季铵化聚芳醚砜酮纳滤膜及阴离子交换膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含二氮杂萘酮结构的聚芳醚砜酮(PPESK)是本研究组开发的新材料,具有较高的玻璃化转变温度,良好的溶解性、成膜性、机械性能和化学稳定性,是一类用于制备分离膜的新型材料。
     本文在98%的浓硫酸中,以氯甲基辛醚(CMOE)对PPESK进行氯甲基化改性,制备了氯甲基化聚芳醚砜酮(CMPPESK)。系统研究了反应温度、反应时间、CMOE浓度以及聚合物浓度等因素对PPESK氯甲基化反应程度的影响,优化反应工艺条件,实现了氯甲基化程度的可控制备,氯甲基化程度可高达1.99 mmol·g~(-1)。考察了CMPPESK的溶解性和热性能。CMPPESK在NMP、DMAc、CH_3Cl等极性有机溶剂中具有良好的溶解性。氯甲基基团的引入降低了聚合物的初始失重温度,而且氯甲基化程度越高,初始失重温度越低。在CMPPESK热降解的过程中,氯甲基基团脱落的同时可能伴随交联反应的发生,从而导致氯甲基化程度越高,最终残留量越多。以三甲胺对CMPPESK进行季铵化改性,制备了不同离子交换容量(IEC)的季铵化聚芳醚砜酮(QAPPESK)。考察了QAPPESK的溶解性和热性能。发现离子交换容量(IEC)越高,其耐溶剂性能越好。QAPPESK(IEC=1.18 mmol·g~)(-1))部分溶解于98%的浓硫酸和溶胀于DMF中,在NMP、DMAo等其它的有机溶剂中基本不溶。QAPPESK的季铵基团在200~250℃之间发生失重,而且IEC值越高,热失重就越显著。
     由于QAPPESK的溶解性较差,而CMPPESK具有较好的溶解性,因此制备QAPPESK纳滤膜分为两步:首先通过相转化法制备CMPPESK非对称膜,然后对CMPPESK非对称膜进行季铵化改性,制备荷正电的QAPPESK纳滤膜。在相转化法制备CMPPESK非对称膜的过程中,溶剂、非溶剂添加剂的选择与膜的结构和性能紧密相关。采用浊点滴定法,系统考察聚合物、溶剂、非溶剂对铸膜液体系相分离的影响,实验测得了CMPPESK/Solvent/NSA(nonsolvent additive)三相体系在25℃下的浊点,并将实验测定的数据进行了线性模拟,根据线性浊点(LCP)关系外推计算出了三相体系的双节线,由此可得铸膜液体系中非溶剂添加剂的上限含量,为CMPPESK铸膜液体系组成的构建提供了可靠的科学依据。
     以CMPPESK为膜材料,制备了CMPPESK非对称膜,对其进行季铵化改性制备了荷正电的QAPPESK纳滤膜,考察了铸膜液溶剂、非溶剂添加剂、季铵化条件等工艺条件对膜性能的影响,优化了制膜工艺条件。在优化的工艺条件下制备的QAPPESK纳滤膜在0.4 MPa下对MgCl_2的截留率可达88%,溶液通量高达56 L·m~(-2)·h~(-1)。季铵化条件对膜的IEC值和溶胀度具有较大的影响,季铵化时间越长,三甲胺浓度越高,使得生成的季铵基团越多,膜的IEC值就越大,同时膜的溶胀度也增大。而且,反应温度越高,膜的溶胀度越大。当三甲胺浓度为5.0 mol·L~(-1),季铵化时间为5 h,季铵化温度为30℃时,QAPPESK纳滤膜具有较好的膜分离性能。
     根据优化的工艺条件,制备了综合性能优异的QAPPESK纳滤膜。由非平衡热力学模型以及静电位阻模型(ES模型)计算出了QAPPESK纳滤膜的膜孔结构参数。考察了QAPPESK纳滤膜对不同无机盐的分离性能以及其耐热性、化学稳定性和对阳离子染料MB的浓缩脱盐研究。QAPPESK纳滤膜对不同无机盐的脱除顺序为:MgCl_2>MgSO_4>NaCl>Na_2SO_4,是典型的荷正电纳滤膜的分离特性。QAPPESK纳滤膜具有良好的耐热性和耐污染性能,在60℃下运行120 h,QAPPESK纳滤膜的分离效果基本不变。QAPPESK纳滤膜具较好耐氯性和耐氧化性能,且在pH值低于10的溶液介质中使用,分离效果基本不变。其对阳离子染料MB具有较好的分离性能和抗污染性能,当对含盐阳离子染料MB进行脱盐精制时,对染料MB的截留率始终保持在99%以上,通量在40 L·m~(-2)·h~(-1)左右波动。经过7次循环的恒容脱盐后,染料中的盐基本除净。
     以CMPPESK为膜材料,制备了CMPPESK均质膜,通过对CMPPESK均质膜进行季铵化改性制备了QAPPESK阴离子交换膜,考察了其特征参数、化学稳定性以及电池性能。QAPPESK阴离子交换膜具有较好的化学稳定性,用做全钒氧化还原液流电池隔膜,其能量效率达88.3%,在相同的测试条件下较Nafion112和Nafion117的高,说明QAPPESK用于全钒氧化还原电池隔膜具有较好的应用前景。
Poly(phthalazinone ether sulfone ketone) (PPESK) is a novel membrane material for filtration membrane with high glass-transition temperature, good solubility, well membrane-forming ability, good mechanical performance and chemical stability.
     Chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) was prepared from PPESK and chloromethyl octyl ether (CMOE) in concentrated sulfuric acid. The effects of reaction temperature, reaction time, the concentration of CMOE and polymer concentration on the degree of chloromethylation were investigated in detail. The technology conditions were optimized and the degree of chloromethylation could be controllable. The degree of chloromethylation could get to1.99 mmol·g~(-1). The solubility and thermal properties of CMPPESK were also examined. CMPPESK had well solubility, which was soluble in N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), and chloroform. It was found that the introduction of chloromethyl groups and quaternary ammonium groups into the polymer chains led to a decrease in the decomposition temperature. And with the increase of the degree of chloromethylation, the initial degradation temperature declined. The decomposition of CMPPESK maybe occurred by both the elimination of chloromethyl functional groups and a cross-linking reaction. The higher the degree of chloromethylation was, the more the residual quantity was. Quaternized poly(phthalazinone ether sulfone ketone) (QAPPESK) with different the ion exchange capacity (IEC) was prepared from CMPPESK and trimethylamine by quaternized modification. The solubility and thermal properties of QAPPESK were also examined. It was found that QAPPESK had better solvent resistance with the increase of the IEC. QAPPESK (IEC=1.18 mmol·g~(-1)) had excellent solvent resistance, which was partly soluble in sulfuric acid (98%) and swollen in N, N-dimethylformamide (DMF) and wan not soluble in NMP, DMAc and other organic solvents. The elimination of quaternary ammonium groups occurred at between 200 and 250℃. And with the increase of the IEC, the weight loss of QAPPESK was much more obvious.
     CMPPESK had good solubility, whereas QAPPESK had excellent solvent resistance. Therefore, positively charged QAPPESK NF membrane couldn't be directly prepared from QAPPESK, but could be obtained through the following two steps: (1) The preparation of CMPPESK asymmetric membrane by a phase inversion method. (2) QAPPESK NF membrane was prepared form CMPPESK asymmetric membrane by quaternized modification. Solvent and nonsolvent additives selected had effects on membrane structure and performance in the phase inversion process of preparing CMPPESK asymmetric membrane. The effects of polymer, solvent and nonsolvent on casting systems were investigated in detail by cloud titration method. The cloud of ternary phase system of CMPPESK/Solvent/NS A was tested at 25℃and the data were simulated linearly. The binodal lines of the ternary phase systems were calculated according to the linerized cloud point (LCP) correlation. Therefore, the maximum content of NSA in the casting solution can be calculated according to the bimodal lines of the system, which is a reliable basis for the establishment for the composition of casting solution.
