几种新型大孔硅基软配体材料制备及其吸附特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以2,6-吡啶二甲腈和脂类衍生物等试剂为原料,合成了4种2,6-二(5,6-二烷基-1,2,4-三嗪-3-基)-吡啶(R-BTP)衍生物:2,6-二(5,6-二甲基-1,2,4-三嗪-3-基)-吡啶(Me-BTP)、2,6-二(5,6-二丙基-1,2,4-三嗪-3-基)-吡啶(Pro-BTP)、2,6-二(5,6-二戊基-1,2,4-三嗪-3-基)-吡啶(Pen-BTP)和2,6-二(5,6-二庚基-1,2,4-三嗪-3-基)-吡啶(Hep-BTP),以元素分析、FT-IR、TG-DSC、ESI-MS和1H NMR等手段进行了表征,确认为目标产物。
     对中间体己偶姻合成工艺条件进行了优化,其最佳工艺条件为:在室温和氮气保护条件下,钠、酯类试剂和无水乙醚的物质的量比为2:1:6,己偶姻的收率为71.54%。
     以大孔SiO2-P为载体,利用固定化真空活化灌注技术制备了三种新型的大孔硅基软配体材料Me-BTP/SiO2-P、Pro-BTP/SiO2-P和Pen-BTP/SiO2-P,以FT-IR、TG-DSC、SEM、XRD和BET等手段进行了表征,明确了大孔硅基软配体材料的复合机理及微观结构。
     在0.4-5.0 M HNO3溶液中,研究了Me-BTP/SiO2-P、Pro-BTP/SiO2-P和Pen-BTP/SiO2-P吸附Na(Ⅰ)、K(Ⅰ)、Rb(Ⅰ)、Cs(Ⅰ)、Sr(Ⅱ)、Ba(Ⅱ)、Ru(Ⅲ)、Mo(Ⅵ)、La(Ⅲ)、Yb(Ⅲ)、Co(Ⅱ)、Fe(Ⅲ)、Pd(Ⅱ)、Ni(Ⅱ)、Zr(Ⅵ)、Sm(Ⅲ)和Y(Ⅲ)等17种金属离子的基础特性,考察了酸度和接触时间等因素对R-BTP/SiO2-P吸附性能的影响。结果发现,三种大孔硅基软配体材料对Pd(Ⅱ)、Fe(Ⅲ)、Co(Ⅱ)和Ni(Ⅱ)等过渡金属元素有着较好的吸附选择性,其中Pen-BTP/SiO2-P对Pd(Ⅱ)有明显的吸附能力;被实验的La(Ⅲ)、Sm(Ⅲ)、Y(Ⅲ)和Yb(Ⅲ)表现为弱吸附或基本不吸附,说明R-BTP/SiO2-P对16种稀土元素RE(Ⅲ)基本无吸附性能,这对从酸性高放废物中实现An(Ⅲ)/RE(Ⅲ)有效分离有重要意义。
2,6-(5,6-dialkyl-1,2,4-triazine-3-yl)-pyridine (R-BTP) is a kind of multidentate chelating agent of soft-ligand containing nitrogen. It seems to have better complexing ability for minor actinides (MAs). To separate MA from highly active liquid waste (HLW), four derivatives of R-BTP,2,6-bis(5,6-dimethyl-1,2,4-triazine-3-yl) pyridine (Me-BTP),2,6-bis(5,6-dipropyl-1,2,4-triazine-3-yl)pyridine (Pro-BTP),2,6-bis(5,6-dipentyl-1,2,4-triazine-3-yl)pyridine (Pen-BTP), and 2,6-bis(5,6-diheptyl-1,2,4-triazine-3-yl)pyridine (Hep-BTP) were synthesized using 2,6-pyridinedicarbonitrile and ester as raw materials. They were characterized by elementary analysis, FT-IR, TG-DSC, FT-IR, ESI-MS, and 1H NMR.
     The synthesis procedure of immediate hexylacyloin was optimized. The optimum conditions were described as follows:molar ratio of Na, C2H5OC2H5, and n-C5H11COOC2H5 was 2:1:6 under protection by nitrogen gas at 25℃. The yield of hexylacyloin was 71.54%.
