磷酸-1-鞘氨醇在植物抗病反应中的作用及水稻和拟南芥BIK1在逆境反应中的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物的整个生长发育的过程就是和病原菌、环境相互适应、相互斗争的过程。在这个过程中,涉及了复杂的信号传导途径的协同作用。本研究中,我们分离克隆了水稻中与鞘氨醇-1-磷酸代谢相关的鞘氨醇激酶基因OsSPK1和OsSPK2及鞘氨醇-1-磷酸裂解酶基因OsSPL1、一个与受体类激酶同源基因OsBIK1,并对上述基因进行了功能分析,同时对拟南芥BIK1在磷营养调控中的作用进行了研究。
     鞘氨醇-1-磷酸(sphingosine-1-phosphate,S1P)在植物抗逆反应中起重要作用,但是在抗病反应调控中的作用仍然不清楚。为了研究S1P在植物抗病反应调控中的作用,分离鉴定了水稻S1P激酶基因OsSPK1和S1P裂解酶基因OsSPL1。RT-PCR分析表明,水杨酸、苯并噻二唑、ACC和茉莉酸等抗病信号分子处理能诱导OsSPK1的表达,但OsSPL1的表达略有下降;在水稻与稻瘟病菌的非亲和性互作反应中OsSPK1表达上调,但在亲和性互作中其表达没有明显变化。分别构建了过量表达水稻OsSPK1和OsSPL1的转基因烟草株系。抗病性测定表明,过量表达OsSPK1转基因植株提高烟草花叶病毒病(tobacco mosaic virus,TMV)和野火病(Pseudomonas syringae pv.tabacci)抗性,PR-1、PR-2、PR-3和PR-5等防卫基因表达上调,而过量表达OsSPL1的转基因植株降低TMV和野火病抗性。进一步比较了OsSPK1和OsSPL1转基因烟草植株的过敏性细胞死亡差异,发现注射20μM腐马霉素(fumonisin B1,FB1)处理后,在OsSPK1转基因植株叶片中没有观察到显著细胞坏死斑,而在OsSPL1转基因植株叶片上呈现出明显的过敏性细胞坏死斑。FB1处理前,相比于野生型植株叶片,OsSPK1转基因植株叶片中细胞死亡程度减轻,而OsSPL1转基因植株叶片中细胞死亡加重;FB1注射处理后,在OsSPK1转基因植株叶片中细胞死亡被抑制,而OsSPL1转基因植株叶片中细胞死亡加剧。这些结果暗示,由于过量表达OsSPK1或OsSPL1而改变S1P代谢后会引起转基因植株叶片中过敏性细胞死亡的发生。此外,过量表达OsSPK1转基因植株降低ABA敏感性,提高氧化胁迫,但抗盐性没有明显变化;而OsSPL1转基因烟草植株提高了ABA敏感性,降低氧化胁迫和抗盐性。这些结果表明,S1P代谢基因(或S1P本身)参与对抗病反应、过敏性细胞死亡以及抗逆反应的调控。
     AtBIK1编码一个受体样蛋白激酶,参与拟南芥对坏死性真菌病害抗性调控。但是,bik1突变体的根系在表型上类似于磷营养突变体。本文研究了BIK1是否参与调控拟南芥磷营养及其可能的机制。RT-PCR和P_(BIK1)::GUS分析表明,在缺磷条件下,AtBIK1被强烈地诱导;缺磷时,植株各个部位可以检测到GUS活性,虽然在正常磷营养条件下,侧根、主根、茎和部分叶片中检测到GUS活性,但缺磷条件下的活性更强。缺磷条件下,bik1突变体的侧根数量和长度、根毛数量和长度都比野生型显著增加,而主根生长并没有显著的区别。bik1植株中,叶片和根部中总磷含量增加,花青素含量升高,酸性磷酸酶活性降低,磷饥饿诱导基因的表达显著抑制。在缺磷的条件下,bik1植株内的过氧化氢量和超氧阴离子含量显著增加,miR399表达水平受到抑制。在正常磷和低磷条件下,Botrytis cinera和Alternaria brassicicola接种后,缺磷条件下bik1突变体植株上发病加快。这些结果表明,BIK1在植物磷营养中起重要作用,可能与miR399有关,而且磷营养状况影响到植物对坏死性真菌病害的抗性表型。
     拟南芥BIK1基因参与灰霉病抗病性调控。本文中,我克隆了水稻BIK1基因的同源基因OsBIK1。BTH、SA、ACC和JA等抗病信号分子能激活OsBIK1基因的表达,且在水稻与稻瘟病菌的非亲和性互作反应中OsBIK1基因上调表达。OsBIK1基因能互补拟南芥bik1突变体的功能。过量表达OsBIK1转基因水稻不仅长势比非转基因的植株好,提高了对稻瘟菌的抗性。此外,过量表达OsBIK1的转基因水稻植株增强了抗盐性、抗冻性以及抗干旱能力,但对ABA并没有反应。这些结果都表明了OsBIK1在水稻的抗逆、抗病和生长发育中起作用。
During their life span,plants always suffer pathogen attack and environmental stress.To survive,plants have developed complicated and precisely regulated system to defend themselves against pathogens and abiotic stresses.To understand the molecular biology of defense responses in plants,I cloned and characterized genes involved in metabolism of sphingosine-1-phosphate(S1P),including OsSPK1, OsSPK2 and OsSPL1,and a receptor-like protein kinase gene OsBIK1,and performed functional analysis in transgenic tobacco and rice.Meanwhile,I also performed studies to elucidate the involvement of AtBIK1 in phosphorus nutrition in Arabidopsis.
     Recent studies have showed that S1P plays important role in regulation of abiotic stress responses.However,little is known about the role of S1P in regulation of defense response against pathogen infection.RT-PCR analysis showed that BTH (benzothiadiazole),SA(salicylic acid),ACC(1-aminocyclopropane-1-carboxylic acid) or JA(jasmonic acid,JA) can activate the expression of OsSPK1 and OsSPK2, but partially suppressed expression of OsSPL1.The expression of OsSPK1 and OsSPK2 was up-regulated in an incompatible interaction between Magnaporthe grisea and a resistant genotype,and no significant induced expression was observed in a compatible interaction.In order to investigate the role of S1P in plant disease resistance,functional analysis of OsSPK1 and OsSPL1 in transgenic tobacco plants were performed.Disease resistance assays revealed that overexpression of OsSPK1 in transgenie tobacco plants enhanced disease resistance against tobacco mosaic virus (TMV) and Pseudomonas syringae pv.tabaci(Pst),and up-regulated expression levels of defense-related PR gene,e.g.PR-1,PR-2,PR-3 and PR-5.Moreover, OsSPK1-overexpressing transgenic tobacco plants showed a reduced ABA sensitivity, and enhanced tolerance to oxidative stress.Significant necrotic lesion was observed in OsSPL1-overexpressing but not OsSPK1-overexpressing tobacco plants after injection with fumonisin B1(FB1),as revealed by detection of cell death in leaves by TUNNEL and staining approaches.
     It was previously shown that AtBIK1 plays important roles in defense response against necrotrophic fungi.Root architecture of the bik1 mutant seedling grown on normal MS medium,it was found that the root system of bik1 mutant is very similar to other mutants with defined function in phosphorous nutrition.RT-PCR and PBIK1::GUS analysis in transgenic lines demonstrated that AtBIK1 was expressed in the root,shoot and leaves in plants under low phosphorous condition.When in the phosphate deficient condition,the number and length of lateral root,the number and length of root hair were much more than the wild type.In bik1 mutants,it resulted in higher concentration of anthocyanin.In addition,when the mutants were deprived of phosphate,the activity of the total acid phosphatase was reduced while the total P content increased.Disease phenotypes of the wild-type and mutant both in the P sufficient and P deficient conditions were compared.The bik1 mutant in the P deficient condition was most susceptible to Botrytis cinera and Alternaria brassicicola,while the wild type in the P sufficient has the strongest disease resistance.These results suggest that the P condition affect the disease resistance. Together,these results suggest that AtBIK1 is a modulator of Pi starvation responses, including root development and the disease resistance.
     To investigate the function of OsBIK1,a functional analysis of OsBIK1 in transgenic rice plants was performed.RT-PCR analysis showed that BTH,SA,ACC and JA can activate the expression of OsBIK1.In the incompatible interaction between Magnaporthe grisea and a resistant genotype,OsBIK1 was strongly induced,while in the compatible interaction,there was no significant induction.Disease resistance assays revealed that overexpression of OsBIK1 in transgenic rice plants enhanced disease resistance against Magnaporthe grisea.Moreover,OsBIK1 overexpressing transgenic rice plants showed enhanced tolerance to cold stress,salt stress and drought. These results indicate that OsBIK1 play important role in defense responses against biotic and abiotic.
引文
Abel, S. et al. (2000) Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells. Plant Physiol. 122,543-552
    
