软配体化合物2,6-(5,6-二壬基-1,2,4-三嗪-3-基)吡啶的合成、表征及基础特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
次锕系元素MA(Ⅲ)是高放废液中含有的长寿命和高毒性的放射性核素,必需对其进行分离,然而由于次锕系元素与镧系元素的化学性质极为相似,其有效分离一直是分离科学与技术领域的热点和难点课题。
     本文合成了一种新型软配体化合物2,6-(5,6-二壬基-1,2,4-三嗪-3-基)吡啶(Non-BTP),以FT-IR、TG-DSC、ESI-MS和1H NMR等手段对中间产物和目标产物的结构与组成进行了表征,并对2,,6-吡啶二甲酰胺腙的合成工艺条件进行了优化,获得的最佳工艺条件为:2,6-吡啶二甲腈:85%水合肼:重结晶水量=1:15:174,反应时间为30 h,反应温度为30℃,产率为85.37%。
     研究了Non-BTP/30%正辛醇-70%正十二烷体系对Rb(Ⅰ)、Cs(Ⅰ)、Sr(Ⅱ)、Ba(Ⅱ)、Pd(Ⅱ)、Ru(Ⅲ)、La(Ⅲ)、Co(Ⅲ)、Fe(Ⅲ)、Ni(Ⅲ)、Y(Ⅲ)、Sm(Ⅲ)、Yb(Ⅲ)、Zr(Ⅳ)和Mo(Ⅵ)等10余种典型金属离子的萃取性能。实验结果表明:Non-BTP对过渡元素尤其是Pd(Ⅱ)有较好的萃取性能,最佳HN03浓度为3.0 M;萃取平衡时间约为30 min; Pd(Ⅱ)与Non-BTP形成1:2的配合物;Non-BTP在30%正辛醇-70%正十二烷中萃取Pd(Ⅱ)离子的过程为放热反应,并计算了相关热力学参数。
     利用真空活化灌注技术,以大孔硅基Si02-P为载体,制备了新型2,6-(5,6-二壬基-1,2,4-三嗪-3-基)吡啶软配体复合材料(Non-BTP/SiO2-P),以FT-IR、SEM、TG-DSC、XRD和BET等手段对其进行了表征,明确了Non-BTP/SiO2-P的微观结构、化学组成以及复合机理。
     研究了Non-BTP/SiO2-P对Rb(Ⅰ)、Cs(Ⅰ)、Sr(Ⅱ)、Ba(Ⅱ)、Pd(Ⅱ)、Ru(Ⅲ)、La(Ⅲ)、Co(Ⅲ)、Fe(Ⅲ)、Ni(Ⅲ)、Y(Ⅲ)、Sm(Ⅲ)、Yb(Ⅲ)、Zr(Ⅳ)和Mo(Ⅵ)等10余种典型金属离子的吸附性能,考察了HN03浓度和接触时间变化等因素对吸附性能的影响。通过测定不同条件下水相中的有机碳含量,表明Non-BTP/SiO2-P有较好的稳定性。Non-BTP/SiO2-P对过渡元素尤其是Pd(Ⅱ)有较好的吸附性能,对Ln(Ⅲ)基本无吸附作用,最佳HN03浓度为3.0 M,吸附平衡时间约为30 min。
The long-lived minor actinide (MA(III)) elements contained in high level liquid waste (HLLW) generated in reprocessing process of nuclear spent fuel have long-term radiological risk, it is valuable to separate them from HLLW for further transmutation.
     2,6-bis(5,6-dialkyl-1,2,4-triazine-3-yl)pyridine (R-BTP) is a kind of multidentate chelating agent containing nitrogen which has better complexing ability for MA(III) than Ln(III). A novel soft ligand 2,6-bis(5,6-dinonyl-1,2,4-triazine-3-yl) pyridine (Non-BTP) was synthesized using 2,6-pyridinedicarbonitrile and ethyl decanoate as raw materials. It was characterized by FT-IR, TG-DSC, ESI-MS, and 1H NMR. An improved synthetic process of 2,6-pyridinedicarboxamide dihydrazone was proposed. The optimum conditions were described as follows:2,6-pyridine dicarbonitrile: 85%N2H4=1:15, reaction time=30 h, reaction temperature=30℃. The optimum yield of the product was 85.37%.