     CMPPESK asymmetric membrane was prepared form CMPPESK membrane material. And positively charged quaternized poly(phthalazinone ether sulfone ketone) (QAPPESK) nanofiltration (NF) membranes were prepared from CMPPESK asymmetric membrane by quaternized modification. The effects of preparation conditions, such as casting solvent, nonsolvent additives, quaternization conditions and so on, were investigated and the technology conditions were optimized. QAPPESK NF membranes were obtained by optimal technology conditions, which the MgCl_2 rejection was 88% and the flux was 56 L·m~(-2)·h~(-1) at 0.4 MPa. Quaternization conditions had much larger effects on the EEC and swelling rate of QAPPESK NF membrane. When much more quaternary ammonium groups were introduced, the membrane would get much more positive charges and the IEC of membrane would become much larger. At the same time, the swelling rate of membrane increased. And the swelling rate of membrane also increased with the reaction temperature. when trimethylamine concentration is 5.0 mol·L~(-1), and quaternization time is about 5h, and quaternization temperature is 30℃, QAPPESK NF membrane had much better membrane performance.
     QAPPESK NF membranes with good integrated properties were prepared by optimal technology condition. Membrane parameters were calculated according to the irreversible thermodynamic model and the electrostatic and steric-hindrance (ES) model. The properties of QAPPESK NF membrane were studied, such as separating different inorganic salt, the thermal stability, chemical stability and desalination-purification for cation dye MB. The inorganic electrolytes rejection of QAPPESK NF membrane ranks: MgCl_2> MgSO_4> NaCl> Na_2SO_4, which is typical characteristics of a positively charged NF membrane. QAPPESK NF membranes exhibited good thermal stability and fouling resistance. QAPPESK NF membrane held the stable membrane separation performance in 120 h at 60℃. QAPPESK NF membrane showed good free chlorine resistance and oxide resistance, and could hold stable membrane separation performance when the pH of media solution was lower than 10. QAPPESK NF membrane was applied in the desalination-purification for cation dye MB, and the rejection for MB was kept at more than 99% and the flux waved about 40 L·m~(-2)·h~(-1). The cation dye MB was almost desalinized through 7 times cycle.
     CMPPESK homogeneous membrane was prepared form CMPPESK membrane material. And QAPPESK anion-exchange membrane was prepared from CMPPESK homogeneous membrane by quaternized modification. The characteristic parameters, chemical stability and battery performance of QAPPESK anion-exchange membrane were investigated. QAPPESK membranes had good chemical stability. The vanadium redox flow battery (V-RFB) using QAPPESK anion-exchange membrane had better performance with 88.3% of overall energy efficiency, which had much higher energy efficiency than Nafion 112 and Nafion 117 at the same test conditions. So QAPPESK anion-exchange membrane is very useful as a separator for the V-RFB with high overall energy efficiency and has promising application prospect in the V-RFB.
引文
[1] 时均,袁权,高从增.膜技术手册.北京:化学工业出版社,2001.
    [2] 张守海,蹇锡高,杨大令.新型耐高温分离膜用高分子材料.现代化工,2002,22(S1):203-205.
    [3] Leob S,Sourirajan S.U.S.Pat.3133132,1964.
    [4] Marcel Mulder(荷兰)著,李琳译.膜技术基本原理(第二版).北京:清华大学出版社.1999.
    [5] 王湛.膜分离技术基础.北京:化学工业出版社,2000.
    [6] 安树林.膜科学技术实用教程.北京:化学工业出版社,2005.
    [7] 张玉忠,郑领英,高从堦.液体分离膜技术及应用.北京:化学工业出版社,2004.
    [8] 朱长乐.膜科学技术(第二版).北京:高等教育出版社,2004:10.
    [9] 郑领英,王学松.膜技术.北京:化学工业出版社,2001.
    [10] 俞青芬,新型传质膜分离技术的进展.青海大学学报,1998,16(5):58-67.
    [11] 周金盛,陈观文.纳滤膜技术的研究进展.膜科学与技术.1999,19(4):1-8.
    [12] Erisson P. Nanofiltration extends the range of membrane filtration, Envionmental Process, 1988, 7(1) 58-61.
    [13] 刘玉荣等.纳滤膜技术的发展及应用.化工装备技术.2002,23(4):14-17.
    [14] 高从堦.我国分离膜技术的发展.全国膜及其新型分离技术在油田化工、化工领域应用研讨会议论文集.北京:1999.
    [15] 王晓琳,赵杰.纳滤膜的分离机理及其应用状况.全国膜及其新型分离技术在油田化工、化工领域应用研讨会议论文集.北京:1999.
    [16] Wu C R, Zhang S H, Yang D L et al. Preparation, characterization and application in wastewater treatment of a novel thermal stable composite membrane, J. Membr. Sci., 2006, 279 (1-2): 238-245.
    [17] Nicolaisen B. Developments in membrane technology for water treatment, Desalination, 2002, 153(1-3): 355-360.
    [18] Gibbins E, D'Antonio M, Nair D et al. Observations on solvent flux and solute rejection across solvent resistant nanofiltration membranes, Desalination, 2002, 147 (1-3): 307-313.
    [19] Razdana U, Kulkarni S S. Nanofiltration thin-film-composite polyesteramide membranes based on bulky diols, Desalination, 2004, 161(1): 25-32.
    [20] Kim I C, Lee K H. Dyeing process wastewater treatment using fouling resistant nanofiltration and reverse osmosis membranes, Desalination, 2006, 192 (1-3): 246-251.
    [21] Larbot A, Alami-Younissi S, Persin Met al. Preparation of γ-alumina nanofiltration membrane, J. Membr. Sci., 1994, 97: 167-173.
    [22] 卢红梅.纳滤膜的特性及其在国内水处理中的应用进展.过滤与分离.2002,12(1):38-41.
    [23] Pertersen R J. Composite reverse osmosis and nanofiltration membranes, J. Membr. Sci., 1993, 83 (1):81-150.
    [24] Linde K, Joensson A. Nanofiltration and salt solutions and landfill leachate, Desalination, 1995, 103(3): 223-232.
    [25] 叶蕾,薄通.纳滤膜技术及其应用.石化技术与应用.2000,18(2):99-102.
    [26] OH N W, JEGAL J, LEE K H. Preparation and Characterization of Nanofiltration Composite Membranes Using Polyacrylonitrile (PAN). Ⅱ. Preparation and Characterization of Polyamide Composite Membranes, J. Appl. Polym. Sci., 2001, 80 (14): 2729-2736.
    [27] Du R H, Zhao J S. Properties of poly (N,N-dimethylaminoethyl methacrylate)/polysulfone positively charged composite nanofiltration membrane, J. Membr. Sci., 2004, 239(2): 183-188.