    Abel S, Ticconi CA, Delatorre CA (2002). Phosphate sensing in higher plant. Physiol. Plant 115,1-8.
    
    Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu G. (2009) Two rice phosphate transporters, OsPht1;2 and OsPhtl;6, have different functions and kinetic properties in uptake and translocation.Plant J. 57(5):798-809.
    
    Aung, K., Lin, S.-I., Wu, C.-C., Huang, Y.-T., Su, C.-L. and Chiou, T.-Z. (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol. 141,1000-1011
    
    Axtell MJ, Staskawicz BJ. (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell, 112: 369-377.
    
    Bari R, Pant BD, Stitt M, Scheible WR (2006). PHO2, MicroRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141, 988-999.
    
    Brodersen P, Petersen M, Bj(?)rn Nielsen H, Zhu S, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J.(2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J. 47(4):532-46.
    
    Brownlee C (2001) Intracellular signalling: sphingosine-1 -phosphate branches out. Curr Biol 11: R535-R538
    
    BucherM, Rausch C, Daram P (2001) Molecular and biochemical mechanisms of phosphorus uptake into plants. J Plant Nutr Soil Sci 164: 209-217
    
    
    Buhot N, Gomes E, Milat ML, Ponchet M, Marion D, Lequeu J, Delrot S, Coutos-Thevenot P, Blein JP.(2004) Modulation of the biological activity of a tobacco LTP1 by lipid complexation. Mol Biol Cell,15:5047-5052.
    
    Büttner D, Bonas U. (2002) Getting across--bacterial type III effector proteins on their way to the plant cell. EMB0 J. 15;21(20):5313-22.
    
