q, Wu A, et al.Demethylation of promoter regulatory elements contributes to perform overexpression in CD4~+ lupus T cells. J Immunol, 2004, 172(6):3652-3661
    [7] Oelke K, Lu Q, Richardson D, et al. Overexpression of CD70 and overstimulation of IgG synthesis by lupus T cells and T cells treated with DNA methylation inhibitors. Arthritis Rheum, 2004, 50(6): 1850-1860
    [8] Lu Q, Wu A, Richardson B.Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T Cells treated with lupus-inducing drugs.J Immunol,2005,174(10):6212~6219
    [9] Lu Q, Wu A, Tesmer L,et al. Demethylation of CD40LG on the inactive X in T Cells from women with lupus. J Immunol, 2007;179(9):6352-6358
    [10] Salvador JM, Hollander MC, Nguyen AT. Mice Lacking the p53-Effector Gene Gadd45a develop a lupus-like syndrome.Immunity, 2002, 16(4), 499-508
    [11] Fornace AJ Jr, Alamo I Jr, Hollander MC. DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci USA, 1988, 85 (23): 8800-8804
    [12] Hollander MC, Fornace AJ Jr. Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a. Oncogene, 2002; 21, 6228-6233
    [13] CarrierF, Georgel PT, Pourquier P, et al. Gadd45, a 53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol Cell Biol, 1999; 19, 1673-1685
    [14] Zhang Q. Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA damage. Mutat Res,2005,569(1-2):133-143
    [15] Barreto G, Schafer A, Marhold J, et al. Gadd45a prmotes epigenetic gene activation by repair-mediated DNA demethylation. Nature,2007, 445(7128): 671-675
    [16] Papathanasiou MA, Fornace AJ Jr. DNA-damage inducible genes. Cancer Treat Res, 1991,57:13-36
    [17] Smith ML, Ford JM, Hollander MC, et al. p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and /or gadd45 genes. Mol Cell Biol, 2000,20(10):3705-3714
    [18] Maeda T, Sin AB, Leedel DA , et al. UV induces GADD45 in a p53-dependent and -independent manner in human keratinocytes. J Cutan Med Surg, 2003,7(2): 119-23
    [19] Richardson B. DNA methylation and autoimmune disease.Clin Immunol, 2003, 109(1):72-79
    [20] Tan EM, Cohen AS, Fries JF. et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum, 1982,25: 1271-1277
    [21] Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH. Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum,1992; 35: 630-640
    [22] Hollander M C, Sheikh M S, Bulavin D V, et al. Genomic instability in Gadd45a-deficient mice. Nat Genet, 1999,23 (2): 176-184
    [23] Yamasawa K, Nio Y, Dong M, et al. Clinicopathological significance of abnormalities in Gadd45 expression and its relationship to p53 in human pancreatic cancer. Clin Cancer Res,2002, 8 (8): 2563-2569
    [24] Wang W, Huper G, Guo Y, et al. Analysis of methylation-sensitive transcriptome identifies GADD45a as a frequently methylated gene in breast cancer. Oncogene, 2005, 24 (16): 2705-2714
    [25] Higashi H, Vallbohmer D, Warnecke-Eberz U, et al.Down-regulation of Gadd45 expression is associated with tumor differentiation in non-small cell lung cancer. Anticancer Res, 2006,26 (3A): 2143-2147
    [26] Pan Y, Sawalha AH.Epigenetic regulation and the pathogenesis of systemic lupus erythematosus.Translational Research,2009,153(2):4-10
    [27] Thyss R, Virolle V, Imbert V, et al. NF-jB/Egr-l/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death . EMBO J,2005, 24,128-137
    [28]Reefinan E, de Jong MC, Kuiper H,et al.Is disturbed clearance of apoptotic keratinocytes responsible for UVB-induced inflammatory skin lesions in systemic lupus erythematosus? Arthritis Res Ther,2006, 8(6): R156
    [29]Jin S, Mazzacurati L, Zhu X,et al.Gadd45a contributes to p53 stabilization in response to DNA damage.Oncogene ,2003,22(52):8536~8540
    [30]Fayolle C, Pourchet J, Cohen A,et al.UVB-induced G2 arrest of human melanocytes involves Cdc2 sequestration by Gadd45a in nuclear speckles. Cell Cycle,2006,5(16):1859-1864
    [31]Fayolle C, Pourchet J, de Fromentel CC, et al. Gadd45a activation protects melanoma cells from ultraviolet B-induced apoptosis. J Invest Dermatol,2008 , 128(1):196-202
    [32]Bruniquel D, Schwartz RH.Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process.Nat Irnmunol,2003,4(3):235-40.