     Three novel macroporous silica-based soft ligand materials Me-BTP/SiO2-P, Pro-BTP/SiO2-P, and Pen-BTP/SiO2-P were synthesized by impregnation and immobilization of Me-BTP, Pro-BTP, and Pen-BTP molecules into the pores of SiO2-P, respectively. All the R-BTP/SiO2-P materials were characterized by FT-IR, TG-DSC, SEM, XRD, and BET.
     The effects of the HNO3 concentration in the range of 0.4-5.0 M HNO3 and contact time on the adsorption of some typical elements such as Na(Ⅰ), K(Ⅰ), Rb(Ⅰ), Cs(Ⅰ), Sr(Ⅱ), Ba(Ⅱ), Pd(Ⅱ), Ru(Ⅲ), Mo(Ⅵ), Zr(Ⅵ), Fe(Ⅲ), Co(Ⅱ), Ni(Ⅱ), La(Ⅲ), Sm(Ⅲ), Yb(Ⅲ), and Y(Ⅲ) onto Me-BTP/SiO2-P, Pro-BTP/SiO2-P, and Pen-BTP/SiO2-P were investigated at 25℃. The results showed that the macroporous silica-based soft ligand materials exhibited adsorption for Pd(Ⅱ), Fe(Ⅲ), Co(Ⅱ), and/or Ni(Ⅱ). The adsorption of Pen-BTP/SiO2-P for Pd(Ⅱ) was strong with the distribution coefficient of more than 1000 cm3/g. La(Ⅲ), Sm(Ⅲ), Yb(Ⅲ), and Y(Ⅲ) as the representative of rare earths REs(Ⅲ) showed weak or almost no adsorption onto R-BTP/SiO2-P, indicative of no adsorption for all REs(Ⅲ) because of lanthanide contraction. It is beneficial to effective separation An(Ⅲ)/RE(Ⅲ) from HLLW.
引文
[1]清华能源研究与教育中心译著.国际能源展望2004[M].北京:清华大学出版社.2006.
    [2]International energy outlook 2006[R]. Office of Integrated Analysis and Foreca-sting, Department of Energy, Washington D. C., USA,2006.
    [3]宋卫东,方彤,王乾坤等.2009年《世界能源展望》要点综述[J].能源技术经济.2010,22(1):18-22.
    [4]严叔衡.核能的作用与后处理的必要性[C].全国核化学化工学术交流年会.中国,内蒙古,呼伦贝尔,2004:1-24.
    [5]世界核能发电现状及其未来前途[J].国际原子能机构通报.2008,3:45-48.
    [6]臧亚琴等.全球的核能发电现状[J].硅谷.2009,15:198.
    [7]郭娟彦,刘志铭等.世界核电现状和我国核电未来发展前景展望[C].国内外核电站生产、建设和规划最新情况简报(2009上).http://d.g.wanfangdata. com.cn/Conference_7186672.aspx.
    [8]全球核能产业发展概况.http://ccn.mofcom.gov.cn/spbg/show.php?id=5560.
    [9]http://company.mmsonline.com.cn/zhidao/question-69539.shtmL.
    [10]核电发展专题规划(2005-2020年).国家发展和改革委员会.2007.
    [11]中国核电现状之一.http://www.yuhoo.com.cn/hngl/zghn/200810/t20081-006 24284.htm.
    [12]核电调整方案提交国务院:装机比例上调至5%.http://businesssohu.com/200-90331/n263110961.shtmL
    [13]Uggla Y.. Risk and safety analysis in long-term perspective[J]. Futures.2004, 36:549-564.
    [14]Ghonemy H. E., Watts L., Fowler L.. Treatment of uncertainty and developing conceptual models for environmental risk assessments and radioactive waste disposal safety eases[J]. Environment International.2005,31(1):89-97.
    [15]Broden K., Olsson G.. Final disposal possibilities of radioactive waste compon-ents from ITER[J]. Fusion Engineering and Design.2003,69(4):695-697.
    [16]邱小平,谭健.我国核电站长寿命裂变产物及超铀核素累积量预测[J].核电子学与探测技术.2005,25(1):84-87.
    [17]汪德熙.从化学角度看放射性废物长期安全处置[A].汪德熙文集[C].北京:原子能出版社,1993,161-162.