    Cela J, Falk J, Munné-Bosch S.(2009) Ethylene signaling may be involved in the regulation of tocopherol biosynthesis in Arabidopsis thaliana. FEBS Lett. 18; 583(6):992-6.
    
    Chalfant CE, Spiegel S. (2005) Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J Cell Sci, 118(20):4605-12
    
    Chen C, Chen Z.(2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol. 129(2):706-16.
    
    Chen YF,Wang Y,WuWH (2008). Membrane transporters for nitrogen, phosphate and potassium uptake in plants.J. Integr. Plant Biol. 50,835-848.
    
    Chen ZH, Jenkins GI, Nimmo HG.(2008) Identification of an F-box protein that negatively regulates P(i) starvation responses. Plant Cell Physiol. 49(12):1902-6.
    
    Chen Z, Nimmo GA, Jenkins GI, Nimmo HG (2007). BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis. Biochem. J. 405, 191-198.
    
    Cheng WH, Chiang MH, Hwang SG, Lin PC.(2009) Antagonism between abscisic acid and ethylene in Arabidopsis acts in parallel with the reciprocal regulation of their metabolism and signaling pathways. Plant Mol Biol. 2 [Epub ahead of print]
    
    Chinchilla D, Bauer Z, Regenass M, Boiler T, Felix G. (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell, 18:465-476.
    Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Sua CL (2006). Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18, 412-421.
    
    Conrath U, Pieterse CM, Mauch-Mani B. (2002)Priming in plant-pathogen interactions. Trends Plant Sci.7(5):210-6
    
    Coursol, S. et al (2003)Sphingosine-1-phosphate signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423: 651-654
    
    Delhaize E, Randall PJ (1995). Characterization of a phosphate accumulator mutant of Arabidopsis thaliana. Plant Physiol. 107,207-213.
    
    De Lorenzo L, Merchan F, Laporte P, Thompson R, Clarke J, Sousa C, Crespi M (2009). A Novel Plant Leucine-Rich Repeat Receptor Kinase Regulates the Response of Medicago truncatula Roots to Salt Stress. Plant Cell. 21(2):668-80.
    
    Després C, DeLong C, Glaze S, Liu E, Fobert PR(2000) The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell. I2(2):279-90.
    
    Devaiah BN, Karthikeyan AS, Raghothama KG (2007a). WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol. 143, 1789-1801.
    
    Devaiah BN, Nagarajan VK, Raghothama KG (2007b). Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol. 145, 147-159.
    
    Dorjgotov D, Jurca ME, Fodor-Dunai C, Szucs A, Otv(o|¨)s K, Klement E, Bíró J, Fehér (2009). Plant Rho-type (Rop) GTPase-dependent activation of receptor-like cytoplasmic kinases in vitro. FEBS Lett. 2;583(7):1175-82.
    
    Fliegmann J, Mithofer A, Wanner G, Ebel J. (2004) An ancient enzyme domain hidden in the putative beta-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host
    
    resistance. J Biol Chem, 279:1132-1140.
    
    Flor HH. (1971)Current status of the gene-for-gene concept. Ann Rev Phytopathology, 9: 275-296.
    
    Fragoso S, Espindola L, Paez-Valencia J, Gamboa A, Camacho Y, Martinez-Barajas E, Coello P.(2009) SnRK1 isoforms, AKIN10 and AKIN11, are differentially regulated in Arabidopsis plants under phosphate starvation. Plant Physiol.
    
    Franco-Zorrilla JM, Gonzalez E, Bustos R, Linhares F, Leyva A, Paz-Ares J.(2004) The transcriptional control of plant responses to phosphate limitation. J Exp Bot, 55(396):285-93
    
    Franco-Zorrilla JM,Martin AC, Solano R, Rubio V, Leyva A, Paz-Ares J (2002). Mutations at CRE1 impair cytokinin-induced repression of phosphate starvation responses in Arabidopsis. Plant J. 32, 353-360.
    
    Friedrich L, Vernooij B, Gaffney T, Morse A, Ryals J.(1995) Characterization of tobacco plants expressing a bacterial salicylate hydroxylase gene. Plant Mol Biol. 29(5):959-68
    
    
    Frye CA, Tang D, Innes RW.(2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci U S A. 2;98(1):373-8
    
    Fujii, H., Chiou, T. Z., Lin, S.-I., Aung, K. and Zhu, J-K. (2005) A miRNA involved inphosphate-starvation response in Arabidopsis. Curr. Biol. 15, 2038-2043
    
    Funato, K., Lombardi, R., Vallée, B. & Riezman, H. (2003) Lcb4p is a key regulator of ceramide synthesis from exogenous long chain sphingoid base in Saccharomyces cerevisiae. J. Biol Chem. 278, 7325-7334
    
    Genger RK, Jurkowski GI, McDowell JM, Lu H, Jung HW, Greenberg JT, Bent AF. (2008) Signaling pathways that regulate the enhanced disease resistance of Arabidopsis "defense, no death" mutants. Mol Plant Microbe Interact. 21(10): 1285-96.
    
