非线性光干涉测量微小振动方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振动测量在生产和科学研究中有着重要的作用。近年来,随着微机械技术和精细加工工艺的飞速发展及大量应用,有关物体的微小位移与微小振动精确测量的研究工作引起人们的广泛重视。光学检测法作为一种重要的非接触式无损测量技术,具有结构简单、精度高、稳定好等优点,在计量测试技术领域中一直占据主导地位。光学测量方法中,以干涉法最为常见和广泛,而利用光折变晶体干涉测量是近年来发展起来的一种新技术。
     本文详细介绍了微小振动的各种测量方法,分析了光折变晶体特性,如光折变效应,二波耦合及能量放大,四波耦合及相位共扼原理。晶体光折变效应是产生二波耦合作用的基础,这一部分的研究为探索利用光折变晶体二波耦合进行微振动探测提供了充实的理论基础。
     本文重点提出了利用BSO晶体二波耦合原理测量微小振动的新方法。设计了实验光路图,成功搭建起实验系统,并对BSO晶体衍射效率和响应时间进行了实验研究,重点对两入射光波的夹角、光强比、偏振态、总入射光强及外加电场对二波耦合强度的影响进行了实验研究,同时也分析了影响两波耦合的其他因素,如光扇和旋光效应等,并进行了理论验证。所获得的光折变晶体的特性将为有效检测微振动提供重要的参考。
     本文最后对整个研究工作进行了总结,指出了今后的研究重点。
The importance of vibration detection in industrial production and science investigation has been accepted widely, and the measurement of vibration has become the significant research problem in engineering technology. Recently, with the rapid development of micro-electro-mechanical technology and precision machining technology and many important applications, small displacement and small vibration related with objects are interested by academia and industry. Optical detection is a non-touch and scatheless measurement technology, it also has the advantage of simple structure, high accuracy and perfect stability, so it is always in the guiding position in metering. In optical detection meathods, interferometry is most used widely and the meathod using photorefractive crystal is a novel technique.
     In this paper, the characters of the photorefractive crystals are studied, including the principle of photorefractive effect,two-wave mixing and four-wave mixing. Photorefractive effect is the base of two-wave mixing. The research in this chapter provides substantial theories for the microvibration detection using interference of nonlinear optics.
     Further more, the method of microvibration detection by optical interferometry is investigated, the scheme is presented to dispose the result of the detection of displacement and frequency, the effects of microvibration detection by optical interferometry are investigated experimentally.
     At last, all the works above are summarized and the emphases in future investigation are also put forward.
引文
[1]钱梦騄,激光超声学的若干进展[J].声学技术,2002,21(1):19-24.
    [2]孔令剑等,激光激发超声波的新方法研究[J].光子学报,2006,35(1):20-23.
    [3]苏琨等.激光致声技术的研究[J].光电工程,2002,29(5):68-72.
    [4]钱梦騄,激光超声检测技术及其应用[J].上海计量测试,2003,30(1):4-7.
    [5]Shi Chang Wooh,et al.Behaviot of laser-in induced ultrasonic waves radiated from a wet surface,Part Ⅰ:Theory,Part Ⅱ:Experimentalwork[J].J.Appl.hys.,2001,89(6):3469-3477,3478-3485.
    [6]尚志远等,光致声波及其应用[J].物理,1994,23(4):227-230
    [7]Tam A C,et al,Phys Rev Lett,1984,53(6):560.
    [8]曾宪林等.激光超声技术及其在无损检测中的应用[J].激光与红外,2002,32(4):224-227.
    [9]施德恒等.激光超声技术及其在无损检测中的应用概况[J].激光杂志,2004,25(5):1-4.
    [10]Max born,emil wolf.杨葭荪译.光学原理[M].北京:电子工业出版社,2006.289-298
    [11]Cand A,Monchalin J P.Detection of in-plane and out-of-plane ultrasonic displacements by a two-channel confocal fabry-perot interferometer.Appl Phys Lett,1994,64(4):414.
    [12]E.F.Lafond et al.Photorefractive interferometers for ultrasonic measurements on paper,Ultrasonics,2002,(40):1019-1023.
    [13]Marvin B.Klein et al.Homodyne detection of ultrasonic surface displacements using two-wave mixing in photorefractive polymers,Optics Communications,1999(162):79-84.
    [14]石顺祥等,非线性光学[M].西安:西安电子科技大学出版社,2003.268-298.
    [15]Luis Mosquera et al.Real-Time Measurement of Nanometer-Order Amplitude Transverse Vibrations Using The Photo-Emf Effect In Photoconductive Materials,Optics- XXV Enfmc Annals-2002.
    [16]D.D.Nolte et al.Enhanced responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts,OPTICS LETTERS 1999,24(5):342-344.
