大鼠海马脑片星形胶质细胞线性膜电导及细胞间电偶联特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:大鼠海马脑片星形胶质细胞与NG2+胶质细胞电生理特性及形态学的比较研究
     星形胶质细胞和NG2+胶质细胞是哺乳动物中枢神经系统中主要的两类神经胶质细胞。NG2+胶质细胞过去一直被认为是少突胶质细胞的前体细胞。但随着其特异性识别抗体NG2的发现,该类细胞被划分为第四类神经胶质细胞。NG2+胶质细胞在成年脑内广泛分布,具有不同于星形胶质细胞的独特的电生理学特性。本研究以P14-P25大鼠海马CA1区放射层胶质细胞为研究对象,通过电生理学与免疫组织化学方法,系统地比较了星形胶质细胞与NG2+胶质细胞在形态学和电生理学特性上的差别,并且详细描述了一种由这两类胶质细胞构成的胞体紧密接触的空间排布关系,为以后研究这两种胶质细胞的世系来源及发育分化提供依据。
     第二部分:大鼠海马脑片星形胶质细胞胞体电压钳误差的直接测量
     全细胞电压钳技术近年来被广泛应用于脑片星形胶质细胞的电生理研究。并且,这些研究显示海马区成熟星形胶质细胞具有线性电流-电压关系和非常低的膜阻抗。这一过低的膜阻抗必然导致大的钳制误差的存在。量化这一电压钳误差,对于判断星形胶质细胞线性膜电导的“真伪”至关重要。我们首次利用双电极全细胞记录技术在单一星形胶质细胞胞体上直接测量到电压钳误差,平均误差为73.1%;全细胞电容补偿及80%串连电阻补偿后,误差仍高达45.7%。因此,我们通常所记录到的线性膜电导实质上是在未激活电压门控离子通道情况下的静息膜电导。此外,由于全细胞电压钳技术无法对海马脑片星形胶质细胞进行良好钳制,应该注意该技术在星形胶质细胞上应用的局限性。
     第三部分:大鼠海马脑片生理及缺血条件下星形胶质细胞间电偶联特性的研究
     哺乳动物脑内原浆型星形胶质细胞通过缝隙连接形成广泛偶联。然而,在生理及缺血情况下,在体星形胶质细胞间缝隙连接电偶联的生物物理特性并不清楚。首先,我们通过细胞内注入Biocytin的方法,分析研究大鼠海马CA1放射层星形胶质细胞合胞体的形态学,结果显示一个星形胶质细胞平均可与11个星形胶质细胞形成直接接触偶联。这11个偶联细胞与记录细胞的胞体间距平均为45μm。其次,我们通过双电极电压钳记录技术对细胞间的电偶联进行测量,结果显示直接接触偶联的两个星形胶质细胞间均可测量到双向的、电压非依赖性的跨缝隙连接电流。而在星形胶质细胞-NG2、星形胶质细胞-中间神经元、NG2-NG2以及中间神经元之间则检测不到这种电流。进一步研究显示,星形胶质细胞间的电偶联率在发育阶段P14组大鼠变异明显(0.5%-12.4%,平均为3.6%);而在发育成熟的P21组大鼠,则明显趋于一致(0.18%-3.9%,平均为1.6%)。并且,只有在P21组大鼠,电偶联率随着细胞间距的增加而呈现指数下降规律。在脑片缺血研究中发现,短时程OGD不影响电偶联率;细胞外pH6.4的酸性条件对电偶联率起迟发的抑制作用;非常有趣的是,酸化的OGD(OGD+pH6.4)对电偶联率呈现明显加速的抑制作用。综上所述,在大鼠海马CA1放射层区域,相当低的电偶联率提示星形胶质细胞间的缝隙连接对K~+的空间缓冲作用非常微弱;脑缺血并发生酸中毒时,星形胶质细胞间缝隙连接通讯会受到严重抑制。
Astrocytes and NG2 glia are two major glial types in the mammalian central nervoussystem (CNS). NG2+ glial cells, previously known as oligodendrocyte precursor cells(OPCs), are distinct by their proteoglycan NG2 expression and have now been classified asthe fourth members in the glial family. They have unique electrophysiological propertiesand extensively distribute in adult brain. Here we systematically studied the difference between astrocytes and NG2+glial cells in basal electrophysiological properties andmorphology. We also described a frequently observed space arrangement with somataphysically attached between astrocytes and NG+ gial cells in rat hippocampal CA1 regionwhich may indicate a lineage relationship between these two types of cells.
     Over the last twenty years, the somatic whole-cell voltage clamp technique has beenwidely used to investigate the electrophysiology of astrocyte in situ. Hippocampalastrocytes showing a linear current-voltage (I-V) relationship, or electrophysiologicallypassive K~+ membrane conductance and a very low membrane resistance have been reportedby employing this approach. However, the somatic votage clamp will poorly control the membrane potential due to a very low membrane resistance. To quantify this measurementerror is crucial to help us to understand the nature of passive conductance. Here, we directlyquantify the error in the voltage clamp measurement of astrocytes in situ using dual patchwhole-cell recordings from single astrocytes in hippocampal slices. The average voltageescape was 73.1%. However, the compensating for access resistance by 80% failed todecrease the deviation between the recorded membrane potential and the voltage commandsignificantly and the average voltage escape was still as high as 45.7%. Thus, wedemonstrate for the first time that the passive conductance is a resting conductance which isinduced over a narrow range of membrane potentials around the astrocyte restingmembrane potentials. Furthermore, this measurement error indicates that the limitations ofvoltage clamp study on astrocytes in situ should be paid more attention to.