    [33]Vairapandi M, Duker NJ. Enzymic removal of 5-methylcytosine from DNA by a human DNA-glycosylase.Nucleic Acids Res, 1993,21(23):5323-5327.
    [34]Steinberg RA. Enzymic removal of 5-methylcytosine from poly(dG-5-methyl-dC) by HeLa cell nuclear extracts is not by a DNA glycosylase . Nucleic Acids Res, 1995,23(9):1621-1624
    [35]Weiss A, Keshet I, Razin A,et al. DNA demethylation in vitro: Involvement of RNA. Cell, 1996,86:709-718
    [36]Bhattacharya KS, Ramchandani S, Cervoni N, Szyf M. A mammalian protein with specific demethylase activity for mCpG DNA. Nature, 1999,397 (6720): 579-583
    [37]Ng HH, Zhang Y, Hendrich B, et al.MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet, 1999,23: 58-61.
    [38]Wade PA, Gegonne A, Jones PL, et al. Mi-2 complex couples DNA methylation to chromatin remodelling and histone de-acetylation. Nat Genet, 1999,23:62-66.
    [39]Jin SG, Guo C, Pfeifer GP.GADD45a does not promote DNA demethylation. PLoS Genet,2008,4(3):el000013.
    [40]Balada E, Ordi-Ros J, Vilardell-Tarr(?)s M..DNA methylation and systemic Lupus Erythematosus. Ann. N.Y. Acad. Sci,2007,1108: 127-136
    [41]Rai K, Huggins IJ, James SR,et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and Gadd45. Cell,2008,135(7):1201-1212
    [42] Klenova EM, Nicolas RH, Paterson HF, et al. CTCF,a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms.Mol Cell Biol,1993,13(12):7612-7624
    [43] Bell AC,Felsenfeld G.Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene.Nature,2000,405(6785):482-485
    [44] Hark AT,Schoenherr CJ,Katz DJ,et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus.Nature,2000,405 (6785): 486-489
    [45] Sawalha AH, Jeffries M, Webb R, Lu Q, Gorelik G, Ray D, Osban J, Knowlton N, Johnson K, Richardson B.Defective T-cell ERK signaling induces interferon-regulated gene expression and overexpression of methylation-sensitive genes similar to lupus patients.Genes Immun,2008,9(4):368-378
    [46] Gorelik G, Fang JY, Wu A, Sawalha AH, Richardson B.Impaired T cell protein kinase C delta activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus. J Immunol,2007,179(8):5553-5563
    [1]Attwood JT, Yung RL, Richardson BC.DNA methylation and the regulation of gene transcription. Cell Mol Life Sci 2002;59(2):241-57.
    [2]Vercelli D.Genetics, epigenetics, and the environment: Switching, buffering,releasing. J Allergy Clin Immunol 2004;113(3):381-86.
    [3]van Doom R, Gruis NA, Willemze R, van der Velden PA, Tensen CP. Aberrant DNA methylation in cutaneous malignancies. Semin Oncol 2005;32(5):479-87.
    [4]Goldberg M, Rummelt C, Laerm A, Helmbold P, Holbach LM, Ballhausen WG. Epigenetic silencing contributes to frequent loss of the fragile histidine triad tumour suppressor in basal cell carcinomas. Br J Dermatol 2006;155:1154-8.
    [5]Takeuchi T, Liang S-B, Ohtsuki Y. Downregulation of expression of a novel cadherin molecule, T-cadherin, in basal cell carcinoma of the skin. Mol Carcinog 2002;35(4):173-9.
    [6]Lodygin D, Yazdi AS, Sander CA, Herzinger T, Hermeking H.Analysis of 14-3-3sigma expression in hyperproliferative skin diseases reveals selective loss associated with CpG-methylation in basal cell carcinoma. Oncogene 2003;22:5519-24.
    [7]Murao K, Kubo Y, Ohtani N, Hara E, Arase S.Epigenetic abnormalities in cutaneous squamous cell carcinomas: frequent inactivation of the RB1/p16 and p53pathways. Br J Dermatol 2006;155(5):999-1005.
    [8]Brown VL, Harwood CA, Crook T, Cronin JG, Kelsell DP, Proby CM. P16INK4a and p14ARF tumor suppressor genes are commonly inactivated in cutaneous squamous cell carcinoma. J Invest Dermatol 2004;122(5):1284-92.