    [17]苏琨等.基于激光超声的微裂纹检测技术的研究[J].光学技术,2002,28(6):518-519,522.
    [18]尹向宝,激光超声及其在无损检测中的应用[J].煤炭技术,2005,24(9):4-6.
    [19]M H O BRIEN et al.Analysis of as-machined nuclear geaphite parted using conventional and laser ultrasonic techniques[J].J.Nuclear Science and Technology.1992,29(4):378-387.
    [20]章琳等,以激光超声波技术检测飞机组合部件[J].激光与光电子学进展,2000,(8):57-58.
    [21]郑中兴,激光超声检测技术在材料评价上的应用与发展[J].无损探伤,2002,26(1):1-4.
    [22]J.Jersch,et al,Derect Scanning tunneling microscope detection of laser induced ultrasonic pulases with nanometer resolution,Rev,Sci,Instr,1999,20(12):4579 - 4581.
    [23]Kruger R et al,Photoacousfic Ultrasound:Pulse Production and detection in 0.5%Liposyn,Medical Physics,1994,21(7):1179-1184.
    [24]钱盛友等,光声结合用于生物组织成像的研究进展[J].激光生物学报,2000,9(3):228-231.
    [25]王亚非,激光扫描声学显微镜光学系统的设计[J].光学技术,1998,(5):73-75,81.
    [26]马勇等,超谐波声场及其生物组织成像的理论及实验研究[J].声学学报,2006,31(5):433-437.
    [27]马青玉等,生物组织成像中用反相位脉冲技术提高二次谐波信噪比的研究[J].应用声学,2006,25(3):145-149.
    [28]李铭华、杨春辉等,光折变晶体材料科学导论,北京:科学出版社,2003年2月
    [29]张克从、王希敏等,非线性光学晶体材料科学,北京:科学出版社,2005年1月
    [30]鲍信先、李淳飞,有机光折变材料的新进展,物理,1997,26(10):589-595
    [31]Kenji Yokoyama,Koichi Arishima,Toshiyuki Shimada and Ken Sukegawa:Photorefractive Effect in a Polymer Molecularly Doped with Low-Molecular-Weight Compounds,Jpn.J.Appl.Phys.,1994,33(22):1029-1033.
    [32]Yue Zhang,Yiping Cui,and Paras N.Prasad:Obeservation of photorefractivity in a fullerene-doped polymer composite,Phys.Rev.B,1992,46(15):9900-9902.
    [33]W.E.Moerner,S.M.Silence,F.Hache,and G.C.Bjorklund:Orientationally enhanced photorefractive effect in polymers,J.Opt.Soc.Am.B,1994,11(2):320-330.
    [34]M.E.Orczyk,Bogdan Swedek,Jaroslaw Zieba,and Paras N.Prasad:Enhanced photorefractive performance in a photorefractive polymeric composite,J.Appl.Phys.,1994,76(9):4995-4998.
    [35]Martin Liphardt,Arosha Ghosal,Goonesekera,Brian E.Jones,Stephen Ducharme,James M.Takacs,Lei Zhang:High-Performance Photorefractive Polymers,Science,1994,263:367-369.
    [36]Yue.Zhang,Saswati Ghosal,Martin K.Casstevens,and Ryszard Burzynski:Bifunctional chromophore for photorefractive applications,Appl.Phys.Lett,1995,66(3):256-258.
    [37]Y.M.Chen,Z.H.Peng,W.K.Chan,and L.P.Yu:New photorefractive polymer based on multifunctional polyurethane,Appl.Phys.Lett.,1994,64(10):1195-1197.
    [38]M.D.Ewbank,R.R.Neurgaonkar,W.K.Cory,Jack Feinberg:Photorefractive properties of strontium-barium niobate,J.Appl.Phys.,1987,62(2):374-380.
    [39]R.A.Vazquez,M.D.Ewbank,R.R.Neurgaonkar:Photorefractive properties of doped strontium-barium niobate,Optics Comm.,1991,80(3,4):253-258.
    [40]M.D.Ewbank,R.A.Vazquez,R.R.Neurgaonkar,and Frederick Vachss:Contradirectional two-beam coupling in absorptive photorefractive materials:application to Rh-doped strontium barium niobate(SBN:60),1995,J.Opt.Soc.B,12(1):87-98.
    [41]K.Buse,A.Gerwens,S.Wevering,and E.Kratzig:Charge-transport parameters of photorefractive strontium-barium niobate crystal doped with cerium,J.Opt.Soc.Am.B,1998,15(6):1674-1677
    [42]王锐,刘欣荣,徐悟生,徐玉恒,Ce:Mn:SBN晶体的生长及位相共轭效应的研究,压电与声光,1999,21(5):411-414.