     Mammalian protoplasmic astrocytes are coupled extensively through gap junctionchannels in vivo. However, the biophysical characterizations of gap junction channelsunder physiological and ischemic conditions are not fully understood. Starting with amorphometrical analysis of astrocytic syncytia in rat hippocampal CA1 stratum radiatumusing intracellular loading of biocytin, we show that on average each astrocyte directlycoupled to another 11 astrocytes 45μm apart. In dual voltage clamp recording,voltage-independent and bidirectional transjunctional currents were always measured fromthe directly coupled astrocytes, but not from astrocyte-NG2 gila or astrocyte-interneuronpairs. The electrical coupling ratio varied significantly among astrocytes in the developingpostnatal day 14 (P14) rats (0.5%-12.4%, mean=3.6%), but became more constant in themature P21 rats (0.18%-3.9%, mean=1.6%). Only in the mature rats, the coupling ratiodeclined exponentially with the increasing pair distance. Electrical coupling was notaffected by a short-term oxygen-glucose deprivation (OGD) treatment, but inhibited in adelayed fashion by the acidic extracellular pH of 6.4. Strikingly. acidic OGD (pH 6.4), acondition that better represents the cerebral ischemia in vivo, accelerated the inhibition ofelectrical coupling markedly. Altogether, a rather low effective electrical coupling ratiosuggests that astrocytic gap junctions conduct little K~+ spatial buffering currents underphysiological condition, and astrocyte gap junctional communication should be severelyaffected as the consequence ofa synergy effect of OGD and acidosis in ischemic brain.
引文
[1] Nishiyama A,Watanabe M, Yang Z, Bu J. 2002, Identity, distribution, and evelopment of polydendrocytes: NG2-expressing glial cells. J Neurocytol 1, 437-455.
    [2] Dawson MR, Polito A. Levine JM, Reynolds R, 2003, NG2-expressing glial rogenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24:476-488.
    [3] Wallraff A, Odermatt B, Willecke K, Steinhauser C. Distinct types of astroglia cells in the hippocampus differ in gap junction coupling. Glia, 2004, 48(1), 36-43.
    [4] Mtthias K, Kirchhoff F, Seifert G, Huttmann K, Matyash M, Kettenmann H, Steinhauser C. Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci., 2003, 23(5), 1750-8.
    [5] Peters A. A fourth type of neuroglial cell in the adult central nervous system. J Neurocytol.. 2004, 33(3), 345-57.
    [6] Butt AM, Kiff J, Hubbard P, Berry M. Synantocytes: new functions for novel NG2 expressing gila J Neurocytol., 2002, 31(6-7), 551-65.
    [7] Schools GP. Zhou M, Kimelberg HK, 2006, Development of gap junctions in hippocampal astrocytes: evidence that whole-cell electrophysiological phenotype is an intrinsic property of the individual cell. J Neurophysiol 96, 1383-1392.
    [8] K(?)rad(?)ttir R. Attwell D, 2006, Combining patch-clamping of cells in brain slices with immunocytochemical labeling to define cell type and developmental stage. Nature Protocols 1, 1977-1986.
    [9] Zhou M, Schools GP, Kimelberg HK, 2006, Development of GLAST(+) astrocytes and NG2(+) glia in rat hippocampus CA1: mature astrocytes are electrophysiological passive. J Neurophysiol 95, 134-143.
    [10] Bushong EA, Martone ME, Jones YZ, Ellisman MH, 2002, Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22,183-192.
    [11] Bushong EA, Martone ME, Ellisman MH, 2004, Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Devi Neurosci 22, 73-86.
    [12] Ong and Levine, 1999, A light and electron microscopic study of NG2 chondroitin sulfate proteglycan-positive oligodendrocyte precursor cells in the normal and kainite-lesioned rat hippocampus. Neuroscience 92, 83-95.
    [13] Zhu X, Bergles DE, Nishiyama A, 2008, NG2 cells generate both oligodendrocytes andgray matter astrocytes. Development 135, 145-157.
    [14] Ka'rado'ttir R, Hamilton NB, Bakiri Y, Attwell D, 2008. Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat Neurosci 11,450-456.
    [15] Ge WP, Zhou W, Luo Q, Jan LY, Jan YN. 2009. Dividing glial cells maintain differentiated properties including complex morphology and functional synapses. PNAS 106, 328-333.
    [16] Jan YN, Jan LY, 1998, Asymmetric cell division. Nature 392, 775-778.
    [17] Wren D, Wolswijk G, NobleM, 1992, In vitro analysis of the origin and maintenance of O-2Aadult progenitor cells. J Cell Biol 116, 167-176.
    [18] Temple S, Raff MC, 1986, Clonal analysis of oligodendrocyte development in culture: evidence for a developmental clock that counts cell divisions. Cell 44,773-779.
    [19] Kukley M, et al., 2008, Glial cells are born with synapses. FASEB J 22, 2957-2969.
    [1] Steinhauser C, Berger T, Frotscher M, Kettenmann H 1992 Heterogeneity in the Membrane Current Pattern of Identified Glial Cells in the Hippocampal Slice. Eur J Neurosci 4. 472-484.
    [2] Bergles DE. Jahr CE 1997 Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19. 1297-1308.
    [3] Jabs R, Paterson IA, Walz W 1997 Qualitative analysis of membrane currents in glial cells from normal and gliotic tissue in situ: down-regulation of Na+ current and lack of P2 purinergic responses. Neuroscience 81, 683-692.
    [4] D'Ambrosio R, Wenzel J. Schwartzkroin PA, McKhann GM, 2nd. Janigro D 1998 Functional specialization and topographic segregation of hippocampal astrocytes. J Neurosci 18,4425-4438.
    [5] Kang J, Jiang L, Goldman SA, Nedergaard M 1998 Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1, 683-692.
    [6] Zhou M, Schools GP, Kimelberg HK 2006 Development of GLAST(+) astrocytes and NG2(+) glia in rat hippocampus CA1: mature astrocytes are electrophysiologically passive. J Neurophysiol 95, 134-143.
    [7] Kuffler SW. Nicholls JG. Orkand RK 1966 Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29, 768-787.
    [8] Smith TG, Lecar H, Redman SJ and Gage PW 1984 Voltage and patch clamping with microelectrodes. American Physiological Society, Bethesda, Maryland.
    [9] Spruston N, Jaffe DB, Williams SH and Johnston D 1993 Voltage- and space- clamp errors associated with the measurement of electrotonically remote synaptic events. J Neuro-physiol. 70, 781-802.
    [10] Armstrong CM and Gilly WF 1992 Access resistance and space clamp problems associated with whole-cell patch clamping. Methods Enzymol 207, 100-122.
    [11] Johnston D and Brown TH 1983 Interpretation of voltage-clamp measurements in hippocampal neurons. J Neurophysiol. 50, 464-486.
