LRIG2对胶质母细胞瘤细胞系GL15生物学特性的影响及其分子生物学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     富含亮氨酸重复序列免疫球蛋白2-胶质瘤细胞表皮生长因子受体信号网络新的调控靶点
     目的确定富含亮氨酸重复序列免疫球蛋白2(LRIG2)是胶质瘤细胞系GL15中EGFR信号通路新的调控靶点。
     方法培养胶质瘤细胞系GL 15细胞,经表皮生长因子(EGF)100ng/ml,AG 1478 10μM,放线菌酮(CHX)10μg/ml体外干预后,逆转录聚合酶链反应(RT-PCR)和Western Blot测定LRIG2 mRNA和蛋白表达的时间效应变化。
     结果RT-PCR结果显示随着EGF作用时间的延长,LRIG2 mRNA先上升后恢复至正常水平。Western blot结果显示EGF作用后,表皮生长因子受体(EGFR),磷酸化EGFR(pEGFR)均先上升后下降,LRIG2蛋白先下降,在30min时上升,120min下降至原水平的50%。CHX作用1.5h后,再加入EGF刺激,可见LRIG2蛋白60min降至原水平的50%。而AG1478作用1h后,再用EGF刺激,EGFR未受明显影响,pEGFR被明显抑制,LRIG2蛋白水平变化不明显。
     结论EGFR活化后可导致LRIG2 mRNA表达上升,LRIG2蛋白合成增加。LRIG2为胶质瘤细胞表皮生长因子受体信号网络一个新的调控靶点。
     第二部分
     LRIG2基因短发夹RNA表达稳定株的建立及下调LRIG2对EGFR信号通路的影响
     目的构建针对LRIG2基因的短发夹RNA(shRNA)的表达载体,建立稳定转染的细胞株,观察目的基因表达的变化及其对EGFR信号通路的影响。
     方法根据GenBank中LRIG2基因序列设计2条RNA干扰序列,命名LRIG2-shRNA1、LRIG2-shRNA2,同时设计1条非特异性序列作为阴性对照。据此设计合成各自的寡核苷酸链,退火后连接入pGenesi12载体,转化扩增后进行序列测定。用不同浓度的G418作用于GL15细胞,得到G418对于GL15细胞的筛选浓度。3种重组表达载体转染胶质瘤细胞系GL15细胞,用G418筛选后挑单克隆后扩增获得稳定株。逆转录RT-PCR和Western印迹法分别在mRNA和蛋白水平上检测LRIG2的表达。用表皮生长因子(EGF)100ng/ml体外干预得到的稳定细胞株,Western Blot测定EGFR和磷酸化EGFR水平的变化。结果3种重组表达载体(pGenesil2-LRIG2-shRNA1、pGenesil2-LRIG2-shRNA2和pGenesil2-negative shRNA)经限制性酶切及DNA测序分析证明序列插入正确。G418对于GL15细胞的筛选浓度为600μg/ml,筛选出稳定转染三种质粒的GL15细胞,转染pGenesil2-LRIG2-shRNA2组细胞LRIG2 mRNA和蛋白表达明显低于转染pGenesil2-negative shRNA组,pGenesil2-LRIG2-shRNA1组LRIG2蛋白无明显变化。EGF刺激5分钟和30分钟后,pGenesil2-LRIG2-shRNA2组细胞EGFR和pEGFR蛋白水平均低于对照组。结论成功构建了针对LRIG2基因的shRNA表达载体(pGenesil2-LRIG2-shRNA2),转染细胞后可抑制LRIG2基因表达,LRIG2与LRIG1作用相反,下调LRIG2可减少EGF诱导的EGFR磷酸化,促进EGFR降解。
     第三部分
     RNA干扰LRIG2后对胶质瘤细胞生长、细胞周期、凋亡、黏附和侵袭能力的影响
     目的研究RNA干扰LRIG2基因表达后对胶质瘤细胞生长、细胞周期、凋亡、黏附和侵袭能力的影响。
     方法MTT法检测稳定转染对照组和siRNA组细胞的增殖,流式检测细胞周期和细胞凋亡,细胞黏附实验检测细胞黏附能力,Transwell检测细胞侵袭能力,免疫细胞化学检测PCNA阳性细胞和LRIG2的细胞定位。
     结果MTT结果显示siRNA组细胞增殖率低于对照组。对照组PCNA阳性细胞率为72%,siRNA组为16%(p<0.01)。细胞周期分析表明对照组G0/G1期,S期和G2/M期分别为60.18%±5.00%,24.22%±5.37%和15.6%±1.54%,siRNA组为82.40%±2.47%,9.41%±1.87%和8.17%±1.01%(p<0.01),siRNA组自发性凋亡增加3倍。LRIG2 RNA干扰组黏附和侵袭能力高于对照组。LRIG2在GL15细胞中主要分布于胞浆。
     结论RNA干扰GL15细胞LRIG2表达后,抑制细胞增殖和使细胞周期阻滞在G0/G1期,凋亡增加,黏附和侵袭能力增强。下调LRIG2可抑制胶质瘤细胞的生长,有望成为胶质瘤分子治疗的靶点。
PartⅠLRIG2—the New Transcriptional Regulatory Target ofEpidermal Growth Factor Receptor(EGFR) Signaling Network inHuman Glioma Cell
     Objective To confirm that LRIG2 is the new regulatory target of epidermal growth factorreceptor(EGFR) signaling network in human glioma cell line GL15.