    [9]Tyler LN, Ai L, Zuo C, Fan CY, Smoller BR. Analysis of promoter hypermethylation of death-associated protein kinase and p16 tumor suppressor genes in actinic keratoses and squamous cell carcinomas of the skin. Mod Pathol 2003;16(7):660-4.
    [10]Zhu F, Xia X, Liu B, Shen J, Hu Y, Person M, Hu Y. IKKa shields 14-3-3σ, a G2/M cell cycle checkpoint gene, from hypermethylation,preventing its silencing. Molecular Cell 2007;27(2):214-27.
    [11]Takeuchi T, Liang SB, Matsuyoshi N, Zhou S, Miyachi Y, Sonobe H, Ohtsuki Y. Loss of T-cadherin (CDH13, H-Cadherin) expression in cutaneous squamous cell carcinoma. Lab Invest 2002;82(8): 1023-9.
    [12]Dahl C, Guldberg P. The genome and epigenome of malignant melanoma. APMIS 2007;115(10):1161-76.
    [13]Mirmohammadsadegh A, Marini A, Nambiar S, Hassan M, Tannapfel A, Hengge UR.Epigenetic silencing of the PTENgene in melanoma. Cancer Res 2006;66(13):6546-52.
    [14]Hoon DS, Spugnardi M, Kuo C, Huang SK, Morton DL, Taback B. Profiling epigenetic inactivation of tumor suppressor genes in tumors and plasma from cutaneous melanoma patients. Oncogene 2004;23(22):4014-22.
    [15]Marini A, Mirmohammadsadegh A, Nambiar S, Gustrau A, Ruzicka T, Hengge UR. Epigenetic inactivation of tumor suppressor genes in serum of patients with cutaneous melanoma. J Invest Dermatol. 2006;126(2):422-31.
    [16]Tokita T, Maesawa C, Kimura T, Kotani K, Takahashi K, Akasaka T, Masuda T. Methylation status of the SOCS3 gene in human malignant melanomas. Int J Oncol 2007;30(3):689-94.
    [17]Straume 0, Smeds J, Kumar R, Hemminki K, Akslen LA. Significant impact of promoter hypermethylation and the 540 C_jT polymorphism of CDKN2A in cutaneous melanoma of the vertical growth phase. Am J Pathol 2002; 161(1): 229-37.
    [18]Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, Herman JG, Gerald WL, Lazebnik YA, Cord(?)n-Card(?) C, Lowe SW. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 2001 ;409(6817):207-l 1.
    [19]Worm J, Christensen C, Gronbaek K, Worm J, Christensen C. Genetic and epigenetic alterations of the APC gene in malignant melanoma. Oncogene 2004;23(30):5215-26.
    [20]Tsutsumida A, Hamada J, Tada M Aoyama T, Furuuchi K, Kawai Y, Yamamoto Y, Sugihara T, Moriuchi T.Epigenetic silencing of E- and P-cadherin gene expression in human melanoma cell lines. Int J Oncol 2004;25(5): 1415-21.
    [21]McGuinness C, Wesley UV. Dipeptidyl peptidase Ⅳ (DPPIV), a candidate tumor suppressor gene in melanomas is silenced by promoter methylation. Front Biosci 2008;13:2435-43.
    [22]Liu S, Ren S, Howell P, Fodstad O, Riker AI. Identification of novel epigenetically modified genes in human melanoma via promoter methylation gene profiling. Pigment Cell Melanoma Res 2008;21(5):545-58.
    [23]Gallagher WM, Bergin OE, Rafferty M, Kelly ZD, Nolan IM, Fox EJ, Culhane AC, McArdle L, Fraga MF, Hughes L, Currid CA, O'Mahony F, Byrne A, Murphy AA, Moss C, McDonnell S, Stallings RL, Plumb JA, Esteller M, Brown R, Dervan PA, Easty DJ. Multiple markers for melanoma progression regulated by DNA methylation:insights from transcriptomic studies. Carcinogenesis 2005;26(11):1856-67.
    [24]De Smet C, Loriot A, Boon T. Promoter-dependent mechanism leading to selective hypomethylation within the 5' region of gene MAGE-A1 in tumor cells. Mol Cell Biol 2004;24(11):4781-90.
    [25]Scarisbrick JJ, Mitchell TJ, Calonje E, Orchard G, Russell-Jones R, Whittaker SJ. Microsatellite instability is associated with hypermethylation of the hMLH1 gene and reduced gene expression in mycosis fungoides. J Invest Dermatol 2003;121(4):894-901.