    [43]杨春晖,侯丛福,徐悟生,徐玉恒,王继扬,Ce:Mn:SBN晶体的生长及其自泵浦位相共轭效应的研究,高技术通讯,2000年1月:93-95.
    [44]Koichi Sayano,Amnon Yariv,Ratnakar R.Neurgaonkar:Photorefractive gain and response time of Cr-doped Strontium barium niobat,Appl.Phys.A,1994,59:579-582.
    [45]Y.Tomita,A.Suzuki.,Photorefractive proerties of Cr-doped strontium-barium niobate at 514.5nm and 623.Snm:A comparative study,Appl.Phys.A,1994,59:579-582.
    [46]赵建林,吴建军,王彬等,SBN:Cr晶体用于光学图像边缘增强的实验研究,光学学报,2001,21(11):1343-1346.
    [47]J.Zhao,B.Wang,J.Wu,D.Yang,S.Kapphan,R.Pankrath,Investigation of Photorefractive Two-Wave Coupling in Cr-doped Strontium Barium Niobate(SBN:Cr) Crystal,Chinese Physics,2001,10(8):739-742.
    [48]T.Woike:Photorefractive properties of Cr-doped Sr_(0.61)Ba_(0.39)Nb_2O_6 related to crystal purity and doping concentration,App.Phys.B.2001,72:661-666.
    [49]Xiaonong Shen,Jianhua Zhao,Ruibo Wang,Pochi Yeh,Shujun Zhang and Huanchu Chen:Photorefractive properties of Cu-doped KNSBN crystal with fluorine replacing oxygen,Opt.Lett,1998,23(16):1253-1255.
    [50]胡居广等,光折变晶体Cu:KNSBN中的浅能级中心,光学学报,2000,21(2):228-231.
    [51]梁宝来等,Ce:KNSBN光折变晶体光栅衍射特性研究,光学学报,2000,20(8):1021-1025.
    [52]姜永远等,掺杂KNSBN晶体各向异性自衍射的耦合波分析,光学学报,2001,21(8):909-912.
    [53]刘思敏等,光折变非线性光学及其应用.北京:科学出版社,2004,231-233.
    [54]A.Ashkin,G.D.Boyd,J.M.Mziedzic,R.G.Smith,A.A.Ballman,J.J.Levinstein,K.Nassau:Optically induced refractive index inhomogeneities in LiNbO_3 and BaTiO_3,APPL.Phys.Lett.,1966,9:72-74.
    [55]F.S.Chen,J.T.Lamanchia,D.B.Fraser:Holographic storage in Lithium niobate Appl.Phys.Lett.,1968,13:223-225.
    [56]D.L.Staebler,J.J.Amode:Coupled-wave analysis of holographic storage in LiNbO_3,J.Appl.Phys.,1972,43(3):1042-1049.
    [57]N.V.Kukhtarev,V.B.MARKOV,S.G.Odulov,M.S.oskin,V.L.Vinetskii:Holographic storage in electrooptic crystals.I.Steady state,Ferroelectrics,1979,22:949-960.
    [58]J.Feinberg,D.Heinman,A.R.Tanguay,Jr.R.W.Hellwarth:Photorefractive effects and light-induced charge migration in barium titanate,J.Appl.Phys.,1980,51(3):1297-1305.
    [59]刘思敏等,光折变非线性光学及其应用.北京:科学出版社,2004,7-10.37-64.
    [60]石顺祥等,非线性光学.西安:西安电子科技大学出版社,2003,391-405.
    [61]钱士雄等,非线性光学原理与进展.上海:复旦大学出版社,2001,53-69.
    [62]Pochi Yeh,Two-wave Mixing in Nonlinear Media,IEEE journal of quantum electronics,VOL.25,NO.3,March,1989:484-517.
    [63]R.A.Vazquez,F.R.Vachss,R.R.Neurgaonkar,et al.Large photorefractive coupling coefficient in a thin cerium-doped strontium barium niobate crystal,J.Opt..Am.B.1993,8(9):1932.
    [64]H.Y.Wang,et al,study of two-wave coupling in Cu:KNSBN using red light Opt.Comm..1995,115(5-6):563.
    [65]岳学峰等,光折变材料及其应用,济南:山东科学技术出版社,1994,31-32.
    [66]雷和平,张斌,冯其波,激光超声检测方法及应用,北京:光学技术,2009-3
    [67]M.Sonwbell,M.Horowitz.and B.Fischer,Dynanics of multiple two-wave mixing and fanning in photorefractive materials J.Opt.Soc.Am.B,1994,11(10):1972
    [68]谢克诚,硅酸铋晶体的旋光特性,重庆:压电与声光,1991.2,13(1):22-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700