    [28] Loeb S, Sourirajan S, Sea water demineralization by means of an osmotic membrane in saline water conversion, Adv. Chem. Ser., 1963, 38, 117-132.
    [29] 蒲通,曾作祥.高分子纳滤膜的制备技术.分子通报.2001,(3):57-63.
    [30] 周金盛,陈观文.CA/CTA共混不对称纳滤膜分离特性的研究.膜科学与技术,1999,19(1):34-39.
    [31] 周金盛,陈观文.CA/CTA共混不对称纳滤膜制备过程中的影响因素探讨.膜科学与技术,1999,19(2):22-26.
    [32] Bowen W R, Doneva T A, Yin H B. Polysulfone-sulfonated poly(ether ether) ketone blend membranes: systematic synthesis and characterization, J. Membr. Sci., 2001, 181(2): 253-263.
    [33] Bowen W R, Doneva T A, Yin H B. The effect of sulfonated poly(ether ether ketone) additives on membrane formation and performance, J. Membr. Sci., 2002, 145 (1-3): 39-45.
    [34] 李旭祥.分离膜制备与应用.北京:化学工业出版社,2004.
    [35] 梁雪梅,陆晓峰,刘光全等.界面缩聚法制备聚芳酯复合纳滤膜的研究Ⅱ.基膜的制备.华东理工大学学报,1999,25(3):297-301.
    [36] 宋玉军,刘福安,杨勇等.纳滤膜的制备及应用技术研究进展.化工科技,1999,7(3):1-7.
    [37] Noshay A, Robeson L M. Sulfonated polysulfone, J. Appl. Polym. Sci., 1976, 20(7): 1885-1903.
    [38] Johnson B C, Yilgor I, Tran C et al. Synthesis and characterization of sulfonated poly(arylene ether sulfones), J. Appl. Polym. Sci.: Polym. Chem. Ed., 1984, 22 (3): 721-737.
    [39] 阿部重光,伊达正纯,川喜田哲哉.日本公开特许公报,1987.
    [40] 蹇锡高,孟跃中,郑海滨.含二氮杂萘酮结构的聚醚砜及制备法.中国专利:93109180.2,1993.
    [41] 蹇锡高,孟跃中,郑海滨.含二氮杂萘酮结构的聚醚酮及制备法.中国专利:93109179.9,1993.
    [42] Jian X G, Dai Y, Zheng L et al. Application of poly(phthalazinone ether sulfone keton)s to gas membrane separation, J. Appl. Polym. Sci., 1999, 71 (14): 2385-2390.
    [43] Jian X G, Dai Y, He G H et al. Preparation of UF and NF poly(phthalazinone ether sulfone ketone) membranes for high temperature application, J. Membr. Sci. 1999, 161(1-2): 185-191.
    [44] Yang Y Q, Yang D L, Zhang S H et al. Preparation and Characterization of Poly(phthalazinone ether sulfone ketone) Hollow Fiber Ultrafiltration Membranes with Excellent Thermal Stability, J. Membr. Sci., 2006, 280 (1-2): 957-968.
    [45] Yang Y Q, Yang D L, Zhang S H et al. Poly(phthalazinone ether sulfone ketone) (PPESK) Hollow Fiber Asymmetric Nanofiltration Membranes: Preparation, Morphologies and Properties, J. Membr. Sci. 2006, 270 (1-2): 1-12.
    [46] Wei J, Jian X G, Wu C H et al. Influence of polymer structure on thermal stability of composite membranes, J. Membr. Sci., 2005, 256 (1-2): 116-121.
    [47] Dai Y, Jian X G, Liu X M et al. Synthesis and Characterization of Sulfonated Poly(phthalazinone ether sulfone ketone) for Ultrafiltration and Nanofiltration Membranes, J. Appl. Polym. Sci., 2001, 79 (9), 1685-1692.
    [48] 张守海,蹇锡高,苏仪等.氯甲基化/季铵化新型聚芳醚砜酮超滤膜的研制.2004,30(3):125-143.
    [49] Dai Y, Jian X G, Zhang S H et al. Thermostable ultrafiltration and nanofiltration membrane from sulfonated poly(phthalazinone ether sulfone ketone), J. Membr. Sci., 2001, 188 (2): 195-203.
    [50] Dai Y, Jian X G, Zhang S H et al. Thin film composite (TFC) membranes with improved thermal stability from sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK), J. Membr. Sci., 2002, 207 (2): 189-197.
    [51] Zhang S H, Jian X G, Dai Y. Preparation of sulfonated poly(phthalazinone ether sulfone ketone) composite nanofiltration membrane, J. Membr. Sci., 2005, 246 (2): 121-126.
    [52] Su Y, Jian X G, Zhang S H et al. Preparation and characterization of quaternizaed poly(phthalazinone ether sulfone ketch) NF membranes, J. Membr. Sci., 2004, 241 (2): 225-233.
    [53] Yaroshchuk A E, Vovkogon Y A. Pressure-driven transport of ternary electrolyte solutions with a common coion through charged membranes, Numerical analysis, J. Membr. Sci., 1994, 86 (1-2): 19-37.
    [54] Alami-Younssi S, Larbot A, Persin M et al, Rejection of mineral salts on a gamma alumina nanofiltration membrane Application to environmental process, J. Membr. Sci., 1995, 102, 123-129.
    [55] Chanfer B, Rabiller-Baudry M, Guihard L et al. Retention of ions in nanofiltration at various ionic strength, Desalination, 1996, 104 (1-2), 37-46.
    [56] Perry M, Linder C. Intermediate reverse osmosis ultrafiltration (RO UF) membranes for concentration and desalting of low molecular weight organic solutes, Desalination, 1989, 71(3): 233-245.
    [57] Schirg P, Widmer F. Characterisation of nanofiltration membranes for the separation of aqueous dye-salt solutions, Desalination, 1992, 89 (1): 89-107.
    [58] Levenstein R, Hasson D, Semiat R. Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes, J. Membr. Sci., 1996, 116(1): 77-92.
    [59] Spielger K S, Kedem O. Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes, Des alination, 1966, 1 (4): 311-326.
    [60] Wang X L, Tsuru T, Nakao S et al. The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes, J. Membr. Sci., 1997, 135(1): 19-32.
    [61] Ismail A F, Hassan A R. The deduction of fine structural details of asymmetric nanofiltration membranes using theoretical models, J. Membr. Sci., 2004, 231(1-2): 25-36.
    [62] Nakao, S. Determination of pore size and pore size distribution: 3. Filtration membranes, J. Membr. Sci., 1994,96 (1-2): 131-165.
    [63] Wang X L, Tsuru T, Togoh M et al. Evaluation of pore structure and electrical properties of nanofiltration membranes, J. Chem. Eng. Japan, 1995, 28 (2): 186-192.
    [64] 王晓琳,中尾真一.纳滤膜的电解质截留率及其带电特性.南京化工大学学报,1999,21(2):11-15.
    [65] Christoforou C C, Westermann-Clerk G B, Anderson J L. The streaming potential and inadequacies of the Helmholtz equation, J. Colloid. Interf. Sci., 1985,106 (1): 1-11.
    