     Methods After the human glioma cell line GL15 was exposed to the concentrations of EGF100ng/ml,AG1478 10μM and Cycloheximide 10μg/ml in vitro,changes of mRNA andprotein levels of LRIG2 were measured by reverse transcriptional—polymerase chainreaction(RT-PCR) and Western Blotting.
     Results The levels of LRIG2 mRNA in GL 15 cell rised after 15 minutes of EGFstimulation,the protein levels of LRIG2 rised after 30 minutes of EGF sitmulation.Cycloheximide and AG1478 were added before the exposure of EGF at designed time on GL15,the protein levels of LRIG2 weren't change significantly.Conclusion The activation of EGFR could increase the expression of mRNA and protein ofLRIG2.LRIG2 is the new transcriptional regulatory target of EGFR signaling network inhuman glioma cell.
     PartⅡEstablishment of Stably Transfected Cell Clone ExpressingLRIG2 Specific Short-hairpin RNA and the Research on Effect ofDownregulation of LRIG2 on EGFR Signaling Pathway
     Objective To construct effective short-hairpin RNA(shRNA) expression vector encodingshRNA targeting LRIG2 gene and to establish the stably transfected cell clone.Toinvestigate the effect ofdownregulation of LRIG2 on EGFR signaling pathway.
     Methods Design and synthesize two shRNAs sequences based on the sequence of LRIG2mRNA in the GenBank and one scrambled shRNA sequence as negative control.Thesynthesized sequences were cloned into shRNA expression vector pGenesil2.Accordingthe fatal dose of G418 to GL15 cell,the selection concentration of G418 for GL15 cell wasdetermined.The three shRNA vectors were transfected into GL 15 by Metafectinerespectively.The stably transfected cell clones were obtained after the transfected cell werecultured in medium containing G418.Reverse transcriptase-polymerase chain reaction(RT-PCR) and Western Blotting were performed to examine the inhibitory effect on theRNA level and protein level of LRIG2.After cell stimulated by EGF,Western Blotting wasperformed to detect the levels of EGFR and pEGFR protein.
     Results The recombinant plasmids containing shRNA were analysized by doubleendonuclease digestion and DNA sequencing.The selective concentration of G418 forGL15 cell was 600μg/ml.LRIG2 expression was significantly down-regulated by siRNA as validated by RT-PCR and Western Bloting.After 30 min of EGF treatment,there was verylittle EGFR detected in the LRIG2-siRNA2 cells.The relative expression level of EGFRwas 0.16 in LRIG2-siRNA2 cell and 0.62 in control.After 5 min and 30 min of EGFstimulation,the relative expression level of pEGFR increased to 5.5 and 4.2 in LRIG2siRNA2 cells respectively,while relative expression level of pEGFR only increased to 3.8and 2.6 in control cells respectively.
     Conclusion RNA interfering(RNAi) mediated by the shRNA expression vector couldsignificantly down-regulate the expression of LRIG2 in glioma cell line GL15.The stabletransfected cell clone was obtained for further study.Know-down of LRIG2 could decreasethe level of EGFR and inhibit the phosphorylation of EGFR in GL15 cell.
     PartⅢThe Research on Effect of LRIG2 on the Proliferation,CellCycle,Apotosis,Adhesion and Invasion of Human Glioma Cells byRNA Interference
     Objective To determine the effects of LRIG2 on the proliferation,cell cycle,apotosis,adhesion and invasion of glioma cells by RNA interference.