     Using 30% n-octanol/70% n-dodecane as diluent, the extraction behavior of Rb(Ⅰ), Cs(Ⅰ), Sr(Ⅱ), Ba(Ⅱ), Pd(Ⅱ), Ru(Ⅲ), La(Ⅲ), Co(Ⅲ), Fe(Ⅲ), Ni(Ⅲ), Y(Ⅲ), Sm(Ⅲ), Yb(Ⅲ), Zr(Ⅳ) and Mo(Ⅳ) from HNO3 solution was studied. The influences of HNO3 concentration, Non-BTP content, contact time, and temperature on the extraction ability were investigated. It was found that the complex composition between Pd(Ⅱ) and Non-BTP was determined as 1:2 type. In addition, the thermodynamic parameters of Pd(Ⅱ) extrated by Non-BTP were calculated.
     A novel macroporous silica-based 2,6-bis(5,6-dinonyl-1,2,4-triazine-3-yl) pyridine (Non-BTP/SiO2-P) was prepared through impregnation and immobilization of the corresponding R-BTP compound into the pores of the macroporous SiO-P support. The appearance, chemical composition, and inner structure were characterized by FT-IR, SEM, TG-DSC, XRD, and BET.
     The effects of HNO3 concentration and contant time on the adsorption of Rb(Ⅰ), Cs(Ⅰ), Sr(Ⅱ), Ba(Ⅱ), Pd(Ⅱ), Ru(Ⅲ), La(Ⅲ), Co(Ⅲ), Fe(Ⅲ), Ni(Ⅲ), Y(Ⅲ), Sm(Ⅲ), Yb(Ⅲ), Zr(Ⅳ), Mo(Ⅵ), and more than 10 typical elements onto the Non-BTP/SiO2-P materials were investigated at 25℃. The Non-BTP/SiO2-P material showed excellent adsorption ability and selectivity for Pd(Ⅱ) over all of the other tested metals. The optium acidity for the Pd(Ⅱ) adsorption was 3.0 M HNO3. In addition, the uptake of Ln(Ⅲ) onto the Non-BTP/SiO2-P material was negligible, which was beneficial to separate MA(Ⅲ) from Ln(Ⅲ) using this composite in further researches.
引文
[1]陈建夫.当今世界能源现状与发展综述[EB/OL].http://wenku.baidu.com/view/8366401655270722192ef760.html
    [2]王水莹.核电[EB/OL]. http://baike.baidu.com/view/39474.htm
    [3]王玉荟.世界能源需求与核能[J].国外核新闻,2008,(12).http://epub.cnki.net/grid2008/detail.aspx?QueryID=5&CurRec=1
    [4]Newshoo核电跃进,核废物处理待解[EB/OL].http://roll.sohu.com/20101206/n300920877.shtml
    [5]常冰.核电的过去、现在和未来世界能源委员会的任务是促进可持续的能源供应和利用[J].国外核新闻,2003,(08).http://epub.cnki.net/grid2008/detail.aspx?QueryID=77&CurRec=1
    [6]孙丽洁.乏燃料的后处理[EB/OL]. http://baike.baidu.com/view/3568975.htm
    [7]汪德熙.从化学角度看放射性废物长期安全处置[A].汪德熙文集[C].北京:原子能出版社,1993,161-162.
    [8]袁涛,王晓宇,栗再新等.核废物处理途径的探讨[J].科学技术与工程.2004,10(4):861-867.
    [9]Mathur J. N., Murali M. S., Nash K. L.. Actinide partitioning-a review[J]. Solvent Extraction and Ion Exchange.2001,19(3):357-390.
    [10]李寿枬.不产生长寿命高放废物的先进核能系统[J].原子能科学技术.1997,31(6):558-567.
    [11]李寿枬.高放废物的嬗变处置与不产生长寿命高放废物的先进核能系统[J].核科学与工程.1996,16(3):269-283.
    [12]Madic C. Overview of the hydrometallurgical and pyro-metallurgical processes studied woldwide for the partitioning of high active wastes[C]. Proceedings of the International Symposium (NUCEF 2001). Tokai. Tbaraki, Japan. Oct. 31-Nov.2.2001:53-64.
    [13]王萍.镅等锕系元素与镧系元素分离方法研究进展[J].环境科学导刊.2008,27(5):16-20.
    [14]宋崇立,焦荣洲.高放废液中锕系元素和长寿命核素水法分离流程研究进 展[C].核化学化工学术讨论会.中国,乌鲁木齐,2002:1-22.
    [15]Powell J. E., Potter M. W., Burkholder H. R., et al. Structural influences on the lanthanide-actinide selectivity of some aminocarboxylates[J]. Polyhedron.1982, 1(3):277-281.
    [16]Mathur J. N., Khopkar P. K.. Ion exchange behavior of chelat ing resin Dowex A-1 with actinides and lanthanides[J]. Solvent Extraction and Ion Exchange. 1985,3 (3):753-762.