    Gil MJ, Coego A, Mauch-Mani B, Jordá L, Vera P.(2005) The Arabidopsis csb3 mutant reveals a regulatory link between salicylic acid-mediated disease resistance and the methyl-erythritol 4-phosphate pathway. Plant J.44(1): 155-66
    
    Glover BJ, Torney K, Wilkins CG, Hanke DE.(2008) CYTOKININ INDEPENDENT-1 regulates levels of different forms of cytokinin in Arabidopsis and mediates response to nutrient stress. J Plant Physiol.165(3):251-61.
    
    Gottlieb, D., Heideman, W. & Saba, J. D. (1999)The DPL1 gene is involved in mediating the response to nutrient deprivation in Saccharomyces cerevisiae. Mol. Cell BioL Res. Commun. 1, 66-71.
    
    Gregory Al, Hurley BA, Tran HT, Valentine AJ, She YM, Knowles VL, Plaxton WC.(2009) In vivo regulatory phosphorylation of the phosphoenolpyruvate carboxylase AtPPCl in phosphate-starved Arabidopsis thaliana. Biochem J.
    
    Grieneisen VA, Xu J, Mar'ee AFM, Hogeweg P, Scheres B (2007).Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449, 1008-1013.
    
    Goldstein, A.H. et al. (1988) Phosphate starvation inducible metabolism in Lycopersicon esculentum. I. Excretion of acid phosphatase by tomato plants and suspension cultured cells. Plant Physiol. 87, 711-715
    
    Hait, N. C., Fujita, K., Lester, R. L. & Dickson, R. C. (2002)Lcb4p sphingoid base kinase localizes to the Golgi and late endosomes. FEBS Lett. 532, 97-102.
    
    Hammond JP, Broadley MR, White PJ (2004) Genetic responses to phosphorus deficiency. Ann Bot (Lond) 94:323-332
    
    
    .Hann DR, Rathjen JP. (2007) Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana. Plant J, 49:607-618.
    Hla, T. et al. (2001) Lysophospholipids - receptor revelations. Science 294, 1875-1878
    
    Iavicoli A, Boutet E, Buchala A, Métraux JP. (2003)Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact. 16(10):851-8.
    
    Imamura T, Kusano H, Kajigaya Y, Ichikawa M, Shimada H.( 2007a) A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant Cell Physiol, 48(8): 1108-20.
    
    Imamura T, Kusano H, Kajigaya Y, Ichikawa M, Shimada H.(2007b) A rice dihydrosphingosine C4 hydroxylase (DSH1) gene, which is abundantly expressed in the stigmas, vascular cells and apical meristem, may be involved in fertility. Plant Cell Physiol, 1108-20.
    
    Jiang CF, Gao XH, Liao LL, Harberd NP, Fu XD (2007). Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiol. 145, 1460-1470.
    
    Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B. (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J, 19: 4004-4014.
    
    Jia Z, Salaita MG, Margerum DW. (2000) Kinetics and mechanisms of the oxidation of hydrazinium ion (N2H5+) by aqueous Br2, C12, and BrCl. Electrophilicity scale for halogens and interhalogens. Inorg Chem. 39(9): 1974-8.
    
    JinQ, Thilmony R, Zwiesler-Vollick J, He SY.(2003). Type III protein secretion in Pseudomonas syringae.Microbes Infect. 5(4):301-10.
    
    Kachroo P, Venugopal SC, Navarre DA, Lapchyk L, Kachroo A(2005) Role of salicylic acid and fatty acid desaturation pathways in ssi2-mediated signaling. Plant Physiol. 139(4): 1717-35.
    
    Kai N, Suzuki G, Watanabe M, Isogai A, Hinata K.(2001) Sequence comparisons among dispersed members of the Brassica S multigene family in an S9 genome. Mol Genet Genomics. 265(3):526-34
    
    Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N.(2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A, 103: 11086-11091.
    
    Karthikeyan AS, Varadarajan DK, Jain A, Held MA, Carpita NC, Raghothama KG (2006). Phosphate starvation responses are mediated by sugar signaling in Arabidopsis. Planta, 225, 907-918.
    
    Karthikeyan AS, Varadarajan DK, Mukatira UT, D'Urzo MP, Damz B,Raghothama KG (2002) Regulated expression of Arabidopsis phosphate transporters. Plant Physiol 130: 221-233
    
    Katagirl F, Thilmony, He SY. (2002) The Arabidopsis Thaliana-Pseudomonas Syringae Interaction. The Arabidopsis Book, doi: 10.1199/tab.0039.
    
    Keen NT. (1990)Gene-for-gene complementarity in plant-pathogen interactions.Annu Rev Genet. 1990;24:447-63.
    
    Klumpler T, Pekárová B, Marek J, Borkovcová P, Janda L, Hejátko J.(2009) Cloning, purification, crystallization and preliminary X-ray analysis of the receiver domain of the histidine kinase CKI1 from Arabidopsis thaliana. Acta Crystallogr Sect F Struct Biol Cryst Commun. 65(Pt 5):478-81.
    
    
    Kobe B, Kajava AV.(2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol.11(6):725-32.
    
    Koga, J. et al. (1998) Cerebrosides A and C, sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants. J. Biol. Chem. 48, 31985-31991
    
    Kobayashi K, Masuda T, Takamiya K, Ohta H (2006). Membrane lipid alteration during phosphate starvation is regulated by phosphate signaling and auxin/cytokinins cross-talk. Plant J. 47, 238-248.
    