    [66] Westermann-Clerk G B, Anderson G L. Experimental, verification of the space charge model for electrokinetics in charged microporous membranes, J. Electrochem. Soc, 1983,130 (4): 839-847.
    
    [67] Oldham I B, Young F J, Osterle J F. Streaming potential in small capillaries, J. Colloid Sci., 1963, 18 (4): 328-336.
    
    [68] Morrision F A Jr, Osterle J F. Electrokinetic energy conversion in ultrafine capillaries, J. Chem. Phys., 1965, 43 (6): 2111-2115.
    
    [69] Gross R J, Osterle J F. Membrane transport characteristics of ultrafine capillaries, J. Chem. Phys., 1968, 49 (1): 228-234.
    
    [70] Fair J C, Osterle J F. Reverse electrodialysis in charged capillary membranes, J. Chem. Phys., 1971, 54 (8): 3307-3316.
    
    [71] Neogi P, Ruckenstein E. Viscoelectric effects in reverse osmosis, J. Colloid Interf. Sci., 1981, 79 (1): 159-169.
    
    [72] Sasidhar V, Ruckenstein E. Electrolyte osmosis through capillaries, J. Colloid Interf. Sci., 1981, 82 (2): 439-457.
    
    [73] Sasidhar V, Ruckenstein E. Anomalous effects during electrolyte osmosis across charged porous membranes, J. Colloid Interf. Sci., 1982, 85 (2): 332-362.
    
    [74] Hijnen H J M, Van Daalen J, Smit J A M. The application of the space-charge model to the permeability properties of charged microporous membranes, J. Colloid Interf. Sci., 1985, 107 (2): 525-539.
    
    [75] Smit J A M. Reverse osmosis in charged membranes. Analytical predictions from the space-charged model, J. Colloid Interf. Sci., 1989, 132 (2): 413-424.
    
    [76] Meyer K H, Sievers J F. La Permeabilite des membranes 1. Theorie del a Permeabilite Ionique, Helv. Chim. Acta, 1936, 19: 649.
    
    [77] Teorell T. Transport processes and electrical phenomena in ionic membranes, Prog. Biophys. Biophys. Chem., 1953, 3:305-369.
    
    [78] Kobatake Y, Kamo N. Transport process in charged membranes, Prog. Poly. Sci, Japan, 1973, 5: 257-301.
    
    [79] Hoffer E, Kedem O. Hyperfiltration in charged membranes. The fixed charged model, Desalination, 1967, 2 (1): 25-39.
    