    [12] Hille B 2001 Ion channels of excitable cells: Sinauer, Sunderland, Mass.
    [13] Verkhratsky A, Steinhauser C 2000 Ion channels in glial cells. Brain Res Brain Res Rev 32, 380-412.
    [14] Olsen M, Sontheimer H 2005 Neuroglia: Chapter 9, Voltage-gated ion channels in glia cells. : Oxford University Press.
    [15] Zhou M, Kimelberg HK 2000 Freshly isolated astrocytes from rat hippocampus show two distinct current patterns and different [K(+)](o) uptake capabilities. J Neurophysiol 84, 2746-2757.
    [16] Amzica F, Massimini M 2002 Glial and neuronal interactions during slow wave and paroxysmal activities in the neocortex. Cereb Cortex 12, 1101-1113.
    [17] Kimelberg HK 2007 Supportive or information-processing functions of the mature protoplasmic astrocyte in the mammalian CNS? A critical appraisal. Neuron Glia Bio13, 181-189.
    [18] Ransom CB, Sontheimer H 1995 Biophysical and pharmacological characterization of inwardly rectifying K+ currents in rat spinal cord astrocytes. J Neurophysiol 73,333-346.
    [19] Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL. Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA 2008 A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28, 264-278.
    [20] Butt AM, Kalsi A 2006 Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J Cell Mol Med 10,33-44.
    [21] Olsen M, Higashimori H, Campbell S, Hablitz J, Sontheimer H 2006 Functional expression of Kir4.1 channels in spinal cord astrocytes. Glia 53, 516-528.
    [22] Barres BA. Koroshetz WJ, Chun LLY Corey DP 1990 Ion channel expression by white matter glia: the type-1 astrocyte. Neuron 5, 527 - 544.
    [23] Takumi T, Ishii T, Horio Y, Morishige K. Takahashi N, Yamada M, Yamashita T. Kiyama H. Sohmiya K, Nakanishi S and Kurachi Y 1995 A novel ATP-dependent inward rectifier potassium channel expressed predominantly in glial cells. J BiolChem270. 16339-16346
    [24] Poopalasundaram S, Knott C. Shamotienko OG Foran PG Dolly JO, Ghiani CA,Gallo V and Wilkin GP 2000 Glial heterogeneity in expression of the inwardly rectifying K+ channel, Kir4.1, in adult rat CNS. Glia 30, 362-372
    [25] Kalsi AS, Greenwood K, Wilkin G, Butt AM 2004 Kir4.1 expression by astrocytes and oligodendrocytes in CNS white matter: a developmental study in the rat optic nerve. J. Anat. 204, 475-485.
    [26] Kim D 2005 Physiology and pharmacology of two-pore domain potassium channels. Curr Pharm Des 11, 2717-2736.
    [27] Zhou M, Xie MJ, Xu GJ, Zhang XX, Schools GP, Kimelberg HK, Chen HJ 2009 TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices. J Neurosci (under revision).
    [1] Orkand RK, Nicholls JG Kuffler SW, 1966. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29, 788-806.
    [2] Kettenmann H, Ransom BR, 1988, Electrical coupling between astrocytes and between oligodendrocytes studied in mammalian cell cultures. Glia 1, 64-73.
    [3] Ransom BR, Kettenmann H, 1990, Electrical coupling, without dye coupling, between mammalian astrocytes and oligodendrocytes in cell culture. Glia 3, 258-266.
    [4] Giaume C, Fromaget C, El Aoumari A, Cordier J, Glowinski J, Gros G, 1991, Gap junctions in cultured astrocytes, single channel currents and characterization of channel-forming protein. Neuron 6, 133-143.
    [5] Dermietzel R, Hertzberg EL, Kessler JM, Spray DC, 1991, Gap junctions between cultured astrocytes, immunocytochemical, molecular, and electrophysiological analysis. J Neurosci 11, 1421-1432.
    [6] Bushong EA, Martone ME, Jones YZ, Ellisman MH, 2002, Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22,183-192.
    [7] Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, 2008, A transcriptome database for astrocytes, neurons, and oligodendrocytes, a new resource for understanding brain development and function. J Neurosci 28, 264-78.
    [8] Kimelberg HK, Barron KD, Bourke RS, Nelson LR, Cragoe EJ, 1990, Brain anti-cytoxic agents. Prog Clin Biol Res 361, 363-85.
    [9] Zhang H, Schools GP, Lei T, Wang W. Kimelberg HK, Zhou M, 2008, Resveratrol attenuates early pyramidal neuron excitability impairment and death in acute rat hippocampal slices caused by oxygen-glucose deprivation. Experimental Neurology 212,44-52.
    [10] Blanc EM, Bruce-Keller AJ, Mattson MP, 1998,. Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress induced disruption of Ca2+ homeostasis and cell death. J Neurochem 70, 958-970.
    [11] Siushansian R, J.F. Bechberger JF, Cechetto DF, Hachinski VC, Naus CC, 2001, Connexin43 null mutation increases infarct size after stroke, J Comp Neurol 440, 387-394.
    [12] Nakase T, Fushiki S, Naus CC, 2003, Astrocytic gap junctions composed of connexin 43 reduce apoptotic neuronal damage in cerebral ischemia. Stroke 34, 1987-1993.
    [13] Rawanduzy A, Hansen A, Hansen TW, Nedergaard M, 1997, Effective reduction of infarct volume by gap junction blockade in a rodent model of stroke. J Neurosurg 87, 916-920.
    [14] Cotrina ML, Kang J, Lin JH, Bueno E, Hansen TW, He L, Liu Y, Nedergaard M, 1998, astrocytic gap junctions remain open during ischemic conditions, J Neurosci 18,2520-2537.
    [15] Lin JH, Weigel H, Cotrina ML, Liu S, Bueno E, Hansen AJ, Hansen TW, Goldman S, Nedergaard M, 1998, Gap-junction-mediated propagation and amplification of cell injury. Nat Neurosci 1, 494-500.
    [16] Frantseva MV, Kokarovtseva L, Perez Velazquez JL, 2002, Ishemia-induced brain damage depends on specific gap-junctional coupling. J Cereb Blood Flow Metab 22,453-462.