    [18]袁涛,王晓宇,栗再新等.核废物处理途径的探讨[J].科学技术与工程.2004,10(4):861-867.
    [19]Mathur J. N., Murali M. S., Nash K. L.. Actinide partitioning-a review[J]. Solvent Extraction and Ion Exchange.2001,19(3):357-390.
    [20]李寿枬.不产生长寿命高放废物的先进核能系统[J].原子能科学技术.1997,31(6):558-567.
    [21]李寿枬.高放废物的嬗变处置与不产生长寿命高放废物的先进核能系统 [J].核科学与工程.1996,16(3):269-283.
    [22]Madic C. Overview of the hydrometallurgical and pyro-metallurgical processes studied woldwide for the partitioning of high active wastes[C]. Proceedings of the International Symposium (NUCEF 2001). Tokai, Tbaraki, Japan, Oct.31-Nov. 2,2001:53-64.
    [23]王萍.镅等锕系元素与镧系元素分离方法研究进展[J].环境科学导刊.2008,27(5):16-20.
    [24]宋崇立,焦荣洲.高放废液中锕系元素和长寿命核素水法分离流程研究进展[C].核化学化工学术讨论会.中国,乌鲁木齐,2002:1-22.
    [25]Powell J. E., Potter M. W., Burkholder H. R., et al. Structural influences on the lanthanide-actinide selectivity of some aminocarboxylates[J]. Polyhedron.1982, 1(3):277-281.
    [26]Mathur J. N., Khopkar P. K.. Ion exchange behavior of chelat ing resin Dowex A-l with actinides and lanthanides[J]. Solvent Extraction and Ion Exchange.1985, 3 (3):753-762.
    [27]Arai T., Wei Y. Z., Kumagai M., et al. Separation of rare earths in nitric acid medium by a novel silica-based pyridinium anion exchange resin [J]. Journal of Alloys and Compounds.2006,408-412:1008-1012.
    [28]赵军,张东,汪涛等.膜技术处理含铀钚镅废水的实验研究[C].小型“循环经济”学术研讨会论文汇编.2008:197-214.
    [29]Bhattacharyya A., Mohapatra P. K., Roy A., et al. Ethyl-bis-triazinylpyridine (Et-BTP) for the separation of americium(III) from trivalent lanthanides using solvent extraction and supported liquid membrane methods [J]. Hydrometallurgy. 2009,99:18-24.
    [30]余绍宁HBMPPT/TOPO/甲苯体系从硝酸介质中分离三价镅和镧系元系的研究[J].核技术.2002,25(3):231-234.
    [31]Matsumura T., Takeshita K.. Extraction separation of trivalent minor actinides from lanthanides with hydrophobic derivatives of TPEN[J]. Progress in Nuclear Energy.2008,50:470-475.
    [32]王兴海,焦荣洲,朱永贝睿等HBTMPDTP-TBP从硝酸中协同萃取镅[J].核化学与放射化学.1999,21(4):213-218.
    [33]韩宾兵,吴秋林,朱永贝睿.TRPO-TBP/煤油体系对高放废液中镅、铀、钚和锝等的萃取和反萃[J].辐射防护.2001,21(2):93-97.
    [34]刘德敏,刘翔峰,王世联等.1-苯基-3-甲基-4-氰硫基-5-吡唑酮的合成及其对镅和铕的萃取研究[J].核化学与放射化学.2004,26(1):53-64.
    [35]杭建忠,曹卫国,包伯荣等.锕系镧系元素分离中新萃取剂的研究(III)-HCBMPPT对铀(Ⅵ)的萃取机理研究[J].核技术.2003,26(5):400-405.
    [36]吴剑峰,金玉仁,许启初等.逆流色谱分离镅(Ⅲ)和铕(Ⅲ)的研究[J].分析化学.2006,34(9):1311-1314.
    [37]蹇源,李兴亮,杨玉山等.高放废液中锕系核素萃取分离研究进展[J].环境工程.2009,27(增刊):137-142.
    [38]Lin Y. H., Brauer R. D., Laintz K. E., et al. Supercritical fluid extraction of lanthanides and actinides from solid materials with a fluorinated β-diketone[J]. Analytical Chemistry.1993,65(18):2549-2551.