    [80] Tsuru T, Nakao S, Kimura S. Calculation of ion rejection by extended Nernst-Planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions, J. Chem. Eng. Japan, 1991, 24:511-517.
    
    [81] Tsuru T, Urairi M, Nakao S et al. Reverse osmosis of single and mixed electrolytes with charged membranes. Experiment and analysis, J. Chem. Eng. Japan, 1991, 24: 518-523.
    
    [82] Wang X L, Tsuru T, Nakao S et al. Electrolyte transport through nanofiltraion membranes by the space-charge model and the comparison with Teorell-Meyer-Sievers model, J. Membr. Sci., 1995, 103 (1-3): 117-133.
    [83] Bowen W, Mukhtar H. Characterisation and prediction of separation performance of nanofiltration membranes, J. Membr. Sci., 1996, 112 (2): 263-274.
    [84] 周金盛,陈观文.纳滤膜技术的研究进展.膜科学与技术.1999,19(4):1-8.
    [85] 俞三传,金可勇,高从增.膜软化及其应用.工业水处理.2000,20(11):10-13.
    [86] 宋玉军,刘福安,杨勇等.纳滤膜的制备及应用技术研究进展.明胶科学与技术,2001,21(3):149-155.
    [87] Carrier S, Theoleyre M A, Decloux M. Treatment of sugar decolorizing resin regeneration waste using nanofiltration, Desalination, 1997, 113(1): 7-17.
    [88] Manttari M, Nuortila-Jokinen J, Nystrom M. Evaluation of nanofiltration membranes for filtration of paper mill total effluent, Filtr. Sep., 1997, 34 (3): 275-280.
    [89] Katselnik P, Morcos S Y. Reduction of nickel in plating operation effluent with nanofiltration, Plat. Surf. Finish., 1998, 85 (1): 46-47.
    [90] 刘梅红,姜坪.膜法染料废水处理试验研究.膜科学与技术,2001,21(3):50-52.
    [91] Cassano A, Drioli E, Molinari R. Recovery and reuse of chemicals in unhairing, degreasing and chromium tannmg processes by membranes, Desalination, 1997, 113 (2-3): 251-261.
    [92] Archer A C, Mendes A M, Boarentura R A R. Separation of an anionic surfactant by nanofiltration, Environ. Sci. technol., 1999, 33 (16): 2758-2764.
    [93] Karakulski K, Morawski A W. Treatment of spent emulsion from a cable factory by an integrated UF/NF membrane system, Desalination,2002, 149 (1-3): 163-167.
    [94] Thanuttamavong M, Yamamoto K, Oh J I et al. Rejection characteristics of organic and inorganic pollutants by ultra low-pressure nanofiltration of surface water for drinking water treatment, Desalination, 2002, 145 (1-3): 257-264.
    [95] Bowen W R, Doneva T A, Yin H B. Separation of humic acid from a model surface water with PSU/SPEEK blend UF/NF membranes, J. Membr. Sci., 2002, 206 (1-2): 417-429.
    [95] Visvanathan C, Marsono B D, Basu B. Removal of THMP by nanofiltration: Effects of interference parameters, Water Research, 1998, 32 (12): 3527-3538.
    [97] Nabetani H. Development of a membrane system for highly concentrated fruit juice, Membrane, 1996, 21(2): 102-108.
    [98] Matsubara Y, Iwasaki K, Nakajima M et al. Recovery of oligo-saccharides from steamed soybean waste water in tofu processing by reverse osmosis and nanofiltration membranes, Biosci. Biotech. Biochem., 1996, 60 (3): 421-428.
    [99] 鲍元兴,孙蔚榕,杨维亚.低聚异麦芽糖的纳滤分离技术和色谱分离技术.无锡轻工业大学学报,2001,20(4):351-355.
    [100] 毕可英,刘玉荣.纳滤技术浓缩分离1,6-二磷酸果糖氯化钠水溶液的研究,水处理技术,1995,21(5):271-273.
    [101] 王湛,周狲.膜分离技术基础.北京:化学工业出版社,2006.
    [102] 高从楷,张建飞,鲁学仁等.纳滤纯化和浓缩染料试验.水处理技术.1996,22(3):147-150.
    [103] 柴红,周志军,陈欢林.纳滤膜脱盐浓缩染料研究.高校化学工程学报,2000,5(14):461-464.
    [104] Jeantet R, Maubois J L, Boyaval P. Semicontinuous production of lactic acid in a bioreactor coupled with nanofiltration membranes, Enzyme Microb. Technol., 1996,19 (8): 614-619.
    
    [105] Juda M, McRae W A. Coherent ion-exchange gels and membranes, J. Am. Chem. Soc.,1950, 72 (2): 1044-1044.
    
    [106] Mihara K, Kato M. Polarity reversing electrode units and electrical switching means therefore, U.S. Patent 3,453,201 (1969).
    
    [107] Grot W G. Laminates of support material and fluorinated polymer containing pendant side chains containing sulfonyl groups, U.S. Patent 3,770,567 (1973).
    
    [108] Bazinet L, Gaudreau H, Lavigne D et al. Partial demineralization of maple sap by electrodialysis: impact on syrup sensory and physicochemical characteristics, J. Sci. Food Agric, 2007, 87 (9): 1691-1698.
    
    [109] Bazinet L, Lamarche F, Ippersiel D. Bipolar membrane electrodialysis: applications of electrodialysis in the food industry, Trends Food Sci. Technol., 1998, 9 (3): 107-113.
    
    [110] Tarvainen T, Svarfvar B, Akerman S et al. Drug release from a porous ion exchange membrane in vitro, Biomaterials, 1999, 20 (22): 2177-2183.
    
    [111] Kim Y H, Moon S H. Lactic acid recovery from fermentation broth using one-stage electrodialysis, J. Chem. Technol. Biotechnol, 2001, 76 (2): 169-178.
    
    [112] Saracco G. Ionic membrane technologies for the recovery of valuable chemicals from waste waters, Ann. Chim. Rome, 2003, 93 (9-10): 817-826.
    
    [113] 王振堃.离子交换膜——制备、性能及应用.北京:化学工业出版社,1986.
    