    [17] Ogata K, Kosaka T, 2002, Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neurosci 113, 221-233.
    [18] Nagy JI, Rash JE, 2000, Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Brain Res Rev 32, 29-44.
    [19] Rash JE, Yasumura T, Davidson KG Furman CS, Dudek FE, Nagy JI, 2001, Identification of cells expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in gap junctions of rat brain and spinal cord. Cell Commun Adhes 8, 315-320.
    [20] Revilla A, Bennett MVl, Barrio L, 2000, Molecular determinants of membrane potential dependence in vertebrate gap junction channels. Proc Natl Acad Sci USA, 97, 14760-5.
    [21] Valiunas V, Manthey D, Vogel R, Willecke K, Weingart R, 1999; Biophysical properties of mouse connexin30 gap junction channels studied in transfected human HeLa cells. J Physiol, Lond, 519, 631-644.
    [22] Bergles DE, Roberts JDB, Somogyi P, Jahr CE, 2000, Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187-191.
    [23] Schools GP, Zhou M, Kimelberg HK, 2006, Development of gap junctions in hippocampal astrocytes: evidence that whole-cell electrophysiological phenotype is an intrinsic property of the individual cell. J Neurophysiol 96, 1383-1392.
    [24] Nishiyama A, 2007, Polydendrocytes: NG2 cells with many roles in development and repair of the CNS. Neuroscientist 13, 62-76.
    [25] Bushong EA, Martone ME, Ellisman MH, 2004, Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Devi Neurosci 22, 73-86.
    [26] Sontheimer H, Waxman SG, Ransom BR, 1991, Relationship between Na+ current expression and cell-cell coupling in astrocytes cultured from rat hippocampus. J Neurophysiol 65, 989-1002.
    [27] Murphy AD, Hadley RD, and Katcr SB, 1983, Axotomy-induced parallel increases in electrical and dye coupling between identified neurons of helisoma. J Neurosci 3,1422-1429.
    [28] Zhou M, Xie MJ, Xu GJ, Zhang XX, Schools GP, Kimelberg HK, Chen HJ, 2009, TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices. J Neurosci, under revision,.
    [29] Xie M, Wang W, Kimelberg HK, Zhou M, 2008, Oxygen and glucose deprivation-induced changes in astrocyte membrane potential and their underlying mechanisms in acute rat hippocampal slices. J Cereb Blood Flow Metab 28, 456-467.
    [30] Zhang H, Schools GP, Lei T, Wang W, Kimelberg HK, Zhou M, 2008, Resveratrol attenuates early pyramidal neuron excitability impairment and death in acute rat hippocampal slices caused by oxygen-glucose deprivation. Experimental Neurology 212,44-52.
    [31] Kraig RP, Pulsinelli WA, Plum F. 1985, Hydrogen ion buffering during complete brain ischemia. Brain Res 324, 281-290.
    [32] Smith ML, von Hanwehr R, Siesjo BK, 1986, Changes intra-and intracellular pH in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats. J Cereb Blood Flow Metab 6, 574-83.
    [33] Nedergaard M, Kraig RP, Tanabe J, Pulsinelli WA, 1991, Dynamics of interstitial and intracellular pH in evolving brain infarct. Am J Physiol Regulatory Integrative Comp Physiol 260, 581-588.
    [34] Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG, 2007, Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27, 6473-6477.
    [35] Nagy JI, Dudek FE, Rash JE, 2004, Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Brain Res Rev 47,191-215.
    [36] Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhauser C, 2006, The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26, 5438-5447.
    [37] Miiller T, Moller T, Neuhaus J, Kettenmann H, 1996, Electrical coupling among Bergmann glial cells and its modulation by glutamate receptor activation. Glia 17, 274-284.
    [38] Amzica F, Massimini M_7 Manfridi A, 2002, Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. J Neurosci 22,1042-1053.
    [39] Zahs KR, Newman EA, 1997, Asymmetric gap junctional coupling between glial cells in the rat retina. Glia 20, 10-22.
    [40] Robinson SR, Hampson EC, Munro MN, Vaney DI, 1993, Unidirectional coupling of gap junctions between neuroglia. Science 262, 1072-1074.
    [41] Singer W, Lux HD, 1975, Extracellular potassium gradients and visual receptive fields in the cat striate cortex. Brain Res 96, 378-383.
    [42] Sykova E, Czeh G, Keiz N, 1980, Potassium accumulation in frog spinal cord induced by nociceptive stimulation of the skin. Neurosci Lett 17, 253-258.
    [43] Newman, E.A., 1986. High potassium conductance in astrocyte endfeet. Science 233, 453-454.
    [44] Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1045-1056.
    [45] Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C, 2008, Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322(5907,,1551-5.
    [46] Krnjevic K, Walz W, 1990, Acidosis and blockade of orthodromic responses caused by anoxia in rat hippocampal slices at different temperatures. J Physiol 422, 127-144.
    [47] Dringen R, Peters H, Wiesinger H, Hamprecht B, 1995, Lactate transport in cultured glial cells. Dev Neurosci 17, 63-69.
    [48] Chesler M, 2003, Regulation and modulation of pH in the brain. Physiol Rev 83, 1183-1221.
    [49] Chesler M, 2005, Failure and function of intracellular pH regulation in acute hypoxic ischemic injury of astrocytes. Glia 50, 398-406.
    [50] Kimelberg, 2007, Supportive or information-processing functions of the mature protoplasmic astrocytes in the mammalian CNS? A critical appraisal. Neuro Glia Biol 3,181-189.
    [51] Mellergard P, Ou-Yang Y, Siesjo BK, 1994, Relationship between intra-and extracellular pH in primary cultures of rat astrocytes. Am J Physiol 267, 2 Pt 1,,C581-589.
    [52] Bondarenko A, Chesler M, 2001, Rapid astrocyte death induced by transient hypoxia, acidosis, and extracellular ion shifts. Glia 34, 134-142.
    [53] Nedergaard M, Goldman SA, Desai S, Pulsinelli WA, 1991, Acid induced death in neurons and glia. J Neurosci 11, 2489-2497.
    [54] Trivedi B, Danforth W, 1966, Effect of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem 24117, 4110-4112.