    [17]Arai T., Wei Y. Z., Kumagai M., et al. Separation of rare earths in nitric acid medium by a novel silica-based pyridinium anion exchange resin[J]. Journal of Alloys and Compounds.2006,408-412:1008-1012.
    [18]赵军,张东,汪涛等.膜技术处理含铀钚镅废水的实验研究[C].小型“循环经济”学术研讨会论文汇编.2008:197-214.
    [19]王祥云,刘元方.核化学与放射化学[M].北京:北京大学出版社,2007
    [20]Bhattacharyya A., Mohapatra P. K., Roy A., et al. Ethyl-bis-triazinylpyridine (Et-BTP) for the separation of americium(Ⅲ) from trivalent lanthanides using solvent extraction and supported liquid membrane methods [J]. Hydrometallurgy. 2009,99:18-24.
    [21]余绍宁HBMPPT/TOPO/甲苯体系从硝酸介质中分离三价镅和镧系元系的研究[J].核技术.2002,25(3):231-234.
    [22]Matsumura T., Takeshita K.. Extraction separation of trivalent minor actinides from lanthanides with hydrophobic derivatives of TPEN[J]. Progress in Nuclear Energy.2008,50:470-475.
    [23]王兴海,焦荣洲,朱永贝睿等HBTMPDTP-TBP从硝酸中协同萃取镅[J].核化学与放射化学.1999,21(4):213-218.
    [24]韩宾兵,吴秋林,朱永贝睿TRPO-TBP/煤油体系对高放废液中镅、铀、钚和锝等的萃取和反萃[J].辐射防护.2001,21(2):93-97.
    [25]刘德敏,刘翔峰,王世联等.1-苯基-3-甲基-4-氰硫基-5-吡唑酮的合成及其对镅和铕的萃取研究[J].核化学与放射化学.2004,26(1):53-64.
    [26]杭建忠,曹卫国,包伯荣等.锕系镧系元素分离中新萃取剂的研究(Ⅲ)-HCBMPPT对铀(Ⅵ)的萃取机理研究[J].核技术.2003,26(5):400-405.
    [27]吴剑峰,金玉仁,许启初等.逆流色谱分离镅(Ⅲ)和铕(Ⅲ)的研究[J].分析化学.2006,34(9):1311-1314.
    [28]蹇源,李兴亮,杨玉山等.高放废液中锕系核素萃取分离研究进展[J].环境工程.2009,27(增刊):137-142.
    [29]Lin Y. H., Brauer R. D., Laintz K. E., et al. Supercritical fluid extraction of lanthanides and actinides from solid materials with a fluorinated β-diketone[J]. Analytical Chemistry.1993,65(18):2549-2551.
    [30]段五华,景山,陈靖等.超临界流体络合萃取镧系和锕系元素的研究进展[J].原子能科学技术.2001,41(4):429-437.
    [31]陈继,李德谦.离子液体在稀土分离中的应用[C].中国科协第143次青年科学家论坛-离子液体与绿色化学.中国科学技术协会,中国,北京,2007:53-59.
    [32]马春宏,尹彦苏,王仁章等.离子液体在萃取分析中的应用[J].白城师范学院学报.2008,22(3):25-28.
    [33]张晓果,周庆祥.离子液体及其在萃取分离中的应用[J].河南师范大学学报(自然科学版).2010,38(1):109-112.
    [34]Rogers R. D., Seddon K. R.. Ionic liquids-solvents of the future[J]. Science.2003, 302:792-793.
    [35]Visser A. E., Rogers R. D., Room-temperature ionic liquids:new solvents for f-element separations and associated solution chemistry [J]. Journal of Solid State Chemistry.2003,171:109-113.
    [36]Rogers R. D., A new class of solvents for TRU dissolution and separation:ionic liquids[R]. Department of Chemistry and Center for Green Manufacturing, The University of Alabama.2003.
    [37]刘文杰.萃取色层法分离锎-252和锔-248的研究[硕士研究生学位论文].北京:中国原子能科学研究院.2001
    [38]Dam H. H., Reinhoudt D. N., Verboom W.. Multicoordinate ligands for actinide/ lanthanide separations [J]. Chemical Society Reviews.2007,36:367-377.
    [39]丁颂东,夏传琴,陈文浚.从高放废液中分离锕系元素流程评述[J].化学研究与应用.2000,12(1):1-4
    [40]Vandegrift G. F., Chamberlain D. B., Conner C. et al. Development and demonstration of the TRUEX solvent extraction process[C]. Technology and Programs for Radioactive Waste Management Environmental Restoration. Proceedings of the Symposium on Pesticide Chemistry. USA. February 28-March4,1993:1044-1051.