    [26]Zhang Q, Raghunath PN, Vonderheid E, (?)dum N, Wasik MA.Lack of Phosphotyrosine Phosphatase SHP-1Expression in Malignant T-Cell Lymphoma CellsResults from Methylation of the SHP-1 Promoter. Am J Pathol 2000;157(4):1137-46.
    [27]Sommer VH, Clemmensen OJ, Nielsen O, Wasik M, Lovato P, Brender C, Eriksen KW, Woetmann A, Kaestel CG, Nissen MH, Ropke C, Skov S, (?)dum N. In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia 2004; 18(7): 1288-95.
    [28]Van Doom R, Zoutman WH, Dijkman R, de Menezes RX, Commandeur S, Mulder AA,. van der Velden PA, Vermeer MH, Willemze R, Yan PS, Huang TH, Tensen CP. Epigenetic profiling of cutaneous T-cell lymphoma: Promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG and p73. J Clin Oncol 2005;23(17):3886-96.
    [29]Jones C, Wain EM, Ferreria S, Orchard GE, Whittaker SJ, Mitchell TJ.Epigenetic silencing of the Fas gene promoter in cutaneous T-cell lymphoma. British Journal of Dermatology 2008;158(4):874 -912.
    [30]Dijkman R, Tensen CP, Jordanova ES., Knijnenburg J, Hoefnagel JJ, Mulder AA, Rosenberg C, Raap AK, Willemze R, Szuhai K, Vermeer MH. Array-based comparative genomic hybridization analysis reveals recurrent chromosomal alterations and prognostic parameters in primary cutaneous large B-Cell lymphoma. J Clin Oncol 2006;24(2):296-305.
    [31]Belaud-Rotureau MA, Marietta V, Vergier B, Mainhaguiet G, Turmo M, Idrissi Y, Ferrer J, Beylot-Barry M, Dubus P, Merlio JP.Inactivation of pl6INK4a/CDKN2A gene may be a diagnostic feature of large B cell lymphoma leg type among cutaneous B cell lymphomas. Virchows Arch 2008; 452 (6):607-20.
    [32]Takino H, Li C, Hu S, Kuo T-T, Geissinger E, Muller-Hermelink HK, Kim B, Swerdlow SH, Inagaki H.Primary cutaneous marginal zone B-cell lymphoma: a molecular and clinicopathological study of cases from Asia, Germany, and the United States. Modern Pathology 2008;21(12):1517-26.
    [33]Simone Fulda, Martin U K(?)fer, Eric Meyer, Frans van Valen, Barbara Dockhorn-Dworniczak and Klaus-Michael Debatin. Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene 2001;20(41):5865- 77.
    [34]Fraga MF, Herranz M, Espada J, Ballestar E, Paz MF, Ropero S, Erkek E, Bozdogan O, Peinado H, Niveleau A, Mao JH, Balmain A, Cano A, Esteller M. A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res 2004;64(16):5527-34.
    [35]Ropero S, Setien F, Espada J, Fraga MF, Herranz M, Asp J, Benassi MS, Franchi A, Patino A, Ward LS, Bovee J, Cigudosa JC, Wim W, Esteller M. Epigenetic loss of the familial tumorsuppressor gene exostosin-1 (EXT1) disrupts heparan sulfate synthesis in cancer cells. Hum Mol Genet 2004;13(22):2753-65
    [36]Youssef EM, Chen XQ, Higuchi E, Kondo Y, Garcia-Manero G, Lotan R, Issa JP. Hypermethylation and silencing of the putative tumor suppressor Tazarotene-induced gene 1 in human cancers. Cancer Res 2004;64(7):2411 -7
    [37]Serrano A, Tanzarella S, Lionello I, Mendez R, Traversari C, Ruiz-Cabello F, Garrido F. Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2-deoxycytidine treatment. Int J Cancer 2001 ;94(2):243-51
    [38]Zendman AJ, van Kraats AA, den Hollander AI, Weidle UH, Ruiter DJ, van Muijen GN. Characterization of XAGE-1b, a short major transcript of cancer/testis-associated gene XAGE-1, induced in melanoma metastasis. Int J Cancer 2002; 97(2): 195-204.
    [39]Sharma BK, Smith CC, Laing JM, Rucker DA, Burnett JW, Aurelian L.Aberrant DNA Methylation Silences the Novel Heat Shock Protein H11 in Melanoma but Not Benign Melanocytic Lesions. Dermatology 2006; 213(3): 192-9.