    [55] Swanson RA, Farrell K, Stein BA, 1997, Astrocyte energetics, function, and death under conditions of incomplete ischemia: a mechanism of glial death in the penumbra. Glia 21, 142-153.
    [1] Liesi P, Dahl D, Vaheri A, 1983, Laminin is produced by early rat astrocytes in primary culture. J. Cell Biol. 96, 920-924.
    [2] Liesi P, 1985, Laminin-immunoreactive glia distinguish regenerative adult CNS systems from non-regenerative ones. EMBO J. 4, 2505-2511.
    [3] Liesi P, Silver J, 1988, Is astrocyte laminin involved in axon guidance in the mammalian CNS? Dev. Biol. 130, 774-785.
    [4] Chiu AY, Espinosa de los MA, Cole RA, Loera S, de Vellis J, 1991, Laminin and slaminin are produced and released by astrocytes, Schwann cells, and schwannomas in culture. Glia 4, 11-24.
    [5] Shea TB, Beermann ML, Nixon RA, 1992, Sequential effects of astroglial-derived factors on neurite outgrowth: initiation by protease inhibitors and potentiation by extracellular matrix components. J. Neurosci. Res. 31, 309-317.
    [6] Neugebauer KM, Tomaselli KJ, Lilien J, Reichardt LF, 1988, N-cadherin, NCAM, and integrins promote retinal neurite outgrowth on astrocytes in vitro. J. Cell Biol.107,1177-1187.
    [7] Tomaselli KJ, Neugebauer KM, Bixby JL, Lilien J, Reichardt LF, 1988, Ncadherin and integrins: two receptor systems that mediate neuronal process outgrowth on astrocyte surfaces. Neuron 1, 33-43.
    [8] Smith GM, Rutishauser U, Silver J, Miller RH, 1990, Maturation of astrocytes in vitro alters the extent and molecular basis of neurite outgrowth. Dev. Biol. 138,377-390.
    [9] Price J, Hynes RO, 1985, Astrocytes in culture synthesize and secrete a variant form of fibronectin. J. Neurosci. 5, 2205-2211.
    [10] Liesi P, Kirkwood T, Vaheri A, 1986, Fibronectin is expressed by astrocytes cultured from embryonic and early postnatal rat brain. Exp. Cell Res. 163, 175-185.
    [11] Matthiessen HP, Schmalenbach C, Muller HW, 1989, Astroglia-released neurite growth-inducing activity for embryonic hippocampal neurons is associated with laminin bound in a sulfated complex and free fibronectin. Glia 2, 177-188.
    [12] Kanemaru K, Okubo Y, Hirose K, lino M, 2007, Regulation of neurite growth by spontaneous Ca2+ oscillations in astrocytes. J. Neurosci. 27, 8957-8966.
    [13] Snow DM, Lemmon V, Carrino DA, Caplan AI, Silver J, 1990, Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp. Neurol.109,111-130.
    [14] Gonzalez ML, Malemud CJ, Silver J, 1993, Role of astroglial extracellular matrix in the formation of rat olfactory bulb glomeruli. Exp. Neurol. 123, 91-105.
    [15] Steindler DA, 1993, Glial boundaries in the developing nervous system. Annu. Rev. Neurosci. 16,445-470.
    [16] Wells GM, Catlin G, Cossins JA, Mangan M, Ward GA, Miller KM, Clements JM, 1996, Quantitation of matrix metalloproteinases in cultured rat astrocytes using the polymerase chain reaction with a multi-competitor cDNA standard. Glia 18,332-340.
    [17] Muir EM, Adcock KH, Morgenstern DA, Clayton R, von Stillfried N, Rhodes K, Ellis C, Fawcett JW, Rogers JH, 2002, Matrix metalloproteases and their inhibitors are produced by overlapping populations of activated astrocytes. Brain Res. Mol. Brain Res. 100, 103-117.
    [18] Shapiro SD, 1998, Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr. Opin. Cell Biol. 10, 602-608.
    [19] Yong VW, Krekoski CA, Forsyth PA, Bell R, Edwards DR, 1998, Matrix metalloproteinases and diseases of the CNS. Trends Neurosci. 21, 75-80.
    [20] Yin KJ, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X, Bateman R, Song H, Hsu FF. Turk J. Xu J, Hsu CY, Mills JC, Holtzman DM, Lee JM, 2006, Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloidbeta peptide catabolism. J. Neurosci. 26, 10939-10948.
    [21] Rudge JS, Alderson RF, Pasnikowski E, McClain J, Ip NY, Lindsay RM, 1992, Expression of ciliary neurotrophic factor and the neurotrophins-nerve growth factor. Brain-derived neurotrophic factor and neurotrophin 3-in cultured rat hippocampal astrocytes. Eur. J. Neurosci. 4, 459-471.
    [22] Vaca K, Wendt E, 1992, Divergent effects of astroglial and microglial secretions on neuron growth and survival. Exp. Neurol. 118, 62-72.
    [23] Ojeda SR, Ma YJ, Lee BJ, Prevot V, 2000, Glia-to-neuron signaling and the neuroendocrine control of female puberty. Recent Prog. Horm. Res. 55, 197-223.
    [24] Blondel O, Collin C, McCarran WJ, Zhu S, Zamostiano R, Gozes I, Brenneman DE, McKay RD, 2000, A glia-derived signal regulating neuronal differentiation. J.Neurosci. 20, 8012-8020.
    [25] Donato R, 2001, S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol. 33, 637-668.
    [26] Emsley JG, Arlotta P, Macklis JD, 2004, Star-cross'd neurons: astroglial effects on neural repair in the adult mammalian CNS. Trends Neurosci. 27, 238-240.
    [27] Pehar M, Vargas MR, Cassina P, Barbeito AG, Beckman JS, Barbeito L, 2005,Complexity of astrocyte-motor neuron interactions in amyotrophic lateral sclerosis.Neurodegener. Dis. 2, 139-146.
    [28] Pfrieger FW, Barres BA, 1997, Synaptic efficacy enhanced by glial cells in vitro. Science 277, 1684-1687.
    [29] Seil FJ, Eckenstein FP, Reier PJ, 1992, Induction of dendritic spine proliferation by an astrocyte secreted factor. Exp. Neurol. 117, 85-89.