    Leggewie G, Willmitzer L, Riesmeier JW (1997). Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast: identification of phosphate transporters from higher plants. Plant Cell, 9, 381-392.
    
    Lenberg, M.E. and O'Shea, E.K. (1996) Signalling phosphate starvation. Trends Biochem. Sci. 21, 383-387
    
    Le Stunff, H., Galve-Roperh, I., Peterson, C., Milstien, S. & Spiegel, S. (2002)Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. J. Cell Biol. 158, 1039-1049
    
    Linkohr, B.I. et al. (2002) Nitrate and phosphate availability anddistribution have different effects on root system architecture of Arabidopsis. Plant J. 29, 751-760
    
    Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC et al. (2008).Regulatory network of MicroRNA399 and PHO2 by systemic signaling. Plant Physiol. (in press).
    Lipton DS, Lanchar RW, Blevins DG (1987) Citrate, malate and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol 85: 315-317
    
    Liu C, Muchal US, Uthappa M, Kononowicz AK, Raghothama K(1998). Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol. 116, 91-99.
    
    Liu, H., Chakravarty, D., Maceyka, M., Milstien, S. & Spiegel, S. Sphingosine kinases. (2002) A novel family of lipid kinases. Prog. Nucleic Acid Res. Mol. Biol. 71, 493-511.
    
    Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ. (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J, 50:529-544.
    
    Liu J, Samac DA, Bucciarelli B, Allan DL, Vance CP (2005). Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant J. 41, 257-268.
    
    Lloyd J, Zakhleniuk O, Raines CA (2001). Identification of mutants in phosphorus metabolism. Ann. Appl. Biol.138,111-115.
    
    Lohar D, Stiller J, Kam J, Stacey G, Gresshoff PM. (2009)Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus. Ann Bot (Lond). Epub ahead of print
    
    Lopez-Bucio J, Cruz-Ramírez A, Herrera-Estrella A.(2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol. 6(3):280-7
    
    Lopez-Bucio, J. et al. (2000) Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate.Nat. Biotechnol. 18, 450-453
    
    L'opez-Bucio J, Hern'andez-Abreu E, S'anchez-Calder'on L, Nieto- Jacobo MF, Simpson J,Herrera-Estrella L (2002). Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant PhysioL 129, 244-256.
    
    López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Pérez-Torres A, Rampey RA, Bartel B,Herrera-Estrella L. (2005) An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation.Plant Physiol, 137(2):681-91.
    
    Lynch, J.P. and Brown, K.M. (2001) Topsoil foraging - an architectural adaptation of plants to low phosphorus availability. Plant Soil 237, 225-237
    
    Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl, JL. (2003). Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell, 112: 379-389.
    
    Mackey D, Holt BF, Wiig A, Dangl JL. (2002). RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1 -mediated resistance in Arabidopsis. Cell, 108: 743-754.
    
    Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK. (2002) A putative lipid transfer protein involved in systemic resistance signalling inArabidopsis. Nature, 419:399-403.
    
    Malinowski R, Higgins R, Luo Y, Piper L, Nazir A, Bajwa VS, Clouse SD, Thompson PR, Stratmann JW.(2009)The tomato brassinosteroid receptor BRI1 increases binding of systemin to tobacco plasma membranes, but is not involved in systemin signaling. Plant Mol Biol. 70(5):603-16.
    
    Marschner H (1995) Mineral Nutrition of Higher Plants. Academic Press,London
    
    Martin AC, del Pozo JC, Iglesias J, Rubio V, Solano R, de la Pena A et al. (2000). Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J. 24, 559-567.
    
    Ma Z, Baskin TI, Brown KM, Lynch JP (2003). Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant PhysioL 131, 1381-1390.
    
    MA Z, Bielenberg D. G., Brown KM, and Lynch JP. Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell and Environment (2001) 24, 459-467
    
    Medzhitov R. (2001) Toll-like receptors and innate immunity. Nat Rev Immunol. Nov; 1(2): 135-45.
    
    Medzhitov R, Janeway CA Jr.(2002) Decoding the patterns of self and nonself by the innate immune system.Science. 2002 Apr 12;296(5566):298-300.
    
    Mengiste T, Chen X, Salmeron J, Dietrich R. (2003) The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis.Plant Cell. 5(11): 2551-65. Epub 2003 Oct 10.
    
    Michaelson LV, Z(a|¨)uner S, Markham JE, Haslam RP, Desikan R, Mugford S, Albrecht S, Warnecke D, Sperling P, Heinz E, Napier JA.(2009) Functional characterization of a higher plant sphingolipid Delta4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis Plant Physiol,149(1): 487-98.
    
    Mimura, T. (1999) Regulation of phosphate transport and homeostasis in plant cells. Int. Rev. Cytol. 191, 149-200
    
    Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R et al. (2005). A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proa Natl. Acad. Sci. USA, 102, 11934-11939.
    
    Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB,Bressan RA, et al (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102: 7760-7765
    
    Mudge, S.R. et al. (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J. 31, 341-353
    
    Raghothama, K.G. (2000) Phosphate transport and signaling. Curr. Opin. Plant Biol. 3, 182-187
    
    Mukatira, U.T. et al. (2001) Negative regulation of phosphatestarvation-induced ge nes. Plant Physiol. 127,1854-1862
    
    M¨uller R, Morant M, Jarmer H, Nilsson L, Nielsen TH (2007). Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol. 143, 156-171.
    