     Methods The growth curves were determined by the methyl thiazolyl tetrazolium(MTT)assay.Cell cycles and apoptosis were analyzed by flow cytometry.The ability of adhesionand invasion were measured by Cell-matrix adhesion assay and Transwell chamber assay.The staining of PCNA and localization of LRIG2 were performed byimmunocytochemistry.
     Results The LRIG2-siRNA cell had less proliferation rate than control cell.The PCNAprotein was less stained cell for LRIG2-siRNA group than that in the control After silencingLRIG2 expression,most cells accumulated at G0/G1(p<0.01),and the proportionof LRIG2-siRNA cells in S and G2/M phase decreased(p<0.01).Down-regulation of LRIG2 increased the level of spontaneous apoptosis about three-fold compared to control(p<0.01).The capabilities of adhesion and invasion were enhanced after knockdown ofLRIG2.LRIG2 was localized in the cytoplasmic area.
     Conclusions Down-regulation of LRIG2 decreased proliferation;G0/G1 arrest;increasedspontaneous apoptosis;enhanced cell adhesion and increased invasion capability of GL15cells in vitro.These findings validate the attractiveness of LRIG2 as a target in gliomatherapy.
引文
1.Andersson,U.,D.Guo,B.Malmer,et al.,Epidermal growth factor receptor family(EGFR,ErbB2-4)in gliomas and meningiomas.Acta Neuropathol,2004.108(2):135-42.
    2.Nathoo,N.,S.Goldlust and M.A.Vogelbaum,Epidermal growth factor receptor antagonists:novel therapy for the treatment of high-grade gliomas.Neurosurgery,2004.54(6):1480-8;discussion 1488-9.
    3.Mellinghoff,I.K.,M.Y.Wang,I.Vivanco,et al.,Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors.N Engl J Med,2005.353(19):2012-24.
    4.Sibilia,M.,A.Fleischmann,A.Behrens,et al.,The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development.Cell,2000. 102(2): 211-20.
    5.Yarden, Y., The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer, 2001. 37 Suppl 4: S3-8.
    6.Gil-Benso, R.. C. Lopez-Gines, R. Benito, et al., Concurrent EGFR amplification and TP-53 mutation in glioblastomas. Clin Neuropathol, 2007. 26(5): 224-31.
    7.Rubin, C, G. Gur and Y. Yarden, Negative regulation of receptor tyrosine kinases: unexpected links to c-Cbl and receptor ubiquitylation. Cell Res, 2005. 15(1): 66-71.
    8.Casci, T., J. Vinos and M. Freeman, Sprouty, an intracellular inhibitor of Ras signaling. Cell, 1999. 96(5): 655-65.
    9.Ghiglione, C, K.L. Carraway. Ill, L.T. Amundadottir, et al., The transmembrane molecule kekkon 1 acts in a feedback loop to negatively regulate the activity of the Drosophila EGF receptor during oogenesis. Cell, 1999. 96(6): 847-56.
    10.Musacchio, M. and N. Perrimon, The Drosophila kekkon genes: novel members of both the leucine-rich repeat and immunoglobulin superfamilies expressed in the CNS. Dev Biol, 1996. 178(1): 63-76.
    11.Alvarado, D., A.H. Rice and J.B. Duffy, Bipartite inhibition of Drosophila epidermal growth factor receptor by the extracellular and transmembrane domains of Kekkonl. Genetics, 2004. 167(1): 187-202.
    12.Suzuki, Y, N. Sato, M. Tohyama, et al., cDNA cloning of a novel membrane glycoprotein that is expressed specifically in glial cells in the mouse brain. LIG-1,a protein with leucine-rich repeats and immunoglobulin-like domains. J Biol Chem, 1996. 271(37): 22522-7.
    13.Nilsson, J., A. Starefeldt, R. Henriksson, et al., LRIG1 protein in human cells and tissues. Cell Tissue Res, 2003. 312(1): 65-71.
    14.Holmlund, C, J. Nilsson, D. Guo, et al., Characterization and tissue-specific expression of human LR1G2. Gene, 2004. 332: 35-43.
    15.Holmlund, C, H. Haapasalo. W. Yi, et al., Cytoplasmic LRIG2 expression is associated with poor oligodendroglioma patient survival. Neuropathology, 2008.
    16.Guo, D.. C. Holmlund, R. Henriksson, et al., The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in Ascidiacea Genomics, 2004. 84(1): 157-65.
    17.Gur, G, C. Rubin, M. Katz, et al., LR1G1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J, 2004. 23(16): 3270-81.