    [30] Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A, Pfrieger FW, 2001, CNS synaptogenesis promoted by glia-derived cholesterol. Science 294,1354-1357.
    [31] Christopherson KS, Ullian EM, Stokes CC, Mullowney CE. Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA, 2005, Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421-433.
    [32] Stiver SI, 2004, Angiogenesis and its role in the behavior of astrocytic brain tumors. Front. Biosci. 9, 3105-3123.
    [33] Palmer TD, Willhoite AR, Gage FH, 2000, Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479-494.
    [34] Laterra J, Guerin C, Goldstein GW, 1990, Astrocytes induce neural microvascular endothelial cells to form capillary-like structures in vitro. J. Cell Physiol. 144,204-215.
    [35] Laterra J, Goldstein GW, 1991, Astroglial-induced in vitro angiogenesis:requirements for RNA and protein synthesis. J. Neurochem. 57, 1231-1239.
    [36] Jiang B, Bezhadian MA, Caldwell RB, 1995, Astrocytes modulate retinal vasculogenesis: effects on endothelial cell differentiation. Glia 15, 1-10.
    [37] Newman EA, Reichenbach A, 1996, The Muller cell: a functional element of the retina. Trends Neurosci. 19, 307-312.
    [38] Stone J, Itin A, Alon T, Pe'er J, Gnessin H, Chan-Ling T, Keshet E, 1995, Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15,4738-4747.
    [39] Fruttiger M, Calver AR, Kruger WH, Mudhar HS, Michalovich D, Takakura N, Nishikawa S, Richardson WD, 1996, PDGF mediates a neuron-astrocyte interaction in the developing retina. Neuron 17, 111 7-1131.
    [40] Provis JM, Leech J, Diaz CM, Penfold PL, Stone J, Keshet E, 1997, Development of the human retinal vasculature: cellular relations and VEGF expression. Exp. Eye Res.65, 555-568.
    [41] West H, Richardson WD, Fruttiger M, 2005, Stabilization of the retinal vascular network by reciprocal feedback between blood vessels and astrocytes. Development 132,1855-1862.
    [42] Zhang Y, Stone J, 1997, Role of astrocytes in the control of developing retinal vessels. Invest. Ophthalmol. Vis. Sci. 38,1653-1666.
    [43] Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C, 2003, VEGF guidesangiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161,1163-1177.
    [44] Pardridge WM, 1999, Blood-brain barrier biology and methodology. J. Neurovirol. 5, 556-569.
    [45] Engelhardt B. 2003, Development of the blood-brain barrier. Cell Tissue Res. 314, 119-129.
    [46] Hawkins BT, Davis TP, 2005, The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev. 57, 173-185.
    [47] Zlokovic BV, 2008, The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178-201.
    [48] Brightman MW, Reese TS, 1969, Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648-677.
    [49] Kacem K, Lacombe P, Seylaz J, Bonvento G, 1998, Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia 23, 1-10.
    [50] Haseloff RF, Blasig IE, Bauer HC, Bauer H, 2005, In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell. Mol. Neurobiol. 25, 25-39.
    [51] Abbott NJ, Ronnback L, Hansson E, 2006, Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41-53.
    [52] Reichel A, Begley DJ, Abbott NJ, 2003, An overview of in vitro techniques for blood-brain barrier studies. Methods Mol. Med. 89, 307-324.
    [53] Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Homer HC, Janatpour M, Liaw CW, Manning K, Morales J, 1991, A cell culture model of the blood-brain barrier. J.CellBiol. 115, 1725-1735. [54] Dehouck B, Dehouck MR Fruchart JC, Cecchelli R, 1994, Upregulation of the low density lipoprotein receptor at the blood-brain barrier: intercommunications between brain capillary endothelial cells and astrocytes. J. Cell Biol. 126, 465-473.
    [55] Rist RJ, Romero IA, Chan MW, Couraud PO, Roux F, Abbott NJ, 1997, F-actin cytoskeleton and sucrose permeability of immortalised rat brain microvascular endothelial cell monolayers: effects of cyclic AMP and astrocytic factors. Brain Res.768, 10-18.
    [56] Sobue K, Yamamoto N, Yoneda K, Hodgson ME, Yamashiro K, Tsuruoka N, Tsuda T, Katsuya H, Miura Y, Asai K, Kato T, 1999, Induction of blood-brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors.Neurosci. Res. 35, 155-164.
    [57] Estrada C, Bready JV, Berliner JA, Pardridge WM, Cancilla PA, 1990, Astrocyte growth stimulation by a soluble factor produced by cerebral endothelial cells in vitro. J. Neuropathol. Exp. Neurol. 49. 539-549.
    [58] Spoerri PE, Grant MB, Gomez J, Vernadakis A, 1997, Endothelial cell conditioned media mediated regulation of glutamine synthetase activity in glial cells. Brain Res. Dev. Brain Res. 104, 205-208.
    [59] Wagner S, Gardner H, 2000, Modes of regulation of laminin-5 production by rat astrocytes. Neurosci. Lett. 284, 105-108.
    [60] Schroeter ML, Mertsch K, Giese H, Muller S, Sporbert A, Hickel B, Blasig IE, 1999, Astrocytes enhance radical defence in capillary endothelial cells constituting the blood-brain barrier. FEBS Lett. 449, 241-244.
    [61] Gerschenfeld HM, Wald F, Zadunaisky JA, De Robertis ED, 1959, Function of astroglia in the. water-ionm, metabolism of the central nervous system:an electron microscope study. Neurology 9, 412-425.
    [62] Kimelberg HK, 2007, Supportive or information-processing functions of the mature protoplasmic astrocyte in the mammalian CNS? A critical appraisal. Neuron Glia Biol.3, 181-189.
    [63] Orkand RK, Nicholls JG, Kuffler SW, 1966, Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29, 788-806.
    [64] Kuffler SW, Nicholls JG, 1966, The physiology of neuroglial cells. Ergeb. Physiol. 57, 1-90.
    [65] Holthoff K, Witte OW, 2000, Directed spatial potassium redistribution in rat neocortex. Glia 29, 288-292.
    [66] Newman EA, 1986, High potassium conductance in astrocyte endfeet. Science 233, 453-454.