    Nacry P, Canivenc G, Muller B, Azmi A, Onckelen HV, Rossignol M et al. (2005). A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol. 138, 2061-2074.
    
    Ng CK, Carr K, McAinsh MR, Powell B, Hetherington AM (2001). Drought-induced guard cell signal transduction involves sphingosine- 1- phosphate. Nature, 410: 596-599
    
    Nishikawa M, Hosokawa K, Ishiguro M, Minamioka H, Tamura K, Hara-Nishimura I, Takahashi Y,Shimazaki K, Imai .(2008) Degradation of sphingoid long-chain base 1-phosphates (LCB-1Ps): functional characterization and expression of AtDPL1 encoding LCB-1P lyase involved in the dehydration stress response in Arabidopsis. H.Plant Cell Physiol, 49(11) :1758-63.
    
    Nodine MD, Tax FE.(2008)Two receptor-like kinases required together for the establishment of Arabidopsis cotyledon primordial. Dev Biol. 314(1): 161-70.
    
    Nodine MD, Yadegari R, Tax FE.(2007) RPK1 and TOAD2 are two receptor-like kinases redundantly required for arabidopsis embryonic pattern formation. Dev Cell. 12(6):943-56
    
    Paal J, Henselewski H, Muth J, Meksem K, Menéndez CM, Salamini F, Ballvora A, Gebhardt C.(2004) Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach. Plant J. 38(2):285-97.
    
    Pandey S, Assmann SM (2004) The Arabidopsis putative G proteincoupled receptor GCR1 interacts with the G protein a subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16: 1616-1632
    
    Ran LX, van Loon LC, Bakker PA.(2005) No role for bacterially produced salicylic Acid in rhizobacterial induction of systemic resistance in Arabidopsis. Phytopathology. 95(11):1349-55
    
    Pant BD, Buhtz A, Kehr J, Scheible WR (2008). MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J. 53, 731-738.
    
    Pérez-Torres CA, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S, Estelle M,Herrera-Estrella M.(2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell. 20(12):3258-72.
    
    Pastuglia M, Roby D, Dumas C, Cock JM.(1997) Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell. 9(1):49-60.
    
    Pastuglia M, Swarup R, Rocher A, Saindrenan P, Roby D, Dumas C, Cock JM. (2002)Comparison of the expression patterns of two small gene families of S gene family receptor kinase genes during the defence response in Brassica oleracea and Arabidopsis thaliana. Gene. 282(1-2):215-25
    
    Ping Wu, Ligeng Ma, Xingliang Hou, Mingyi Wang, Yungrong Wu, Feiyan Liu, and Xing Wang Deng. Phosphate Starvation Triggers Distinct Alterations of Genome Expression in Arabidopsis Roots and Leaves. Plant Physiology, 2003, 132, 1260-1271.
    
    Plaxton, W.C. and Carswell, M.C. (1999) Metabolic aspects of the phosphate starvation response in plants. In Plant Responses to Environmental Stresses: From Phytohormones to Genome Reorganization (Lerner, H., ed.),349-372
    Pozo, M.J. et al. (2005) Jasmonates - signals in plant-microbe interactions. J. Plant Growth Regul. 23, 211-222
    
    Raghothama, K. G. (1999) Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 665-693
    
    Raghothama, K.G. (2000) Phosphate transport and signaling. Curr. Opin. Plant Biol. 3, 182-187
    
    Raghothama KG, Karthikeyan AS (2005) Phosphate acquisition. Plant Soil, 274: 37-49
    
    Rausch, C. and Bucher, M. (2002) Molecularmechanisms of phosphate transport in plants. Planta 216, 23-37
    
    Reymond M, Svistoonoff S, Loudet L,Nussaume L, Desnos T (2006).Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ. 29, 115-125.
    
    Richardson, A.E. et al. (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J. 25, 641-649
    
    Ribot C, Wang Y, Poirier Y (2007). Expression analyses of three members of the AtPHO1 family reveal differential interactions between signaling pathways involved in phosphate deficiency and the responses to auxin, cytokinin, and abscisic acid. Planta 227,1025-1036.
    
    Robatzek S, Bittel P, Chinchilla D, Kochner P, Felix G, Shiu SH, Boiler T. (2007) Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol Biol, 64:539-547.
    
    Ron M, Avni A. (2004) The receptor for the fungal elicitor ethyleneinducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell, 16:1604-1615.
    
    Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A et al. (2001). A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Gene Dev. 15,2122-2133.
    
    Ryals J, Weymann K, Lawton K, Friedrich L, Ellis D, Steiner HY, Johnson J, Delaney TP, Jesse T, Vos P,Uknes S.(1997) The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. Plant Cell. 9(3):425-39
    
    Ryan PR, Liu Q, Sperling P, Dong B, Franke S, Delhaize E. (2007)A higher plant delta8 sphingolipid desaturase with a preference for (Z)-isomer formation confers aluminum tolerance to yeast and plants. Plant Physiol, 144(4):1968-77.
    