    [41]Korna Y., Watanabe M., Nemoto S., et al. A counter current experiment for the separation of trivalent actinides and lanthanides by the SETFICS process[J]. Solvent Extraction and Ion Exchange.1998,16(6):1357-1367.
    [42]焦荣洲,宋崇立,朱永贝睿等.从高放废液中分离锕系元素流程进展[J].核科学与工程.2002,22(1):62-70.
    [43]焦荣洲,宋崇立,朱永贝睿.萃取分离法处理高放废液的进展[J].原子能科学技术.2000,34(5):473-480.
    [44]Duan W. H., Wang J. C., Chen J., et al. Development of annular centrifugal contactors for TRPO process tests[J]. Journal of Radioanalytical and Nuclear Chemistry.2007,273(1):103-107.
    [45]Siddall T.H, Bidentate. Bidentate organophosphorus compounds as extractants.l. Extraction of cerium, promethium,and americium nitrates[J]. Inorg Nucl Chem, 1963,25(7):883-892.
    [46]Siddall T.H, Bidentate. Bidentate organophosphorus compounds as extractants.2. Extraction mechanisms for Cerium(Ⅲ) nitrate[J]. Inorg Nucl Chem,1964,26 (11):1991-2003.
    [47]Horwitz E.P, Muscatello A.C, Kalina D.G., The extraction of selected Transplutonium(Ⅲ) ions by dihexyl-N,N-diethylcarbamoylmethylphosphonate from aqueousnitratemedia[J]. Sep. Science Tech.1981,20(1):16-417
    [48]Morita Y., Yamaguchi I., Kondo Y., et al. Research and development on the partitioning process at JAERI[C]. Safety and environmental aspects of partitioning and transmutation of actinides and fission products, Proceedings of a technical committee meeting, International Atomic Energy Agency, Vienna, Austria, Nov.29-Dec.2,1993, IAEA-TECDOC-783:93-104.
    [49]Tachimori S., Nakamura H.. Extraction of some elements by mixture of DIDPA-TBP and its application to actinoid partitioning process[J]. Journal of Nuclear Science and Technology.1982,19(4):326-333.
    [50]Morita Y., Yamaguchi I.. A demonstrstion test of 4-group partitioning process with real high-level liquid waste[C]. Proceedings International Conference Atalante 2000, Avignon, France, October 24-26,2000:3-37
    [51]Modolo G., Vijgen H.. DIAMEX counter-current extraction process for recovery of trivalent actinides from simulated high active concentrate [J]. Separation Science and Technology.2007,42:439-452.
    [52]Cuillerdier.C., C. Musikas, et al. Malonamides as new extractants for nuclear waste solutions[J]. Sep. Sci. Technal.1991,26(9):1229-1244
    [53]刘德敏,邵芸,刘翔峰等Cyanex 301和Cyanex 302对镅和稀土元素的萃取研究[J].核化学与放射化学.1997,19(4):18-22
    [54]许启初,张利兴,杨裕生.二(2-乙基己基)单(或二)硫代磷(膦)酸对示踪量镅和稀土元素的萃取[J].核化学与放射化学.1998,20(2):123-128
    [55]Choppin. G.R.J. Comparison of the solution chemistry of the actinides and lanthanides[J]. Less-common Metals,1983:93-323
    [56]沈朝洪,包伯荣.用于锕系元素萃取分离的新萃取剂研究[J].核化学与放射化学.1993,15(4):243-251.
    [57]Dam H. H.. Reinhoudt D. N., Verboom W.. Multicoordinate ligands for actinide/ lanthanide separations[J]. Chemical Society Reviews.2007,36:367-377.
    [58]Nigond L, Condamines N, Ycofdier P, et al. Recent advances in the treatment of nuclear wastes by the use of diamide and picolinamide extractants [J]. Sep. Science Tech.1995.30(7-9):2075
    [59]Kolarik Z., Mullich U., Gassner F., et al. Selective extraction of Am(III) over Eu(III) by 2,6-ditriazolyl-and 2,6-ditriazinylpyridines[J]. Solvent Extraction and Ion Exchange.1999,17:23-32.
    [60]Kolarik Z.. Extraction of selected mono-to tetravalent metal ions by 2.6-di-(5,6-dialkyl-1,2,4-triazin-3-yI)-pyridines[J]. Solvent Extraction and Ion Exchange. 2003,21(3):381-397.
    [61]Retegan T., Ekberg C. Dubois I., et al. Extraction of actinides with different 6,6'-bis(5.6-dialkyl-1,2,4-triazin-3-yl)-2.2'-bipyridines(BTBPs)[J]. Solvent Extra ction and Ion Exchange.2007,25:417-431.