    [67] Ballanyi K, Grafe P, ten Bruggencate G, 1987, Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices. J. Physiol. (Lond.) 382, 159-174.
    [68] Karwoski CJ, Lu HK, Newman EA, 1989, Spatial buffering of light-evoked potassium increases by retinal Muller (glial) cells. Science 244, 578-580.
    [69] Poopalasundaram S, Knott C, Shamotienko OG, Foran PG, Dolly JO, Ghiani CA, Gallo V, Wilkin GP, 2000, Glial heterogeneity in expression of the inwardly rectifying K(+) channel, Kir4.1, in adult rat CNS. Glia 30, 362-372.
    [70] Higashi K, Fujita A, Inanobe A, Tanemoto M, Doi K, Kubo T, Kurachi Y, 2001, An inwardly rectifying K(+) channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am. J. Physiol. Cell Physiol. 281, C922-C931.
    [71] Janigro D, Gasparini S, D'Ambrosio R, McKhann II G, DiFrancesco D, 1997, Reduction of K+ uptake in glia prevents long-term depression maintenance and causes epileptiform activity. J. Neurosci. 17, 2813-2824.
    [72] Djukic B, Casper KB, Philpot BD, Chin LS, McCarthy KD, 2007. Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J. Neurosci. 27,11354-11365.
    [73] Takumi T, Ishii T. Horio Y, Morishige K, Takahashi N, Yamada M, Yamashita T, Kiyama H, Sohmiya K, Nakanishi S, 1995, A novel ATP-dependent inward rectifier potassium channel expressed predominantly in glial cells. J. Biol. Chem. 270,16339-16346.
    [74] Metea MR, Newman EA, 2006, Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J. Neurosci. 26, 2862-2870.
    [75] Schousboe A, Westergaard N, Sonnewald U, Petersen SB, Yu AC, Hertz L, 1992, Regulatory role of astrocytes for neuronal biosynthesis and homeostasis of glutamate and GABA. Prog. Brain Res. 94, 199-211.
    [76] Schousboe A, Westergaard N, 1995, Transport of neuroactive amino acids in astrocytes. In: Kettenmann, H., Ransom, B.R. (Eds.), Neuroglia. Oxford University, New York, pp. 246-258.
    [77] Borden LA, 1996, GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem. Int. 29, 335-356.
    [78] Brecha NC, Weigmann C, 1994, Expression of GAT-1, a high-affinity gammaaminobutyric acid plasma membrane transporter in the rat retina. J. Comp. Neurol. 345,602-611.
    [79] Morara S, Brecha NC, Marcotti W, Provini L, Rosina A, 1996, Neuronal and glial localization of the GABA transporter GAT-1 in the cerebellar cortex. Neuroreport 7,2993-2996.
    [80] Yan XX, Ribak CE, 1998, Developmental expression of gamma-aminobutyric acid transporters (GAT-1 and GAT-3) in the rat cerebellum: evidence for a transient presence of GAT-1 in Purkinje cells. Brain Res. Dev. Brain Res. 111, 253-269.
    [81] Conti F, Zuccarello LV, Barbaresi' P, Minelli A, Brecha NC, Melone M, 1999, Neuronal, glial, and epithelial localization of gamma-aminobutyric acid transporter 2,a high-affinity gamma-aminobutyric acid plasma membrane transporter, in the cerebral cortex and neighboring structures. J. Comp. Neurol. 409, 482-494.
    [82] Barakat L, Bordey A, 2002, GAT-1 and reversible GAB A transport in Bergmann glia in slices. J. Neurophysiol. 88, 1407-1419.
    [83] Kinney GA, Spain WJ, 2002, Synaptically evoked GABA transporter currents in neocortical glia. J. Neurophysiol. 88, 2899-2908.
    [84] Kinney GA, 2005, GAT-3 transporters regulate inhibition in the neocortex. J. Neurophysiol. 94, 4533-4537.
    [85] Farrant M, Nusser Z, 2005, Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat. Rev. Neurosci. 6, 215-229.
    [86] Palacin M, Estevez R, Bertran J, Zorzano A, 1998, Molecular biology of mammalian plasma membrane amino acid transporters. Physiol. Rev. 78, 969-1054.
    [87] Torres GE, Amara SG, 2007, Glutamate and monoamine transporters: new visions of form and function. Curr. Opin. Neurobiol. 17, 304-312.
    [88] Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC, 1995, Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J. Neurosci. 15, 1835-1853.
    [89] Chaudhry FA, Lehre KP, van Lookeren Campagne M, Ottersen OP, Danbolt NC, Storm-Mathisen J, 1995, Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15, 711-720.
    [90] Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC, 1997, Differential developmental expression of the two rat brain glutamate transporter proteins GLAST and GLT. Eur. J. Neurosci. 9, 1646-1655.
    [91] Schmitt A, Asan E, Puschel B, Kugler P, 1997, Cellular and regional distribution of the glutamate transporter GLAST in the CNS of rats: nonradioactive in situ hybridization and comparative immunocytochemistry. J. Neurosci. 17, 1-10.
    [92] Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI. Jin L, Watkins AM, Bergles DE, Rothstein JD, 2007, Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS.J.Neurosci. 27,6607-6619.
    [93] Yamada K, Fukaya M, Shibata T, Kurihara H, Tanaka K, Inoue Y, Watanabe M, 2000, Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells. J. Comp. Neurol. 418, 106-120.
    [94] Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF, 1996, Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675-686.
    [95] Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M,Wada K, 1997, Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 1699-1702.
    [96] Bergles DE, Dzubay JA, Jahr CE, 1997, Glutamate transporter currents in Bergmann glial cells follow the time course of extrasynaptic glutamate. Proc. Nat1. Acad. Sci.94,14821-14825.
    [97] Bergles DE, Jahr CE, 1997, Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19 1297-1308.
    [98] Bergles DE, Jahr CE, 1998, Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J. Neurosci. 18, 7709-7716.
    [99] Clark BA, Barbour B, 1997, Currents evoked in Bergmann glial cells by parallel fibre stimulation in rat cerebellar slices. J. Physiol. (Lond.) 502, 335-350.