    [40]Guan X, Sagara J, Yokoyama T, Koganehira Y, Oguchi M, Saida T, Taniguchi S. ASC/TMS1, a caspase-1 activating adaptor, is downregulated by aberrant methylation in human melanoma. Int J Cancer 2003;107(2):202-8.
    [41]Behrmann I, Wallner S, Komyod W, Heinrich PC, Schuierer M, Buettner R, Bosserhoff AK.Characterization of methylthioadenosin phosphorylase (MTAP) expression in malignant melanoma. Am J Pathol 2003;163(2):683-90.
    [42]Furuta J, Umebayashi Y, Miyamoto K, Kikuchi K, Otsuka F, Sugimura T, Ushijima T. Promoter methylation profiling of 30 genes in human malignant melanoma. Cancer Sci 2004; 95(12):962-8.
    [43]Furuta J, Kaneda A, Umebayashi Y, Otsuka F, Sugimura T, Ushijima T. Silencing of the thrombomodulin gene in human malignant melanoma. Melanoma Res 2005;15(1): 15-20.
    [44]Mori T, O'Day SJ, Umetani N, Martinez SR, Kitago M, Koyanagi K, Kuo C, Takeshima TL, Milford R, Wang HJ, Vu VD, Nguyen SL, Hoon DS. Predictive Utility of Circulating Methylated DNA in Serum of Melanoma Patients Receiving Biochemotherapy . J Clin Oncol 2005;23(26):9351-8.
    [45]Nagasawa T, Zhang Q, Raghunath PN, Wong HY, El-Salem M, Szallasi A, Marzec M, Gimotty P, Rook AH, Vonderheid EC, Odum N, Wasik MA .Multi-gene epigenetic silencing of tumor suppressor genes in T-cell lymphoma cells; delayed expression of the p16 protein upon reversal of the silencing. Leuk Res 2006;30(3):303-12.
    [46]Child FJ, Scarisbrick JJ, Calonje E, Orchard G, Russell-Jones R, Whittaker SJ. Inactivation of tumor suppressor genes p15(INK4b) and p16(INK4a) in primary cutaneous B cell lymphoma.J Invest Dermatol 2002; 118(6):941-8.
    [47]Chen M, Chen ZQ, Cui PG, Yao X, Li YM, Li AS, Gong JQ, Cao YH. The methylation pattern of p16INK4a gene promoter in psoriatic epidermis and its clinical significance. British Journal of Dermatology 2008;158(5):987-93.
    [48]K. Zhang, R. Zhang, X. Li, G. Tin, Niu X, Ho Zhang K, Zhang R, Li X, Yin G, Niu X, Hou R.The mRNA expression and promoter methylation status of the p16 gene in colony-forming cells with high proliferative potential in patients with psoriasis. Clin Exp Dermatol 2007;32(6):702-8.
    [49]Ruchusatsawat K, Wongpiyabovorn J, Shuangshoti S, Hirankarn N, Mutirangura A .SHP-1 promoter 2 methylation in normal epithelial tissues and demethylation in psoriasis. J Mol Med 2006;84(2):175-82.
    [50]Kim YI, Logan JW, Mason JB, Roubenoff R. DNA hypomethylation in inflammatory arthritis: reversal with methotrexate. J Lab Clin Med 1996; 128 (2):165-72.
    [51]Bowcock AM. The genetics of psoriasis and autoimmunity. Annu Rev Genomics Hum Genet 2005;6:93-122.
    [52]Nakamura T, Sekigawa I, Ogasawara H, Mitsuishi K, Hira K, Ikeda S, Ogawa H. Expression of DNMT-1 in patients with atopic dermatitis. Arch Dermatol Res 2006;298(5):253-6
    [53]Sreekumar GP, Smyth JR Jr, Ambady S, Ponce de Leon FA. Analysis of the Effect of Endogenous Viral Genes in the Smyth Line Chicken Model for Autoimmune Vitiligo.American Journal of Pathology 2000;156(3):1099-107.
    [54]Nakagawa K, Harrison LC. The potential roles of endogenous retroviruses in autoimmunity. Immunol Rev 1996; 152:193-236.
    [55]Groudine M, Eisenman R, Weintraub H. Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation. Nature 1981;292 (5821):311-7.
    [56]Montes LF, Diaz ML, Lajous J, Garcia NJ. .Folic acid and vitamin B12 in vitiiigo: a nutritional approach. Cutis 1992;50(1): 39-42.
    [57]Strickland FM,Richardson BC.Epigenetics in human autoimmunity. Autoimmunity 2008; 41(4): 278-86.