    [39]段五华,景山,陈靖等.超临界流体络合萃取镧系和锕系元素的研究进展[J].原子能科学技术.2001,41(4):429-437.
    [40]陈继,李德谦.离子液体在稀土分离中的应用[C].中国科协第143次青年科学家论坛-离子液体与绿色化学.中国科学技术协会,中国,北京,2007:53-59.
    [41]马春宏,尹彦苏,王仁章等.离子液体在萃取分析中的应用[J].白城师范学院学报.2008,22(3):25-28.
    [42]张晓果,周庆祥.离子液体及其在萃取分离中的应用[J].河南师范大学学报(自然科学版).2010,38(1):109-112.
    [43]Rogers R. D., Seddon K. R.. Ionic liquids-solvents of the future[J]. Science. 2003,302:792-793.
    [44]Visser A. E., Rogers R. D.. Room-temperature ionic liquids:new solvents for f-element separations and associated solution chemistry[J]. Journal of Solid State Chemistry.2003,171:109-113.
    [45]Rogers R. D.. A new class of solvents for TRU dissolution and separation:ionic liquids [R]. Department of Chemistry and Center for Green Manufacturing, The University of Alabama.2003.
    [46]刘文杰.萃取色层法分离锎-252和锔-248的研究[硕士研究生学位论文].北京:中国原子能科学研究院.2001.
    [47]Filer T. D.. Separation of the Trivalent actinides from the lanthanides by extraction chromatography[J]. Analytical Chemistry.1974,46(4):608-610.
    [48]Martin D. B., Pope D. G.. Separation of tervalent lanthanides from actinides by extraction chromatography[J]. Analytical Chemistry.1982,54(14):2552-2556.
    [49]Naik P. W., Dhami P. S., Misra S. K., et al. Use of organophosphorus extractants impregnated on silica gel for the extraction chromatographic separation of minor actinides from high level waste solutions[J]. Journal of Radioanalytical and Nuclear Chemistry.2003,257(2):327-332.
    [50]Yamaura M., Matsuda H. T.. Actinides and fission products extraction behavior in TBP/XAD-7 chromatographic column[J]. Journal of Radioanalytical and Nuclear Chemistry.1997,224(1-2):83-87.
    [51]Bhattacharyya A., Mohapatra P. K.. Separation of Am3+ and Eu3+ using an extraction chromatographicresin containing bis(2,4,4-trimethylpentyl)-dithioph-osphinic acid as the stationary phase[J]. Journal of Chromatography A.2006, 1123:26-30.
    [52]Ansari S. A., Mohapatra P. K., Manchanda V. K.. A novel malonamide grafted polystyrene-divinyl benzene resin for extraction, pre-concentration and separation of actinides[J]. Journal of Hazardous Materials.2009,161:1323-1329.
    [53]Wei Y. Z., Hoshi H., Kumagai M., et al. Separation of Am(Ⅲ) and Cm(Ⅲ) from trivalent lanthanides by 2,6-bistriazinylpyridine extraction chromatography for radioactive waste management [J]. Journal of Alloys and Compounds.2004,374: 447-450.
    [54]Hoshi H., Wei Y. Z., Kumagai M., et al. Group separation of trivalent minor actinides and lanthanides by TODGA extraction chromatography for radioactive waste management[J]. Journal of Alloys and Compounds.2004,374:451-455.
    [55]Zhang A., Kuraoka E., Hoshi H., et al. Synthesis of two novel macroporous silica-based impregnated polymeric composites and their application in highly active liquid waste partitioning by extraction chromatography[J]. Journal of Chromatography A.2004,1061:175-182.
    [56]焦荣洲,宋崇立,朱永贝睿等.从高放废液中分离锕系元素流程进展[J].核科学与工程.2002,22(1):62-70.
    [57]Morita Y., Yamaguchi I., Kondo Y., et al. Research and development on the partitioning process at JAERI[C]. Safety and environmental aspects of partitioning and transmutation of actinides and fission products, Proceedings of a technical committee meeting, International Atomic Energy Agency, Vienna, Austria, Nov.29-Dec.2,1993, IAEA-TECDOC-783:93-104.