    [62]Naik P. W., Dhami P. S., Misra S. K., et al. Use of organophosphorus extractants impregnated on silica gel for the extraction chromatographic separation of minor actinides from high level waste solutions[J]. Journal of Radioanalytical and Nuclear Chemistry.2003.257(2):327-332.
    [63]Bhattacharyya A.. Mohapatra P. K.. Separation of Am3+ and Eu3+ using an extraction chromatographicresin containing bis(2,4,4-trimethylpentyl)-dithioph-osphinic acid as the stationary phase[J]. Journal of Chromatography A.2006. 1123:26-30.
    [64]Yamaura M., Matsuda H. T.. Actinides and fission products extraction behavior in TBP/XAD-7 chromatographic column[J]. Journal of Radioanalytical and Nuclear Chemistry.1997,224(1-2):83-87
    [65]Ansari S. A., Mohapatra P. K., Manchanda V. K.. A novel malonamide grafted polystyrene-divinyl benzene resin for extraction, pre-concentration and separation of actinides[J]. Journal of Hazardous Materials.2009,161:1323-1329.
    [66]Wei Y. Z., Hoshi H., Kumagai M., et al. Separation of Am(Ⅲ) and Cm(Ⅲ) from trivalent lanthanides by 2,6-bistriazinylpyridine extraction chromatography for radioactive waste management[J]. Journal of Alloys and Compounds.2004,374: 447-450.
    [67]Hoshi H., Wei Y. Z., Kumagai M., et al. Group separation of trivalent minor actinides and lanthanides by TODGA extraction chromatography for radioactive waste management [J]. Journal of Alloys and Compounds.2004.374:451-455.
    [68]Zhang A., Kuraoka E., Hoshi H., et al. Synthesis of two novel macroporous silica-based impregnated polymeric composites and their application in highly active liquid waste partitioning by extraction chromatography [J]. Journal of Chromatography A.2004,1061:175-182.
    [69]Kolarik Z., Mullich U., Gassner F., et al. Selective extraction of Am(III) over Eu(III) by 2,6-ditriazolyl-and 2,6-ditriazinylpyridines[J]. Solvent Extraction and Ion Exchange.1999,17:23-32.
    [70]Kolarik Z.. Extraction of selected mono-to tetravalent metal ions by 2,6-di-(5,6-dialkyl-1,2,4-triazin-3-yl)-pyridines[J]. Solvent Extraction and Ion Exchange. 2003,21(3):381-397.
    [71]Case. F. H.. The preparation of 2,4-and 2,6-bis-tri-zainyl and triazolinyl derivatives of pyridine[J]. Journal of Heterocyclic Chemistry.1971,8:1043-1046.
    [72]Zhang A., Kuraoka E., et al. Preparation of a novel macroporous silica-based 2,6-bis(5,6-diisobutyl-1,2,4-triazine-3-yl)pyridine impregnated polymeric composite and its application in the adsorption for trivalent rare earths[J]. Journal of Radioanalytical and Nuclear Chemistry.2007,274(3):455-464
    [73]Drew M. G. B., Denis G., Michael J. H., et al. Lanthanide(Ⅲ) complexes of a highly efficient actinide(Ⅲ) extracting agent-2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl) pyridine[J]. Inorganic Chemistry Communications.2001,4(1):12-15.
    [74]刘鹏,张萍.1,2-二酮化合物的合成方法[J].河北化工.2005,4:9-10
    [75]余爱农,孙宝国,何坚.3,4-已二酮的合成研究[J].精细化工.1997,4(14):19-22
    [76]Drew M. G. B., Foreman M. R. St. J., Geist A., et al. Synthesis, structure, and redox states of homoleptic d-block metal complexes with bis-1,2,4-triazin-3-yl-pyridine and 1,2,4-triazin-3-y1-bipyridine extractants[J]. Polyhedron.2006,25: 888-900.
    [77]程琦福,叶国安等.2.6-双(5,6-二异丙基-1,2,4-三唑-3)吡啶对镅和铕的萃取[J].核化学与放射化学.2007,2:23-26
    [78]格雷格S.J.等著,高敬宗等译.吸附、比表面与孔隙率[M].北京:化学工业出版社.1989
    [79]刘辉,吴少华等.快速热解褐煤焦的低温氮吸附等温线形态分析[J].煤炭学报.2005,30(4):507-510
    [80]朱振峰,李晖,朱敏.微乳液法制备无定形纳米二氧化硅[J].无机盐工业.2006,38(6):14-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700