    [58]Luo Y, Li Y, Su Y, Yin H, Hu N, Wang S, Lu Q. Abnormal DNA methylation in T cells from patients with subacute cutaneous lupus erythematosus. Br J Dermatol 2008; 159(4):827-33.
    [1] Wilson CB,Makar KW.Epigenetic regulation of T cell fate and function. J Infect Dis.2002;185(suppl 1):S37-45
    [2] Alberola-Ila J, Hernandez-Hoyos G. The Ras/MAPK cascade and the control of positive selection. Immunol Rev. 2003;191:79-96.
    [3] Im SH, Hueber A, Montelli S, Kang KH, Rao A. Chromatin-level regulation of the IL10 gene in T cells. J Biol Chem. 2004;279(45):46818-25.
    [4] Wilson CB, Makar KW, Shnyreva M, Fitzpatrick DR. DNA methylation and the expanding epigenetics of T cell lineage commitment. Semin Immunol. 2005 ;17(2):105-19.
    [5] Tong Y, Aune T, and Boothby M. T-bet antagonizes mSin3a recruitment and transactivates a fully methylated IFN-γ promoter via a conserved T-box half-site. Proc Natl Acad Sci U S A. 2005; 102:2034-2039
    [6] Richardson B.DNA methylation and autoimmune disease.Clin Immunol. 2003;109:72-79
    [7] Attwood JT,Yung RL, Richardson BC.DNA methylation and the regulation of gene transcription. Cell.Mol.Life.Sci.2002;59:241-257
    [8] Knoepfler PS,Eisenman RN.Sin meets NuRD and other tails of repression. Cell,1999;99:447-50
    [9] Tyler JK,Kadonaga JT.The "dark side" of chromatin remodeling:repressive effects on transcription.Cell,1999:99:443-6
    [10] Bird AP and Wolffe AP.Methylation-induced repression-belts,braces,and chromatin.Cell,1999;99:451 -454
    [11] Fugmann SD,Lee AI,Shockett PE,Villey IJ and Schatz DG.The RAG proteins and V(D)J recombination:complexes,ends and transposition.Annu Rev Immunol, 2000;18:495-527
    [12]Bassing CH,Swat W and Alt FW.The mechanism and regulation of chromosomal V(D)J recombination.Cell,2002;109:S45-S55
    [13]Krangel MS.Gene segment selection in V(D)J recombination:accessibility and beyond.Nat Immunol.2003;4:624-630
    [14]Bergman Y,Fisher A, Cedar H.Epigenetic mechanisms that regulate antigen receptor gene expression.Cur Opin Immunol.2003;15:176-181
    [15]Mathieu N,Hempel WM,Spicuglia S,Verthuy C,Ferrier P.Chromatin remodeling by the T cell receptor(TCR)-Pgene enhancer during early T cell development:implications for the control of TCR-piocus recombination.J Exp Med,2000; 192:625-636
    [16]Huang J,Durum SK,Muegge K.Cutting edge:histone acetylation and recombination at the TCRylocus follows IL-7 induction.J Immunol. 2001; 167:6073-6077
    [17]Agata Y, Katakai T, Ye SK, Sugai M, Gonda H, Honjo T, Ikuta K, Shimizu A.Histone acetylation determines the developmentally regulated accessibility for T cell receptor-γgene recombination.J Exp Med. 2001; 193:873-879
    [18]McBlane F,Boyes J:Stimulation of V(D)J recombination by histone acetylation. Curr Biol,2000;10:483-486
    [19]Golding A,Chandler S,Ballestar E,Wolffe AP,Schlissel MS:Nucleosome structure completely inhibits in vitro cleavage by the V(D)J recombinase.EMBO J.1999;18:3712-3723
    [20]Kwon J,Morshead KB,Guyon JR,Kingston RE,Oettinger MA:Histone acetylation and hSWI/SNF remodeling act in concert to stimulate V(D)J cleavage of nucleosomal DNA.Mol Cell,2000;6:1037-1048
    [21]Cherry SR and Baltimore D.Chromatin remodeling directly activates V(D)J recombination.Proc Natl Acad Sci USA.1999;96:10788-10793
    [22]Hsieh CL and Lieber MR.CpG methylated minichromosomes become inaccessible for V(D)J recombination after undergoing replication.EMBO J.1992; 11:315-325
    [23]Mathieu N, Hempel W M., Spicuglia S,Verthuy C, and Ferrier P. Chromatin remodeling by the T cell receptor (TCR)-β gene enhancer during early T cell development:implications for the control of TCR-β locus recombination. J. Exp. Med.2000;192(5):625-636
    [24]Sleckman, B.P., C.H. Bassing, C.G. Bardon, A. Okada, B.Khor, J.C. Bories, R. Monroe, and F.W. Alt. Accessibility control of variable region gene assembly during T-cell development. Immunol. Rev. 1998;165:121-130.