    18.Shattuck, D.L., J.K. Miller, M. Laederich, et al., LRIG1 is a novel negative regulator of the Met receptor and opposes Met and Her2 synergy. Mol Cell Biol, 2007.27(5): 1934-46.
    19.Ledda, F.. O. Bieraugel, S.S. Fard, et al., Lrigl is an endogenous inhibitor of Ret receptor tyrosine kinase activation, downstream signaling, and biological responses to GDNF. J Neurosci, 2008. 28(1): 39-49.
    1.Huncharek,M.and J.Muscat.Treatment of recurrent high grade astrocytoma;results of a systematic review of 1,415 patients.Anticancer Res,1998.18(2B):1303-11.
    2.Yarden,Y.,The EGFR family and its ligands in human cancer.signalling mechanisms and therapeutic opportunities.Eur J Cancer,2001.37 Suppl 4:S3-8.
    3.Nathoo,N.,S.Goldlust and M.A.Vogelbaum,Epidermal growth factor receptor antagonists:novel therapy for the treatment of high-grade gliomas.Neurosurgery,2004.54(6):1480-8;discussion 1488-9.
    4.Holmlund,C.,J.Nilsson,D.Guo.et al.,Characterization and tissue-specific expression of human LRIG2.Gene,2004.332:35-43.
    5.Mendelsohn,J.and J.Baselga,Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer.J Clin Oncol,2003.21(14):2787-99.
    6.Ullrich,A.,L.Coussens,J.S.Hayflick,et al.,Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells.Nature,1984.309(5967):418-25.
    7.Wells,A.,EGF receptor.Int J Biochem Cell Biol,1999.31(6):637-43.
    8.Lenferink,A.E.,R.Pinkas-Kramarski,M.L.van de Poll,et al.,Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers.EMBO J,1998.17(12):3385-97.
    9.Lowenstein,E.J.,R.J.Daly,A.G.Batzer,et al.,The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling.Cell,1992.70(3):431-42.
    10.Gur,G.,C.Rubin,M.Katz,et al.,LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation.EMBO J,2004.23(16):3270-81.
    11.易伟,叶飞,郭东升,薛德麟,雷霆.,LRIG1基因在人星形细胞瘤中的表达下调与意义.中华实验外科杂志,2005(6):759.
    12.Guo,D.,C.Holmlund.R.Henriksson,et ai.,The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in Ascidiacea.Genomics,2004.84(1):157-65.
    13.Lusska,A.,L.Wu and J.P.Whitlock,Jr.,Superinduction of CYP1A1 transcription by cycloheximide.Role of the DNA binding site for the liganded Ah receptor.J Biol Chem,1992.267(21):15146-51.
    14.Osherov,N.and A.Levitzki,Epidermal-growth-factor-dependent activation of the src-family kinases.Eur J Biochem,1994.225(3):1047-53.
    1.Guo,D.,C.Holmlund.R.Henriksson,et al.,The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in Ascidiacea.Genomics.2004.84(1):157-65.
    2.Gur,G.,C.Rubin,M.Katz,et al.,LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation.EMBO J,2004.23(16):3270-81.
    3.Takahashi,N.,Y.Takahashi and F.W.Putnam,Periodicity of leucine and tandem repetition of a 24-amino acid segment in the primary structure of leucine-rich alpha 2-glycoprotein of human serum.Proc Natl Acad Sci U S A,1985.82(7):1906-10.
    4.Kobe,B.and J.Deisenhofer,Proteins with leucine-rich repeats.Curr Opin Struct Biol,1995.5(3):409-16.
    5.Hedman,H.and R.Henriksson,LRIG inhibitors of growth factor signalling- double-edged swords in human cancer? Eur J Cancer, 2007. 43(4): 676-82.
    6.Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): 281-97.
    7.Fire, A., S. Xu, M.K. Montgomery, et al.. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998. 391(6669): 806-11.
    8.Brummelkamp, T.R., R. Bernards and R. Agami, A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002. 296(5567): 550-3.
    9.Sui, G, C. Soohoo, B. Affar el, et al., A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA, 2002. 99(8): 5515-20.
    10.Fraser, A.G., R.S. Kamath, P. Zipperlen, et al., Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature, 2000. 408(6810): 325-30.
    11.Xiao, L., R. Gao, S. Lu, et al., Reversal of adriamycin resistance in human mammary cancer cells by small interfering RNA of MDRl and MDR3 genes. J Huazhong Univ Sci Technolog Med Sci, 2006. 26(6): 735-7.