    S'anchez-Calder'on L, L'opez-Bucio J, Chac'on-L'opez A, Guti'errez-Ortega A, Hern'andez-Abreu E, Herrera-Estrella L (2006). Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency. Plant Physiol. 140,879-889.
    
    S'anchez-Calder 'on L, L'opez-Bucio J, Chac'on-L 'opez A, Cruz-Ramírez A, Nieto-Jacobo F, Dubrovsky JG et al. (2005). Phosphate starvation induces a determinate development program in root of Arabidopsis thaliana.Plant Cell Physiol. 46, 174-184.
    
    Schechter LM, Roberts KA, Jamir Y, Alfano JR, Collmer A.(2004) Pseudomonas syringae type III secretion system targeting signals and novel effectors studied with a Cya translocation reporter. J Bacteriol.186(2):543-55.
    
    Schmidt W, Schikora A (2001). Different pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development. Plant Physiol. 125, 2078-2084.
    
    Shen J, Li H, Neumann G, Zhang F (2005). Nutrient uptake, cluster root formation and exudation of protons and citrate in Lupinus albus as affected by localized supply of phosphorus in a split-root system. Plant Sci. 168,837-845.
    
    Shi L, Bielawski J, Mu J, Dong H, Teng C, Zhang J, Yang X, Tomishige N, Hanada K, Hannun YA, Zuo J.(2007) Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res, 17(12):1030-40.
    
    Shin H, Shin HS, Chen R, Harrison MJ (2006). Loss of At4 function impacts phosphate distribution between the roots and the shoot during phosphate starvation. Plant J. 45, 712-726.
    
    Shin H, Shin HS, Dewbre GR, Harrison MJ (2004). Phosphate transport in Arabidopsis: Pht1;1 and Pht1 ;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J. 39, 629-642.
    
    Shoresh M, Yedidia I, Chet I. (2005) Involvement of Jasmonic Acid/Ethylene Signaling Pathway in the Systemic Resistance Induced in Cucumber by Trichoderma asperellum T203. Phytopathology. 95(1):76-84.
    
    Shulaev V, Silverman P, Raskin I. (1997) Airborne signaling by methyl salicylate in plant pathogen resistance.Nature, 385:718-721.
    
    Seok HJ, Hong MY, Kim YJ, Han MK, Lee D, Lee JH, Yoo JS, Kim HS. (2005) Mass spectrometric analysis of affinity-captured proteins on a dendrimer-based immunosensing surface: investigation of on-chip proteolytic digestion. Anal Biochem. 15;337(2):294-307
    Sperling P, Heinz E (2003) Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 1632: 1-15
    
    Spiegel, S. & Milstien, S. (2002)Sphingosine 1-phosphate, a key cell signaling molecule. J. Biol. Chem. 277,25851-25854
    
    Stamm LV, Bergen HL, Walker RL. (2002) Molecular typing of papillomatous digital dermatitis-associated Treponema isolates based on analysis of 16S-23S ribosomal DNA intergenic spacer regions. J Clin Microbiol. 40(9):3463-9.
    
    Staskawicz BJ, Ausubel FM, Baker B J, Ellis JG, Jones JD. (1995) Molecular genetics of plant disease resistance. Science, 268: 661-667.
    
    Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L et al. (2007). Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant J. 50,982-994.
    
    Sticher L, Mauch-Mani B, Metraux JP. (1997) Systemic acquired resistance. Annu Rev Phytopathol, 35:235-270.
    
    Sunkar R, Zhu JK (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis.Plant Cell 16,2001-2019.
    
    Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q. (2004)Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J. 37(4):517-27
    
    Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A et al. (2007). Root tip contact with low-phosphate media reprograms plant root architecture. Nat. Genet. 39, 792-796.
    
    Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X. (2008)Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science. 15;321(5891):952-6.
    
    Tang HB, DiMango E, Bryan R, Gambello M, Iglewski BH, Goldberg JB, Prince A.(1996) Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun, 64(1):37-43.
    
    Tang Z. et al. (2001) Homeodomain leucine zipper proteins bind to the phosphate response domain of the soybean VspB tripartate promoter. Plant Physiol. 125, 797-809
    
    Thaler, J.S. et al. (2004) The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol. 135, 530-538
    
    Thomma BP, Eggermont K, Penninckx LA, Mauch-Mani B, Vogelsang R, Cammue BP, Broekaert WF.(1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A. 95(25): 15107-11.
    
    Thomma, B.P.H.J. et al. (2001) The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13,63-68
    
    Thompson JD, Higgins DG, Gibson TJ. (1994) CLUSTSLW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic Acid Res, 22: 4673-4680.
    
    Ticconi CA, Delatorre CA, Lahner B, Salt DE, Abel S (2004). Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. Plant J. 37, 801-814.
    
    Tomscha JL, Trull MC, Deikman J, Lynch JP, Guiltinan MJ (2004). Phosphatase under-producer mutants have altered phosphorus relations.Plant Physiol. 135, 334-345.
    
    Ton J, Davison S, Van Wees SC, Van Loon L, Pieterse CM. (2001) The arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol.125(2):652-61.
    
    Ton J, Pieterse CM, Van Loon LC.(1999) Identification of a locus in arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv.tomato. Mol Plant Microbe Interact. 12(10):911-8
    
    Uknes S, Mauch MB, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J. (1992) Acquired resistance in Arabidopsis. Plant Cell, 4: 645-656.
    