    [25]Zhong H,May MJ,Jimi E,Ghosh S:The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-l.Mol Cell,2002;9:625-636
    [26]Huang J, Muegge K. Control of chromatin accessibility for V(D)J recombination by interleukin-7. J Leukoc Biol. 2001 ;69(6):907-11.
    [27]Ye SK,Agata Y,Lee HC,Kurooka H,Kitamura T,Shimizu A,Honjo,Ikuta K:The IL-7 receptor controls the accessibility of the TCRγlocus by Stat5 and histone acetylation.Immunity,2001;15:813-823
    [28]Bergman Y,Mostoslavsky R:DNA demethylation:turning genes on.Biol Chem.1998;379:401-407
    [29]Santoso B, Ortiz B D., and Winoto A. Control of organ-specific demethylation by an element of the T-cell receptor-a locus control region. J Bio Chem. 2000; 275(3): 1952-1958
    [30]Germain RN. T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol. 2002 ;2(5):309-22.
    [31]Zou YR, Sunshine MJ, Taniuchi I, Hatam F, Killeen N, Littman DR. Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage. Nat Genet. 2001 ;29(3):332-6.
    [32]Sawada S., Scarborough, J.D, Killeen, N,Littman, D.R. A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell, 1994 ;77, 917-929 .
    [33]Maldonado, E., Hampsey, M. & Reinberg, D. Repression: targeting the heart of the matter. Cell, 1999;99,455-458 .
    [34]Zou YR, Sunshine MJ, Taniuchi I, Hatam F, Killeen N, Littman DR. Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage. Nat Genet. 2001 Nov;29(3):332-336.
    [35]Tutt Landolfi MM, Scollay R, Parnes JR. Specific demethylation of the CD4 gene during CD4 T lymphocyte differentiation. Mol Immunol. 1997 ;34(1):53-61.
    [36]Santangelo S,Cousins DJ,Winkelmann NE,and Staynov DZ. DNA methylation changes at human Th2 cytokine genes coincide with DNase I hypersensitive site formation during CD4+T cell differentiation.J Immunol.2002;169:1893-1903
    [37] Reiner SL. Epigenetic control in the immune response. Hum Mol Genet. 2005;14:R41-46.
    [38] David Farrar J., Ouyang W, Lohning M, Assenmacher M,Andreas Radbruch, Kanagawa 0, Murphy KM. An instructive component in T helper cell type 2 (Th2) development mediated by GATA-3. J. Exp. Med. 2001;193(5):643-649
    [39] Zhu J, Guo L, Watson CJ., et al. Stat6 is necessary and sufficient for IL-4's role in Th2 differentiation and cell expansion. J Immunol, 2001, 166: 7276-7281
    [40] Reiner SL, Mullen AC, Hutchins AS,et al. Helper T cell differentiation and the problem of cellular inheritance. Immunol Res. 2003;27(2-3):463-468.
    [41] Lee DU,Agarwal S,Rao A. Th2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity. 2002;16(5):649-660
    [42] Makar KW, Wilson CB. DNA Methylation is a nonredundant repressor of the Th2 effector program. J Immunol, 2004;173: 4402-4406.
    [43] Mullen AC, Hutchins AS, High FA,et al. Hlx is induced by and genetically interacts with T-bet to promote heritable T(H)1 gene induction. Nat Immunol. 2002;3(7):652-658.
    [44] Mullen AC, High FA, Hutchins AS, et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science. 2001;292(5523): 1907-1910.
    [45] Zhu J, Min B, Hu-Li J,et al. Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. Nat Immunol. 2004 Nov;5(11):1157-1165.
    [46] Yamashita M, Ukai-Tadenuma M, Kimura M, et al. Identification of a conserved GATA3 response element upstream proximal from the interleukin-13 gene locus. J Biol Chem, 2002,277,42399-42408
    [47] Yamashita M, Ukai-Tadenuma M, Miyamoto T, Sugaya K, Hosokawa H, Hasegawa A, Kimura M, Taniguchi M, DeGregori J, Nakayama T. Essential role of GATA3 for the maintenance of type 2 helper T (Th2) cytokine production and chromatin remodeling at the Th2 cytokine gene loci. J Biol Chem. 2004 Jun 25;279(26):26983-26990.