    12.Horvath, S., B. Zhang, M. Carlson, et al., Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci USA, 2006. 103(46): 17402-7.
    13.Reynolds, A., D. Leake, Q. Boese, et al., Rational siRNA design for RNA interference. Nat Biotechnol, 2004. 22(3): 326-30.
    14.Dallas, A. and A.V. Vlassov, RNAi: a novel antisense technology and its therapeutic potential. Med Sci Monit, 2006. 12(4): RA67-74.
    15.Elbashir, S.M., J. Harborth, K. Weber, et al., Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods. 2002. 26(2): 199-213.
    16.Schlegel, J., A. Merdes, G. Stumm, et al.. Amplification of the epidermal-growth-factor-receptor gene correlates with different growth behaviour in human glioblastoma.Int J Cancer,1994.56(1):72-7.
    17. 康春生,浦佩玉,张志勇,等,反义表皮生长因子受体RNA对U251胶质瘤细胞生长的抑制作用.中华实验外科杂志2006.23(1):75-77.
    18.Holmlund,C.,J.Nilsson,D.Guo,et al.,Characterization and tissue-specific expression of human LRIG2.Gene,2004.332:35-43.
    19.Guo,D.,J.Nilsson,H.Haapasalo,et al.,Perinuclear leucine-rich repeats and immunoglobulin-like domain proteins(LRIG1-3)as prognostic indicators in astrocytic tumors.Acta Neuropathol,2006.111(3):238-46.
    20.Holmlund,C.,H.Haapasalo,W.Yi,et al.,Cytoplasmic LRIG2 expression is associated with poor oligodendroglioma patient survival.Neuropathoiogy,2008.
    1.Takahashi, N., Y. Takahashi and F.W. Putnam, Periodicity of leucine and tandem repetition of a 24-amino acid segment in the primary structure of leucine-rich alpha 2-glycoprotein of human serum. Proc Natl Acad Sci USA, 1985. 82(7): 1906-10.
    2.Stupp, R., W.P. Mason, M.J. van den Bent, et al., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma N Engl J Med, 2005. 352(10): 987-96.
    3.Minniti, G, V. De Sanctis, R. Muni, et al., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma in elderly patients. J Neurooncol, 2008. 88(1):97-103.
    4.Sathornsumetee. S. and J.N. Rich, New treatment strategies for malignant gliomas. Expert Rev Anticancer Ther, 2006. 6(7): 1087-104.
    5.Stommel, J.M., A.C. Kimmelman, H. Ying, et al., Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science, 2007. 318(5848): 287-90.
    6.Dunn, I.F., O. Heese and P.M. Black, Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neurooncol, 2000. 50(1-2): 121-37.
    7.Andersson, U.. D. Guo, B. Malmer, et al.. Epidermal growth factor receptor family (EGFR, ErbB2-4) in gliomas and meningiomas. Acta Neuropathol, 2004. 108(2): 135-42.
    8.Miletic, H., S.P. Niclou, M. Johansson, et al., Anti-VEGF therapies for malignant glioma: treatment effects and escape mechanisms. Expert Opin Ther Targets, 2009. 13(4): 455-68.
    9.Kurki, P., M. Vanderlaan, F. Dolbeare, et al., Expression of proliferating cell nuclear antigen (PCNA)/cyclin during the cell cycle. Exp Cell Res, 1986. 166(1): 209-19.
    10.Tabuchi, K., C. Honda and P.K. Nakane, Demonstration of proliferating cell nuclear antigen (PCNA/cyclin) in glioma cells. Neurol Med Chir (Tokyo), 1987. 27(1): 1-5.
    11.Essers, J., A.F. Theil, C. Baldeyron, et al.. Nuclear dynamics of PCNA in DNA replication and repair. Mol Cell Biol, 2005. 25(21): 9350-9.
    12.Sherr, C.J., Cancer cell cycles. Science, 1996. 274(5293): 1672-7.
    13.Louis, D.N., Molecular pathology of malignant gliomas. Annu Rev Pathol, 2006. 1: 97-117.
    14.Ghobrial, I.M., T.E. Witzig and A.A. Adjei, Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin, 2005. 55(3): 178-94.
    15.Shu, H.K., M.M. Kim, P. Chen, et al., The intrinsic radioresistance of glioblastoma-derived cell lines is associated with a failure of p53 to induce p21(BAX) expression. Proc Natl Acad Sci USA, 1998. 95(24): 14453-8.