    [100] Bordey A, Sontheimer H, 2003, Modulation of glutamatergic transmission by Bergmann glial cells in rat cerebellum in situ. J. Neurophysiol. 89, 979-988.
    [101] Linden DJ, 1998, Synaptically evoked glutamate transport currents may be used to detect the expression of long-term potentiation in cerebellar culture. J. Neurophysiol.79,3151-3156.
    [102] Marcaggi P, Billups D, Attwell D, 2003, The role of glial glutamate transporters in maintaining the independent operation of juvenile mouse cerebellar parallel fibre synapses. J. Physiol. 552, 89-107.
    [103] Huang YH, Sinha SR, Tanaka K, Rothstein JD, Bergles DE, 2004, Astrocyte glutamate transporters regulate metabotropic glutamate receptor-mediated excitation of hippocampal interneurons. J. Neurosci. 24, 4551-4559.
    [104] Westergaard N, Sonnewald U, Schousboe A, 1995, Metabolic trafficking between neurons and astrocytes: the glutamate/glutamine cycle revisited. Dev. Neurosci. 17,203-211.
    [105] Sonnewald U, Westergaard N, Schousboe A, 1997, Glutamate transport and metabolism in astrocytes. Glia 21, 56-63.
    [106] Morgello S, Uson RR, Schwartz EJ, Haber RS, 1995, The human blood-brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes. Glia14,43-54.
    [107] Yu S, Ding WG, 1998, The 45 kDa form of glucose transporter 1 (GLUT1) is localized in oligodendrocyte and astrocyte but not in microglia in the rat brain. Brain Res. 797, 65-72.
    [108] Cataldo AM, Broadwell RD, 1986, Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. Ⅱ. Choroid plexus and ependymal epithelia, endothelia and pericytes. J. Neurocytol. 15,511-524.
    [109] Wender R, Brown AM, Fern R, Swanson RA, Farrell K, Ransom BR, 2000, Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J. Neurosci. 20, 6804-6810.
    [110] Kong J, Shepel PN, Holden CP, Mackiewicz M, Pack AI, Geiger JD, 2002, Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J. Neurosci. 22, 5581-5587.
    [1ll] Pellegri G, Rossier C, Magistretti PJ, Martin JL, 1996, Cloning, localization and induction of mouse brain glycogen synthase. Brain Res. Mol. Brain Res. 38,191-199.
    [112] Pfeiffer-Guglielmi B, Fleckenstein B, Jung G, Hamprecht B, 2003, Immunocytochemical localization of glycogen phosphorylase isozymes in rat nervous tissues by using isozyme-specific antibodies. J. Neurochem. 85, 73-81.
    [113] Brown AM, Ransom BR, 2007, Astrocyte glycogen and brain energy metabolism. Glia 55, 1263-1271.
    [114] Brown AM, Tekkok SB, Ransom BR, 2003, Glycogen regulation and functional role in mouse white matter. J. Physiol. 549, 501-512.
    [115] Brown AM, Sickmann HM, Fosgerau K, Lund TM, Schousboe A, Waagepetersen, HS, Ransom, BR, 2005, Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J. Neurosci.Res. 79, 74-80.
    [116] Tekkok SB, Brown AM, Westenbroek R, Pellerin L, Ransom BR, 2005, Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J. Neurosci. Res. 81, 644-652.
    [117] Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K, Swanson RA, 2007, Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-l-(phenylmet hyl)propyl]- 1H-indole-2-carboxamide). J. Pharmacol. Exp. Ther. 321, 45-50.
    [118] Martinez-Hernandez A, Bell KP, Norenberg MD, 1977, Glutamine synthetase:glial localization in brain. Science 195, 1356-1358.
    [119] Pellerin L, Magistretti PJ, 1994, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc.Natl.Acad. Sci. U.S.A. 91, 10625-10629.
    [120] Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ, 2007, Activity-dependent regulation of energy metabolism by astrocytes: an update.Glia 55, 1251-1262.
    [121] Bouzier-Sore AK, Voisin P, Bouchaud V, Bezancon E, Franconi JM, Pellerin L, 2006, Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur. J. Neurosci. 24, 1687-1694.
    [122] Bouzier-Sore AK, Voisin P, Canioni P, Magistretti PJ, Pellerin L, 2003, Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. J. Cereb.Blood Flow Metab. 23, 1298-1306.
    [123] Itoh Y, Esaki T, Shimoji K, Cook M, Law MJ, Kaufman E, Sokoloff L, 2003, Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc. Natl. Acad. Sci. U.S.A. 100,4879-4884.
    [124] Porras OH, Loaiza A, Barros LF, 2004, Glutamate mediates acute glucose transport inhibition in hippocampal neurons. J. Neurosci. 24, 9669-9673.
    [125] Hu Y, Wilson GS, 1997, A temporary local energy pool coupled to neuronal activity:fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J. Neurochem. 69, 1484-1490.
    [126] Cruz F, Villalba M, Garcia-Espinosa MA, Ballesteros P, Bogonez E, Satrustegui J, Cerdan S, 2001, Intracellular compartmentation of pyruvate in primary cultures of cortical neurons as detected by (13)C NMR spectroscopy with multiple (13)C labels. J. Neurosci. Res. 66, 771-781.
    [127] Gjedde A, Marrett S, 2001, Glycolysis in neurons, not astrocytes, delays oxidative metabolism of human visual cortex during sustained checkerboard stimulation in vivo. J. Cereb. Blood Flow Metab. 21, 1384-1392.
    [128] Hertz L, 2004, The astrocyte-neuron lactate shuttle: a challenge of a challenge. J. Cereb. Blood Flow Metab. 24, 1241-1248.
    [129] Serres S, Bezancon E, Franconi JM, Merle M, 2004, Ex vivo analysis of lactate and glucose metabolism in the rat brain under different states of depressed activity. J.Biol. Chem. 279, 47881-47889.
    [130] Serres S, Bezancon E, Franconi JM, Merle M, 2005, Ex vivo NMR study of lactate metabolism in rat brain under various depressed states. J. Neurosci. Res. 79, 19-25.
    [131] Serres S, Bouyer JJ, Bezancon E, Canioni P, Merle M, 2003, Involvement of brain lactate in neuronal metabolism. NMR Biomed. 16, 430-439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700