    [58]Tachimori S., Nakamura H.. Extraction of some elements by mixture of DIDPA-TBP and its application to actinoid partitioning process[J]. Journal of Nuclear Science and Technology.1982,19(4):326-333.
    [59]焦荣洲,宋崇立,朱永贝睿.萃取分离法处理高放废液的进展[J].原子能科学技术.2000,34(5):473-480.
    [60]Morita Y., Yamaguchi I.. A demonstrstion test of 4-group partitioning process with real high-level liquid waste [C]. Proceedings International Conference Atalante 2000, Avignon, France, October 24-26,2000:3-37.
    [61]Korna Y., Watanabe M., Nemoto S., et al. A counter current experiment for the separation of trivalent actinides and lanthanides by the SETFICS process[J]. Solvent Extraction and Ion Exchange.1998,16(6):1357-1367.
    [62]丁颂东,夏传琴,陈文浚等.从高放废液中分离锕系元素流程评述[J].化学研究与应用.2000,12(1):1-4.
    [63]Nicol. C., Bisel. I., Baron. P., et al. PALADIN:A one step process for actinide(III)/fission product separation[C]. Proceedings of the International Conference on Future Nuclear Systems, Global 99:Nuclear Technology Bridging the Millennia, Jackson Hole, WY, USA, Aug.29-Sept.3,1999:585-591.
    [64]Vandegrift G. F., Chamberlain D. B., Conner C, et al. Development and demonstration of the TRUEX solvent extraction process[C]. Technology and Programs for Radioactive Waste Management Environmental Restoration. Proceedings of the Symposium on Pesticide Chemistry. USA, February 28-March 4,1993:1044-1051.
    [65]Modolo G., Vijgen H.. DIAMEX counter-current extraction process for recovery of trivalent actinides from simulated high active concentrate [J]. Separation Science and Technology.2007,42:439-452.
    [66]Duan W. H., Wang J. C, Chen J., et al. Development of annular centrifugal contactors for TRPO process tests [J]. Journal of Radioanalytical and Nuclear Chemistry.2007,273(1):103-107.
    [67]陈靖,焦荣洲,朱永贝睿等.镅与镧系元素分离研究的新进展[J].原子能科学技术.1998,32(5):471-480.
    [68]Weaver B., Kappelmann F. A.. TALSPEAK: A new method of separating americium and curium from the lanthanides by extraction from an aqueous solution of an aminopolyacetic acid complex with a monoactdic organophosphate or phoshonate. Chemical Technology Division, Chemical Development Section C, Contract No. W-7405-eng-26:1-61.
    [69]Liljenzin J. O., Persson G., Svantesson I. et al. Experience from cold tests of the CTH actinide separation process [J]. Transplutonium Elements-Production and Recovery.1981,161:203-221.
    [70]Hoshi H., Wei Y. Z., Kumagai M., et al. Separation of trivalent actinides from lanthanides by using R-BTP resins and stability of R-BTP resin[J]. Journal of Alloys and Compounds.2006,408-412:274-277.
    [71]Kolarik Z., Mullich U., Gassner F., et al. Selective extraction of Am(III) over Eu(III) by 2,6-ditriazolyl-and 2,6-ditriazinylpyridines[J]. Solvent Extraction and Ion Exchange.1999,17:23-32.
    [72]Kolarik Z.. Extraction of selected mono-to tetravalent metal ions by 2,6-di-(5,6-dialkyl-1,2,4-triazin-3-yl)-pyridines[J]. Solvent Extraction and Ion Exchange. 2003,21(3):381-397.
    [73]Madic C., Boullis B., Baron P., et al. Futuristic back-end of the nuclear fuel cycle with the partitioning of minor actinides[J]. Journal of Alloys and Compounds. 2007,444-445:23-27.
    [74]Hill C, Madic C., Baron P., et al. Trivalent minor actinides/lanthanides separation using organophosphinic acids[J]. Journal of Alloys and Compounds.1998,271-273:159-162.
    [75]Bhattacharyya A., Mohapatra P. K., Ansari S. A., et al. Separation of trivalent actinides from lanthanides using hollow fiber supported liquid membrane containing Cyanex-301 as the carrier[J]. Journal of Membrane Science.2008,312: 1-5.