    [114] Xu T W, Ion exchange membranes: State of their development and perspective, J. Membr. Sci., 2005, 263 (1-2): 1-29.
    
    [115] Taher N H, Dessouki A M, Khalil F H et al. Preparation and properties of cationic membranes obtained by radiation grafting of vinyl monomers onto poly(tetrafluoroethyleneperfluoropropylvinyl ether) (PFA) films, Polym. Int, 1996, 41 (4): 383-389.
    
    [116] Choi S H, Nho Y C. Radiation-induced graft copolymerization of binary monomer mixture containing acrylonitrile onto polyethylene films, Radiat. Phys. Chem., 2000, 58 (2): 157-168.
    
    [117] El-Sawy N M, Hegazy E A, Rabie A M et al. Radiation-initiated graft copolymerisation of acrylic acid and vinyl acetate onto LDPE films in two individual steps, Polym. Int, 1993, 32 (2): 131-135.
    
    [118] Gupta B, Biichi F N, Scherer G G et al. Crosslinked ion exchange membranes by radiation grafting of styrene/divinylbenzene into FEP films, J. Membr. Sci, 1996, 118 (2): 231-238.
    
    [119] Gupta B, Buchi F N, Staub M et al. Cation exchange membranes by pre-irradiation grafting of styrene into FEP films. II. Properties of copolymer membranes, J. Appl. Polym. Sci, 1996, 34 (10): 1873-1880.
    
    [120] Nasef M M, Saidi H, Nor H M et al. Radiation-induced grafting of styrene onto poly(tetrafluoroethylene) (PTFE) films. Part II. Properties of the grafted and sulfonated membranes, Polym. Int, 2000, 49(12): 1572-1579.
    
    [121] Nasef M M, Saidi H, Nor H M et al. Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto poly(tetrafluoroethylene-co-hexafluoropropylene) films. II. Properties of the sulfonated membranes, J. Appl. Polym. Sci, 2000, 78 (14): 2443-2453.
    [122] Horsfall J, Lovell K. Synthesis and characterization of sulfonic acid-containing ion exchange membranes based on hydrocarbon and fluorocarbon polymers, Eur. Polym. J., 2002, 38 (8): 1671-1682.
    
    [123] Nasef M M, Saidi H. Preparation of cross linked cation exchange membranes by radiation grafting of styrene/divinylbenzene mixtures onto PFA films, J. Membr. Sci., 2003, 216 (1-2): 27-38.
    
    [124] Yamaki T, Asano M, Maekawa Y. Radiation grafting of styrene into crosslinked PTFE films and subsequent sulfonation for fuel cell applications, Radiat. Phys. Chem., 2003, 67 (3-4): 403-407.
    
    [125] Herman H, Slade R C T, Varcoe J R. The radiation grafting of vinylbenzyl chloride onto poly(hexafluoropropylene-cotetrafluoroethylene) films with subsequent conversion to alkaline anion exchange membranes: optimisation of the experimental conditions and characterization, J. Membr. Sci., 2003, 218 (1-3): 147-163.
    
    [126] Lee W, Saito K, Furusak S et al. Design of urea-permeable anion exchange membrane by radiation-induced graft-polymerization, J. Membr. Sci., 1993, 81 (3): 295-305.
    
    [127] Kostov G, Turmanova S. Radiation-initiated graft copolymerization of 4-vinylpyridine onto polyethylene and polytetrafluoroethylene films and anion exchange membranes therefrom, J. Appl. Polym. Sci., 1997, 64 (8): 1469-1475.
    
    [128] Kaur I, Barsola R, Misra B. Graft copolymerization of acrylonitrile and its binary mixture with 4-vinylpyridine onto isotactic polypropylene powder by pre irradiation method, J. Appl. Polym. Sci., 1995, 56(10): 1197-1205.
    
    [129] Mika A M, Childs R F, Dickson J M et al. A new class of polyelectrolyte-filled microfiltration membranes with environmentally controlled porosity, J. Membr. Sci., 1995, 108 (1-2): 37-56.
    
    [130] Elmidaoui A, Belcadi S, Houdus Y et al. Perfluorinated anion exchange membranes: preparation and preliminary tests of dialysis, J. Appl. Polym. Sci., 1992, 30 (7): 1407-1412.
    
    [131] Roualdes S, Kourda N, Durand J et al. Plasma-grafted PVDF polymers as anion exchange membranes for the electrotransport of Cr(VI), Desalination, 2002, 146 (1-3): 273-278.
    
    [132] Kreuer K D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Sci., 2001, 185 (1): 29-39.
    
    [133] Wang F, Hickner M, Kim Y S et al. Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes, J. Membr. Sci., 2002, 197 (1-2): 231-242.
    
    [134] Kang M S, Choi Y J, Choi I J et al. Electrochemical characterization of sulfonated poly(arylene ether sulfone) (S-PES) cation exchange membranes, J. Membr. Sci., 2003, 216 (1-2): 39-53.
    
    [135] Kerres J, Cui W, Reichle S. New sulfonated engineering polymers via the metalation route. I. Sulfonated poly(ether sulfone) PSU Udel(?) via metalation-sulfonation- oxidation, J. Appl. Polym. Sci., 1996, 34 (12): 2421-2438.
    
    [136] Hwang G J, Ohya H. Preparation of anion exchange membrane based on block copolymers. Part II. The effect-of the formation of macroreticular structure on the membrane properties, J. Membr. Sci., 1998, 149 (2): 163-169.
    