    16.Weaver, K.D., S. Yeyeodu, J.C. Cusack, Jr., et al., Potentiation of chemotherapeutic agents following antagonism of nuclear factor kappa B in human gliomas. J Neurooncol, 2003. 61(3): 187-96.
    17.Baker, N.E. and S.Y. Yu, The EGF receptor defines domains of cell cycle progression and survival to regulate cell number in the developing Drosophila eye. Cell, 2001. 104(5): 699-708.
    18.Laws, E.R., Jr. and M.E. Shaffrey, The inherent invasiveness of cerebral gliomas: implications for clinical management. Int J Dev Neurosci, 1999. 17(5-6): 413-20.
    19.Martens, T., Y. Laabs, H.S. Gunther, et al., Inhibition of glioblastoma growth in a highly invasive nude mouse model can be achieved by targeting epidermal growth factor receptor but not vascular endothelial growth factor receptor-2. Clin Cancer Res, 2008. 14(17): 5447-58.
    20.Guo, D., J. Nilsson, H. Haapasalo, et al., Perinuclear leucine-rich repeats and immunoglobulin-like domain proteins (LR1G1-3) as prognostic indicators in astrocytic tumors. Acta Neuropathol, 2006. 111(3): 238-46.
    21.Holmlund, C, H. Haapasalo, W. Yi, et al., Cytoplasmic LRIG2 expression is associated with poor oligodendroglioma patient survival. Neuropathology, 2008.
    22.Bocchini,V.,R.Casalone,P.Collini,et al.,Changes in glial fibrillary acidic protein and karyotype during culturing of two cell lines established from human glioblastoma multiforme.Cell Tissue Res,1991.265(1):73-81.
    1.Anderson DJ: Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron 30: 19-35, 2001
    2.Sauvageot CM, Stiles CD: Molecular mechanisms controlling cortical gliogenesis. Curr Opin Neurobiol 12: 244-249, 2002
    3.DeAngelis LM: Brain tumors. N Engl J Med 344: 114-123, 2001
    4.Kleihues P, Cavanee W (eds): Tumours of the Nervous System. WHO Classification of Tumours. Pathology and Genetics. IARC Press, Lyon, 2000
    5.Dai C, Holland EC: Astrocyte differentiation states and glioma formation. Cancer J 9: 72-81,2003
    6.Dahlstrand J, Collins VP, Lendahl U: Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res 52: 5334-5341,1992
    7.Kashima T, Vinters HV, Campagnoni AT: Unexpected expression of intermediate filament protein genes in human oligodendroglioma cell lines. J Neuropathol Exp Neurol 54: 23-31, 1995
    8.Ross SE, Greenberg ME, Stiles CD: Basic helix-loop-helix factors in cortical development. Neuron 39: 13-25, 2003
    9.Nieto M, Schuurmans C, Britz O, Guillemot F: Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29: 401-413, 2001
    10.Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O'Reilly R, Bader BL, Hynes RO, Zhuang Y, Manova K, Benezra R: Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401: 670-677, 1999
    11.Kornblum HI, Hussain R, Wiesen J, Miettinen P, Zurcher SD, Chow K, Derynck R, Werb Z: Abnormal astrocyte development and neuronal death in mice lacking the epidermal growth factor receptor. J Neurosci Res 53: 697-717, 1998
    12.Sibilia M, Steinbach JP, Stingl L, Aguzzi A, Wagner EF: A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. Embo J 17: 719-731, 1998
    13.Burrows RC, Lillien L, Levitt P: Mechanisms of progenitor maturation are conserved in the striatum and cortex. Dev Neurosci 22: 7-15, 2000
    14.Hidalgo A, Kinrade EF. Georgiou M: The Drosophila neuregulin vein maintains glial survival during axon guidance in the CNS. Dev Cell 1: 679-690, 2001
    15.Bergmann A, Tugentman M, Shilo BZ, Steller H: Regulation of cell number by MAPK-dependent control of apoptosis: a mechanism for trophic survival signaling. Dev Cell 2: 159-170,2002
    16.Bonni A, Sun Y, Nadal-Vicens M. Bhatt A, Frank DA, Rozovsky I, Stahl N, Yancopoulos GD, Greenberg ME: Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278: 477-483, 1997
    17.Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME: Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104: 365-376, 2001
    18.Takizawa T, Nakashima K, Namihira M. Ochiai W, Uemura A, Yanagisawa M, Fujita N, Nakao M, Taga T: DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 1: 749-758, 2001
    19.Hitoshi S, Alexson T, Tropepe V, Donoviel D, Elia AJ, Nye JS, Conlon RA, Mak TW, Bernstein A, van der Kooy D: Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 16: 846-858, 2002