    Umemura, K. et al. (2000) Cerebroside elicitors found in diverse phytopathogens activate defense responses in rice plants. Plant Cell Physiol. 41, 676-683
    
    Van der Biezen EA, Jones JD. (1998) The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol. 26;8(7):R226-7.
    Van Wees SC, Pieterse CM, Trijssenaar A, Van't Westende TA, Hartog F, Van Loon LC. (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bateria. Mol Plant-Microbe Interact, 10: 716-724.
    
    Van Wees SC, Van der Ent S, Pieterse CM. (2008) Plant immune responses triggered by beneficial microbes.Curr Opin Plant Biol, 11(4):443-8.
    
    Varadarajan, D.K. et al. (2002) Phosphite, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation. Plant Physiol. 129, 1232-1240
    
    Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawhar R, Ward E, Uknes S, Kessmann H, Ryals J.(1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell, 6:959-965.
    
    Vance CP, Uhde-Stone C, Allan DL (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157, 423-447.
    
    van der Vossen E, Sikkema A, Hekkert BL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S.(2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J. 36(6):867-82
    
    Van Wees, S.C.M. et al. (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonatedependent defense pathways in Arabidopsis thaliana. Proc. Natl.Acad. Sci. U. S. A. 97, 8711-8716
    
    Veronese P, Ruiz MT, Coca MA, Hernandez-Lopez A, Lee H, Ibeas JI, Damsz B, Pardo JM, Hasegawa PM,Bressan RA, Narasimhan ML.(2003) In defense against pathogens. Both plant sentinels and foot soldiers need to know the enemy. Plant Physiol, 131(4):1580-90.
    
    Veronese P, Nakagami H, Bluhm B, Abuqamar S, Chen X, Salmeron J, Dietrich RA, Hirt H, Mengiste T. (2006)The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens.Plant Cell,18(1):257-73.
    
    Wang C, Ying S, Huang H, Li K, Wu P, Shou H.(2009) Involvement of OsSPX1 in phosphate homeostasis in rice. Plant J. 2009 Mar;57(5):895-904.
    
    Wang X, Yi K, Tao Y, Wang F, Wu Z, Jiang D et al.(2006). Cytokinin represses phosphate-starvation response through increasing of intracellular phosphate level. Plant Cell Environ. 29,1924-1935.
    
    Wanner, B.L. (1996) Phosphorus assimilation and the control of the phosphate regulon. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 1357—1381,
    
    Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA. (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell, 3: 1085-1094.
    
    Weigel RR, Pfitzner UM, Gatz C.(2005) Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis.Plant Cell. 17(4): 1279-91.
    
    Wildermuth MC, Dewdney J, Wu G, Ausubel FM.(2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature. 414(6863):562-5
    
    Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001). Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol. 126, 875-882.
    
    Worrall D, Liang YK, Alvarez S, Holroyd GH, Spiegel S, Panagopulos M, Gray JE, Hetherington AM.(2008) Involvement of sphingosine kinase in plant cell signaling. Plant J, 56(1):64-72. Epub 2008 Jun 28.
    
    Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F et al. (2003). Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol. 132, 1260-1271.
    
    Wu T, Tian Z, Liu J, Xie C (2009). A novel leucine-rich repeat receptor-like kinase gene in potato, StLRPK1, is involved in response to diverse stresses. Mol Biol Rep. In press.
    
    Xiao K, Katagi H, Harrison M, Wang Z (2006). Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of a purple acid phosphatase gene from M. truncatula. Plant Sci. 170,191-202.
    
    Xue LW, Du JB, Yang H, Xu F, Yuan S, Lin HH. (2009)Brassinosteroids counteract abscisic acid in germination and growth of Arabidopsis. Z Naturforsch C. 64(3-4): 225-30
    
    Yahiaoui N, Srichumpa P, Dudler R, Keller B.(2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 37(4):528-38
    
    Yi KK, Wu ZC, Zhou J, Du LM, Guo LB, Wu YR et al. (2005). Os-PTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol. 138, 2087-2096.
    
    Yun HS, Bae YH, Lee YJ, Chang SC, Kim SK, Li J, Nam KH. (2009)Analysis of phosphorylation of the BRI1/BAK1 complex in arabidopsis reveals amino acid residues critical for receptor formation and activation of BR signaling. Mol Cells. 27(2): 183-90.
    
    Zakhleniuk OV, Raines CA, Lloyd JC (2001). pho3: a phosphorusdeficient mutant of Arabidopsis thaliana (L.) Heynh. Planta 201, 529-534.Zhang Y, Lynch JP, Brown K (2003). Ethyiene and phosphorus availability have interacting yet distinct effects on root hair development. J. Exp. Bot 54, 2351-2361.
    
    Zhou J, Jiao FC, Wu ZC, Li YY, Wang XM, He XW et al. (2008). OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant PkysioL 146,1673-1686.
    
    Zhang Y, Lynch JP, Brown K (2003). Ethyiene and phosphorus availability have interacting yet distinct effects on root hair development. J. Exp. Bot. 54, 2351-2361.
    
    Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boiler T, Felix G. (2006) Perception of the bacterial PAMP EF-Tu by thereceptor EFR restricts Agrobacterium-mediated transformation. Cell, 125:749-760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700