    [137] Hwang G J, Ohya H, Nagai T. Ion exchange membrane based on block copolymers. Part III. Preparation of cation exchange membrane, J. Membr. Sci., 1999, 156 (1): 61-65.
    [138] Zschocke P, Quellmalz D. Novel ion exchange membranes based on an aromatic polyethersulfone, J. Membr. Sci., 1985, 22 (2-3): 325-332.
    [139] Nagarale R K, Gohil G S, Vinod K et al. Preparation and electrochemical characterization of cation-and anion-exchange/polyaniline composite membranes, J. Colloid Interface Sci., 2004, 277(1): 162-171.
    [140] Psarrazin J, Persin M. Conductive polymer membranes, Macromol. Syrup., 2002, 188 (1): 1-12.
    [141] Komkova E N, Stamatialis D F, Strathmann H et al. Anion exchange membranes containing diamines: preparation and stability in alkaline solution, J. Membr. Sci., 2004, 244 (1-2): 25-34.
    [142] 毛建卫,崔艳丽.离子交换膜法技术在医药工业中的应用工艺.中国医药工业杂志.2000,31(11):521-523.
    [143] 毛建卫,崔艳丽.离子膜法分离氨基酸的研究.北京化工大学学报,1998,25(1):70-75.
    [144] Novalic S, Kongbangkerd T, Kulbe K D. Separation of gluconate with conventional and bipolar electrodialysis, Desalination, 1997, 114 (1):45-50.
    [145] Yu L X, Lin A G, Zhang L P et al. Application of electrodialysis to the production of Vitamin C, Chem. Eng. J., 2000, 78 (2-3): 153-157.
    [146] 徐铜文,傅荣强,杨伟华.食品工业中的双极膜技术.膜科学与技术,2003,23(4):190-196.
    [147] Elmidaoui A, Lutin F, Chay L et al. Removal of melassigenic ions for beet sugar syrups by electrodialysis using a new anion-exchange membrane, Desalination, 2002, 148 (1-3): 143-148.
    [148] 林涛,余立新.双极性膜电渗析技术在酒石酸生产中的应用研究.化学工程,2002,30(3):58-62.
    [149] Hansen H K, Ottosen L M, Kliem B K et al. Electrodialytic Remediation of Soils Polluted with Cu, Cr, Hg, Pb and Zn, J. Chem. Tech. Biotechnol., 1997, 70 (1): 67-73.
    [150] Ponce-de-León C, Field R W. Comparison of anionic membranes used to concentrate nitric acid to beyond the azeotropic mixture, J. Membr. Sci., 2000, 171 (1): 67-77.
    [151] Andrés L J, Riera F A, Alvarez R. Recovery and Concentration by Electrodialysis of Tartaric Acid from Fruit Juice Industries Waste Waters, J. Chem. Technol. Biotechnol., 1997, 70 (3): 247-252.
    [152] Alvarez F, Alvarez R, Coca J rt al. Salicylic Acid Production by Electrodialysis with Bipolar Membranes, J. Membr. Sci., 1997, 123 (1): 61-69.
    [153] 文越华,张华民,钱鹏等.离子交换膜全钒液流电池的研究.电池.2005,35(6):414-416.
    [154] Mohammadi T, Skyllas Kazacos M. Modification of anion-exchange membranes for vanadium redox flow battery applications, J. Power Sources, 1996, 63 (2): 179-186.
    [155] Hwang G J, Ohya H. Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery, J. Membr. Sci., 1996, 120 (1): 55-67.
    [156] Hwang G J, Ohya H. Crosslingking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery, J. Membr. Sci., 1997, 132 (1): 55-61.
    [157] Kerres J A. Development of ionomer membranes for fuel cells, J. Membr. Sci., 2001, 185 (1): 3-27.
    [158] 邢丹敏,刘富强,于景荣等.磺化聚砜膜的燃料电池性能初步研究.膜科学与技术,2002,22(5):12-16.
    [159] Li X F, Liu C P, Lu H et al. Preparation and characterization of sulfonated poly(ether ether ketone ketone) proton exchange membranes for fuel cell application, J. Membr. Sci., 2005, 255 (1-2): 149-155.
    [160] Zhai F X, Guo X X, J.H. Fang J H et al. Synthesis and properties of novel suffonated polyimide membranes for direct methanol fuel cell application, J. Membr. Sci., 2007, 296 (1-2): 102-109.
    [161] Warshawsky A, Deshe A, Gutman R. Br. Safe halomethylation of aromatic polymers via BCME-free long chain haloalkylethers, Polym. J., 1984, 16 (4): 234-238.
    [162] 苏仪,蹇锡高,张守海.季铵化聚醚砜酮的制备及其膜性能.功能材料.2004,35(3),385-388.
    [163] Clarence T. Mason, Lweis A. Gist. A study of the Friedal-Crafts synthesis with alkoxychloroalkanes, J. Am. Chem., 1951, 73: 4644-4647.
    [164] 董炎明.高分子分析手册.北京:中国石化出版社,2004.
    [165] Avram E, Brebu M A, Warshawsky A et al. Polymers with pendent functional groups. Ⅴ. Thermooxidative and thermal behavior of chloromethylated polysulfones, Polym. Degrad. Stab., 2000, 69(2): 175-181.
    [166] 何涛,江成璋.聚醚砜微孔膜制备中非溶剂添加剂作用研究.膜科学与技术,1998,8(3):43-48.
    [167] Zhang H, Lau W W Y, Sourirajan S. Factors influencing the production of polyethersulfone mierofiltration membrane by immersion phase inversion process, Sep. Sci. Technol., 1995, 30 (1): 33-52.
    [168] Wienk I M, Boom R M, Beedage M A M et al. Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers, J. Membr. Sci., 1996, 113 (3): 361-371.
    [169] 苏仪,蹇锡高,杨大令等.非溶剂添加剂对共聚砜铸膜液体系及膜性能与结构的影响.高分子学报,2003,(6):866-870.
    [170] Hildebrand J H, Scott R L. The solubility of Non-Electrolytes [M]. New York: Reinhold., 1949.
    [171] Hansen C M. The three dimensional solubility parameter-key to paint component affinities, J. Paint Technol., 1967, 39 (5): 104-511.
    [172] 高以垣,叶凌碧.膜分离技术基础.北京:科学出版社,1989.
    [173] Koenhen D M, Smolers C A. Determination of solubility parameters of solvents and polymers by means of correlation with other physical quantities, J. Appl. Polym. Sci., 1975, 19 (4): 1163-1179.
    [174] 朱思君,段友容,王庆瑞.酚酞基聚醚砜溶解度参数的测定.化工新型材料.2005,33(6):21-23.
    [175] Zeman L, Tkacik G. Thermodynamic analysis of a membrane-forming system water/N-methyl-2-pyrrolidone/polyethersulfone, J. Membr. Sci., 1988, 36 (1): 119-140.
    [176] Kok C M, Rudin A. Prediction of Flory-Huggins interaction parameters from intrinsic vixcoxsities, J. Appl. Poly: Sci., 1982, 27 (2): 353-362.
    [177] Matsuyama H, Teramoto M, Nakatani R et al. Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. I. phase diagram and mass transfer process, J. Appl. Poly. Sci., 1999, 74(1): 159-170.
    [178] Fiery P J. Principles of Polymer Cheminstry [M], Cornell University Press, Ithaca, NY, 1953.
    [179] Craubner H. Thermodynamic Perturbation Theory of Phase Separation in Macromolecular Multicomponent Systems 2. Concentration Dependence, Macromolecule, 1978, 11(6): 1161-1167.
    [180] Boom R M, van der Boomgaard Th, van den Berg J W A et al. Linearized cloudpoint curve correlation for ternary systems consisting of one polymer, one solvent and one non-solvent, Polymer, 1993, 34 (11): 2348-2356.
    [181] Kook W F C, Konagurthu S, van den Boomgaard Th et al. Use of ultrasonic time-domain reflectometry for real-time measurement of thickness changes during evaporative casting of polymeric films, J. Appl. Polym. Sci., 1998, 69 (10): 2013-2019.
    [182] 秦建军,江成璋.聚矾制膜液体系的相图研究.膜科学与技术,1990,10(3):13-18.
    [183] 赵长生,欧阳庆,钟银屏等.聚醚砜制膜液的相分离Ⅰ.三元体系.水处理技术,1996,22(4):195-199.
    [184] Brandrup J, Immergut E H. Polymer Handbook [M], 3rd ed., Wiley, New York, 1989.
    [185] 黄方,杨龙,乐以伦.磺化聚醚砜溶度参数的确定.四川大学学报(工程科学版).2001,33(3):75-78.
    [186] 沈立强.聚醚酞亚胺中空纤维超滤膜的研究:(浙江大学博士论文).浙江大学,2002.
    [187] 杨永强.PPESK中空纤维超滤膜纳滤膜的研究:(大连理工大学博士论文).大连理工大学,2006.
    [188] Chen C C. A Segment-Based Local Composition Model for the Gibbs Energy of Polymer Solutions, Fluid Phase Equilibria, 1993, 83 (1): 301-312.
    [189] White D F, Fornes R E, Gilbert R D et al. Investigation of the formation of physical damage on automotive finishes due to acidic reagent exposure, J. Appl. Poly. Sci., 1993, 50 (3): 541-549.
    [190] Kim J Y, Kim Y D, Kanamori T et al. Vitrification phenomena in polysulfone/NMP/water system, J. Appl. Polym. Sci., 1999, 71(3): 431-438.
    [191] Kook W. Membrane Formation by Phase Inversion in Multicomponent Polymer Systems, Ph.D. thesis, University of Twente, NL, 1998.
    [192] Burghardt W R, Ylmaz L, McHugh A J. Glass transition, crystallization and thermoreversible gelation in ternary PPO solutions; relationship to asymmetric membrane formation, Polymer, 1987, 28 (12): 2092-2085.
    [193] Yu S C, Gao C J, Su H X et al. Nanofiltration used for desalination and concentration in dye production, Desalination, 2001, 140(1): 97-100.
    [194] Bruggen B V, Hawrijk I, Cornelissen E et al. Direct nanofiltration of surface water using capillary membranes: comparison with fiat sheet membranes, Separ. Purif. Technol., 2003, 31 (2): 193-201.
    [195] Qdaisa H A, Moussab H. Removal of heavy metals from wastewater by membrane processes: a comparative study, Desalination, 2004, 164 (2): 105-110.
    [196] Schaep J, Vandeeasteele C. Evaluating the charge of nanofiltration membranes, J. Membr. Sci., 2001, 188 (1): 129-136.
    [197] 陈魁.实验设计与分析.北京:清华大学出版社,2005.
    [198] Hilal N, Zoubi H A, Darwish N Aet al. A compdrehensive review of nanofiltration membranes: treatment, pretreatment, modeling, and atomic force microscopy, Desalination, 2004, 170 (3): 281-308.
    [199] Xu X T, Spencer H G. Dye-salt separations by nanofiltration using weak acid polyelectrolyte membranes, Desalination, 1997,114(2): 129-137.
    