    20.Gaiano N, Fishell G: The role of notch in promoting glial and neural stem cell fates. Annu Rev Neurosci 25: 471-490, 2002
    21.Ge W. Martinowich K,Wu X, He F,Miyamoto A, Fan G, Weinmaster G, Sun YE: Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation. J Neurosci Res 69: 848-860, 2002
    22.Nakashima K, Takizawa T. Ochiai W, Yanagisawa M, Hisatsune T. Nakafuku M, Miyazono K, Kishimoto T, Kageyama R, Taga T: BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc Natl Acad Sci USA 98: 5868-5873, 2001
    23.Raff MC, Miller RH, Noble M: A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303: 390-396, 1983
    24.Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, Rowitch DH: Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109: 75-86, 2002
    25.Raff MC, Lillien LE, Richardson WD, Burne JF, Noble MD: Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature 333: 562-565, 1988
    26.Calver AR, Hall AC, Yu WP, Walsh FS, Heath JK, Betsholtz C, Richardson WD: Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron 20: 869-882, 1998
    27.Fruttiger M, Karlsson L, Hall AC, Abramsson A, Calver AR, Bostrom H, Willetts K, Bertold CH. Heath JK, Betsholtz C, Richardson WD: Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development 126:457-467, 1999
    28.Park HC, Appel B: Delta-Notch signaling regulates oligodendrocyte specification. Development 130: 3747-3755,2003
    29.Wang S, Sdrulla AD, diSibio G, Bush G, Nofziger D, Hicks C, Weinmaster G, Barres BA: Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21: 63-75,1998
    30.Givogri Ml, Costa RM, Schonmann V, Silva AJ, Campagnoni AT, Bongarzone ER: Central nervous system myelination in mice with deficient expression of Notch 1 receptor. J Neurosci Res 67: 309-320, 2002
    31.Hu QD, Ang BT. Karsak M, Hu WP, Cui XY, Duka T, Takeda Y, Chia W, Sankar N, Ng YK, Ling EA, Maciag T, Small D, Trifonova R, Kopan R, Okano H, Nakafuku M, Chiba S, Hirai H, Aster JC, Schachner M, Pallen CJ. Watanabe K, Xiao ZC: F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 115: 163-175,2003
    32.Zhou Q, Choi G, Anderson DJ: The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31: 791-807, 2001
    33.Alberta JA, Park SK, Mora J, Yuk D, Pawlitzky I, Iannarelli P, Vartanian T, Stiles CD, Rowitch DH: Sonic hedgehog is required during an early phase of oligodendrocyte development in mammalian brain. Mol Cell Neurosci 18: 434-441, 2001
    34.Zhou Q, Anderson DJ: The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109: 61-73. 2002
    35.Kondo T, Raff M: The Id4 HLH protein and the timing of oligodendrocyte differentiation. Embo J 19: 1998-2007, 2000
    36.Wang S, Sdrulla A, Johnson JE, Yokota Y, Barres BA: A role for the helix-loop-helix protein Id2 in the control of oligodendrocyte development. Neuron 29: 603-614, 2001
    37.Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A: Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21: 7153-7160, 2001
    38.Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ: Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425: 962-967, 2003
    39.Groszer M, Erickson R, Scripture-Adams DD, Lesche R. Trumpp A, Zack JA, Kornblum HI, Liu X, Wu H: Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294: 2186-2189, 2001
    40.Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A: EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36: 1021-1034,2002
    41.Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA: Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA 97: 13883-13888, 2000
    42.Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR: Neurons derived from radial glial cells establish radial units in neocortex. Nature 409: 714-720, 2001
    43.Millen KJ, Millonig JH, Wingate RJ, Alder J, Hatten ME: Neurogenetics of the cerebellar system. J Child Neurol 14: 574-581; discussion 581-582, 1999
    44.Dahmane N, Ruiz-i-Altaba A: Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126: 3089-3100, 1999
    45.Wechsler-Reya RJ, Scott MP: Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22: 103-114, 1999
    46.Knoepfler PS, Cheng PF, Eisenman RN: N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 16: 2699-2712,2002
    47.Galderisi U, Jori FP, Giordano A: Cell cycle regulation and neural differentiation. Oncogene 22:5208-5219,2003