    [76]Wei Y. Z., Kumagai M., Takashima Y., Studies on separation of minor actinides from high-level wastes by extraction chromatography using novel silica-based extraction resins[J]. Nuclear Technology.2000,132:413-423.
    [77]Zhang A., Wei Y. Z., Kumagai M., et al. A new partitioning process for high-level liquid waste by extraction chromatography using silica-substrate chelating agent impregnated adsorbents[J]. Journal of Alloys and Compounds. 2005,390:275-281.
    [78]刘学刚.乏燃料干法后处理技术研究进展[J].核化学与放射化学。2009,31:35-44.
    [79]Kolarik Z.. Complexation and separation of lanthanides(III) and actinides(III) by heterocyclic N-Donors in solutions[J]. Chemical Reviews.2008,108:4208-4252.
    [80]Dam H. H., Reinhoudt D. N., Verboom W.. Multicoordinate ligands for actinide/ lanthanide separations [J]. Chemical Society Reviews.2007,36:367-377.
    [81]程倩,包伯荣,钱群.高放废液中分离回收镧系-锕系元素萃取剂的研究进展[J].核化学与放射化学.2005,17(2):143-146.
    [82]Spjuth L., Liljenzin J. O., Hudson M. J., et al. Comparison of extraction beha-viour and basicity of some substituted malonamides[J]. Solvent Extraction and Ion Exchange.2000,18(1):1-23.
    [83]沈朝洪,包伯荣.用于锕系元素萃取分离的新萃取剂研究[J].核化学与放射 化学.1993,15(4):243-251.
    [84]Retegan T., Ekberg C, Dubois I., et al. Extraction of actinides with different 6,6'-bis(5,6-dialkyl-1,2,4-triazin-3-yl)-2,2'-bipyridines(BTBPs)[J]. Solvent Extra-ction and Ion Exchange.2007,25:417-431.
    [85]Weigl M., Geist A., Miillich U., et al. Kinetics of americium(III) extraction and back extraction with BTP[J]. Solvent Extraction and Ion Exchange.2006,24(6): 845-860.
    [86]Guillaumont D.. Actinide(Ⅲ) and lanthanide(Ⅲ) complexes with nitrogen ligands: counterions and ligand substituent effects on the metal-ligand bond[J]. Journal of Molecular Structure.2006,771:105-110.
    [87]Drew M. G. B., Foreman M. R. St. J., Geist A., et al. Synthesis, structure, and redox states of homoleptic d-block metal complexes with bis-1,2,4-triazin-3-yl-pyridine and l,2,4-triazin-3-yl-bipyridine extractants[J]. Polyhedron.2006,25: 888-900.
    [88]Case. F. H.. The preparation of 2,4-and 2,6-bis-tri-zainyl and triazolinyl derivatives of pyridine[J]. Journal of Heterocyclic Chemistry.1971,8:1043-1046.
    [89]刘鹏,张萍.1,2-二酮化合物的合成方法[J].河北化工.2005,4:9-10.
    [90]余爱农,孙保国.3,4-己二酮的合成研究[J].精细化工.1997,14:20-22.
    [91]余爱农,孙保国.7-羟基-6-十二酮的合成研究[J].香料香精化妆品.1997,4:17-18.
    [92]邢其毅,裴伟伟,徐瑞秋等著.基础有机化学第三版[M].北京:高等教育出版社.2005:621-622.
    [93]Drew M. G. B., Denis G, Michael J. H., et al. Lanthanide(Ⅲ) complexes of a highly efficient actinide(Ⅲ) extracting agent-2,6-bis(5,6-dipropyl-l,2,4-triazin-3-yl)pyridine[J]. Inorganic Chemistry Communications.2001,4(1):12-15.
    [94]格雷格S.J.等著,高敬宗等译.吸附、比表面与孔隙率[M].北京:化学工业出版社.1989.
    [95]朱振峰,李晖,朱敏.微乳液法制备无定形纳米二氧化硅[J].无机盐工业.2006,38(6):14-16.
    [96]刘辉,吴少华等.快速热解褐煤焦的低温氮吸附等温线形态分析[J].煤炭学报.2005,30(4):507-510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700