    [48] Hutchins AS, Mullen AC, Lee HW, Sykes KJ, High FA, Hendrich BD, Bird AP,and Reiner SL. Gene silencing quantitatively controls the function of a developmental trans-activator. Mol Cell. 2002;10(l):81-91.
    [49] Lee HJ,et al.GATA-3 induces T helper cell type2(Th2) cytokine expression and chromatin remodeling in committed Th1 cells.J Exp Med,2000;192:105-115
    [50] Makar KW,P(?)rez-Melgosa M,Shnyreva M,Weaver WM,Fitzpatrick DR,and Wilson CB. Active recuitment of DNA methyltransferases regulates IL-4 in thymocytes and T cells. Nat Immunol.2003;4:1183-1190
    [51] Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, Perez-Melgosa M, Sweetser MT, Schlissel MS, Nguyen S, Cherry SR, Tsai JH, Tucker SM, Weaver WM, Kelso A, Jaenisch R, and Wilson CB. A critical role for Dnmt1 and DNA methylation in T cell development,function and survival. Immunity.2001; 15(5):763-774
    [52] Guo L, Hu-Li J, Zhu J, Watson CJ, Difilippantonio MJ, Pannetier C, Paul WE. In TH2 cells the Il4 gene has a series of accessibility states associated with distinctive probabilities of IL-4 production. Proc Natl Acad Sci U S A. 2002;99(16):10623-10628.
    [53] Baguet A and Bix M. Chromatin landscape dynamics of the 114-1113 locus during T helper 1 and 2 development. PNAS .2004; 101(31):11410-11415
    [54] Guo L, Hu-Li J, Paul WE. Probabilistic regulation of IL-4 production in Th2 cells: accessibility at the Il4 locus. Immunity. 2004 ;20(2):193-203.
    [55] Lee DU and Rao A.Molecular analysis of a locus control region in the T helper 2 cytokine gene clusters target for STAT6 but not GATA3. Proc Natl Acad Sci U S A.2004;101:16010-16015
    [56] Omori M, Yamashita M, Inami M, Ukai-Tadenuma M, Kimura M, Nigo Y, Hosokawa H, Hasegawa A, Taniguchi M and Nakayama T. CD8 T Cell-specific downregulation of histone hyperacetylation and gene activation of the IL-4 gene locus by ROG, repressor of GATA. Immunity, 2003; 19(2); 281-294
    [57] Young HA, Ghosh P, Ye J, Lederer J, Lichtman A, Gerard JR, Penix L, Wilson CB, Melvin AJ, McGurn ME, Differentiation of the T helper phenotypes by analysis of the methylation state of the IFN-gamma gene. J Immunol. 1994 15;153(8):3603-3610.
    [58] Yano S, Ghosh P, Kusaba H, Buchholz M, and Longo DL. Effect of promoter methylation on the regulation of IFN-γ gene during in vitro differentiation of human peripheral blood T cells into a Th2 population. J Immunol, 2003, 171: 2510-2516.
    [59] Winders BR, Schwartz RH, Bruniquel D. A distinct region of the murine IFN-gamma promoter is hypomethylated from early T cell development through mature naive and Thl cell differentiation, but is hypermethylated in Th2 cells. J Immunol. 2004;173(12):7377-7384.
    [60]Bird A. Il2 transcription unleashed by active DNA demethylation. Nat Immunol. 2003 ;4(3):208-209.
    [61]Bruniquel D, Schwartz RH. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol. 2003 Mar;4(3):235-240.
    [62]Cote-Sierra J, Foucras G, Guo L, Chiodetti L, Young HA, Hu-Li J, Zhu J, Paul WE. Interleukin 2 plays a central role in Th2 differentiation. Proc Natl Acad Sci U S A.2004;101(11):3880-3885.
    [63]Kang KH, Im SH. Differential regulation of the IL-10 gene in Thl and Th2 T cells. Ann N Y Acad Sci. 2005 ;1050:97-107.
    [64]Muegge K, Young H, Ruscetti F, Mikovits J. Epigenetic control during lymphoid development and immune responses: aberrant regulation, viruses, and cancer. Ann N Y Acad Sci. 2003 ;983:55-70.
    [65]Thomas RM,Gao L,Wells AD.Signals from CD28 induce stable epigenetic modification of the IL-2 promoter.J Immunol.2005,174:4639-4646

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700