    48.Zezula J, Casaccia-Bonnefil P, Ezhevsky SA, Osterhout DJ, Levine JM, Dowdy SF, Chao MV, Koff A: p21cipl is required for the differentiation of oligodendrocytes independently of cell cycle withdrawal. EMBO Rep 2: 27-34, 2001
    49.Casaccia-Bonnefil P, Tikoo R, Kiyokawa H, Friedrich V, Jr., Chao MV, Koff A: Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclindependent kinase inhibitor p27Kip 1. Genes Dev 11: 2335-2346, 1997
    50.Miyazawa K, Himi T, Garcia V, Yamagishi H, Sato S, Ishizaki Y: A role for p27/Kip (?) in the control of cerebellar granule cell precursor proliferation. J Neurosci 20: 5756-5763, 2000
    51.Doetsch F, Verdugo JM, Caille I, Alvarez-Buylla A, Chao MV, Casaccia-Bonnefil P: Lack of the cell-cycle inhibitor p27Kipl results in selective increase of transit-amplifying cells for adult neurogenesis. J Neurosci 22: 2255-2264, 2002
    52.Xiao A. Wu H, Pandolfi PP, Louis DN, Van Dyke T: Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1: 157-168, 2002
    53.Holland EC, Hively WP. DePinho RA, Varmus HE: A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12:3675-3685, 1998
    54.Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ, Tang Y, DeFrances J, Stover E, Weissleder R, Rowitch DH, Louis DN, DePinho RA: Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1: 269-277. 2002
    55.Galderisi U, Melone MA. Jori FP, Piegari E, Di Bernardo G, Cipollaro M, Cascino A, Peluso G, Claudio PP. Giordano A: pRb2/p130 gene overexpression induces astrocyte differentiation. Mol Cell Neurosci 17: 415-425, 2001
    56.Shapiro JR: Genetics of brain neoplasms. Curr Neurol Neurosci Rep 1:217-224. 2001
    57.Kitange GJ, Templeton KL, Jenkins RB: Recent advances in the molecular genetics of primary gliomas. Curr Opin Oncol 15: 197-203, 2003
    58.Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA: Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res 62: 3729-3735, 2002
    59.Raffel C, Jenkins RB. Frederick L, Hebrink D, Alderete B, Fults DW, James CD: Sporadic medulloblastomas contain PTCH mutations. Cancer Res 57: 842-845, 1997
    60.Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI: Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA: 15178-15183, 2003
    61.Ding H, Guha A: Mouse astrocytoma models: embryonic stem cell mediated transgenesis. J Neurooncol 53: 289-296, 2001
    62.Weiss WA, Burns MJ, Hackett C, Aldape K, Hill JR, Kuriyama H, Kuriyama N, Milshteyn N, Roberts T, Wendland MF, DePinho R, Israel MA: Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res 63: 1589-1595, 2003
    63.Ding H, Shannon P, Lau N, Wu X, Roncari L, Baldwin RL, Takebayashi H, Nagy A, Gutmann DH, Guha A: Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res 63: 1106-1113,2003
    64.Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN. Holland EC: PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces Oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15: 1913-1925,2001
    65.Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN: Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25: 55-57,2000
    66.Ding H, Roncari L, Shannon P, Wu X, Lau N, Karaskova J, Gutmann DH, Squire JA, Nagy A, Guha A: Astrocytespecific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res 61: 3826-3836, 2001
    67.Weissenberger J, Steinbach JP, Malin G, Spada S, Rulicke T, Aguzzi A: Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice. Oncogene 14:2005-2013, 1997
    68.Uhrbom L, Dai C, Celestino JC, Rosenblum MK, Fuller GN, Holland EC: Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 62: 5551-5558,2002
    69.Goodrich LV, Milenkovic L, Higgins KM, Scott MP: Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277: 1109-1113, 1997
    70.Weiner HL, Bakst R, Hurlbert MS, Ruggiero J. Ahn E, Lee WS, Stephen D, Zagzag D, Joyner AL, Turnbull DH: Induction of medulloblastomas in mice by sonic hedgehog, independent of Glicl. Cancer Res 62: 6385-6389, 2002
    71.Rao G, Pedone CA, Coffin CM, Holland EC, Fults DW: c-Myc enhances sonic hedgehog-induced medulloblastoma formation from nestin-expressing neural progenitors in mice. Neoplasia 5: 198-204, 2003
    72.Marino S, Vooijs M, van Der Gulden H. Jonkers J, Berns A: Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 14: 994-1004, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700