    [200] Koyuncu I. Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: Effects of feed concentration and cross flow velocity, Desalination, 2002, 143 (3): 243-253.
    
    [201] Yang G, Xing W H, Xu N P. Concentration and diafiltration of aqueous fluorescent whitener solution by nanofiltration, Desalination, 2002,150 (2): 155-164.
    
    [202] Chakraborty S, Bag B C, DasGupta S, Basu J K, De S. Prediction of permeate flux and permeate concentration in nanofiltration of dye solution, Separation and Purification Technology, 2004, 35 (2): 141-152.
    
    [203] Sum E, Skyllas-Kazacos M. A study of the V(II)/V(III) redox couple for the redox flow cell applications, J. Power Sources, 1985,15 (2-3): 179-190.
    
    [204] Sum E, Rychcik M, Skyllas-Kazacos M. Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery, J. Power Sources, 1985,16 (2): 85-95.
    
    [205] Carl J R. Envirommental assessment of vanadium redox and lead-acid batteries for stationary energy storage, J. Power Sources, 1999, 80 (1-2): 21-29.
    
    [206] Shibata A, Sato K. Development of vadaium redox flow battery for electrocity storage, Power Eng. I, 1993,13 (3): 130-135.
    
    [207] Fabjan Ch, Garche J, Harrer B et al. The vanadium redox-battery: an efficient storage unit for photovoltaic systems, Electrochim. Acta, 2001, 47 (5): 825-831.
    
    [208] Joerissen L, Garche J, Fabjan Ch et al. Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic system, J. Power Sources, 2004,127 (1-2): 98-104.
    
    [209] Kashima G, Ibaraki K. Redox flow cell battery with vanadium electrolyte and a polysulfone-base semipermeable membrane, EP 0790658A2,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700