东北林区森林生物量遥感估算及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球气候变化已经是一个无可争议的事实,极端天气和自然灾害频发已经严重的影响了人类的生产和生活。哥本哈根会议虽然未能就减排等问题达成一项具有约束力的协议,但发展低碳经济促进节能减排已经成为各国的一个基本共识,同时也可以看出气候变化是个极其复杂的问题,远远超出环境的传统范畴,它涉及政治、经济、国际法律等诸多复杂问题。因此全球碳循环也就成为科学界广泛关注的研究课题。陆地生态系统中大约77%的植被碳储藏在森林生物量中,因此森林生物量是陆地生态系统碳循环过程中最主要的参数,它直接反应森林的碳储量。我国东北森林是世界上3大块温带森林之一,占全国森林面积和森林蓄量积的1/3以上,在我国和全球碳循环、林业和生态环境建设中起着举足轻重的作用。然而东北森林碳循环的研究尚不全面,在我国和全球碳循环评估、建模和预测中还急需来自该区域的研究成果。本研究立足于相关的两个科学问题,一是如何准确的获取大尺度的森林生物量,二是森林生物量的时空变化及其驱动定量分析。遥感和地理信息系统是解决问题的关键技术,针对上述问题展开了如下研究并得出相应的主要结论:
     1、遥感数据的处理,包括几何校正和辐射校正,研究大尺度问题时需要多期不同时相的遥感数据的辐射归一化,这是正确利用遥感信息的基础工作。
     2、将东北林区按植被地理分布划分为大兴安岭,小兴安岭和长白山,结合行政区划将长白山分为吉林长白山和黑龙江长白山,四个区域分别估算森林生物量。
     3、地面生物量模型的研建。这是遥感估算森林生物量的基础,本研究采用两种方法建立地面生物量模型,一是常规统计模型,应用于大兴安岭和长白山林区,包括大兴安岭7个主要树种,长白山林区18个主要树种。二是统一生物量模型,本次研究提出了“切比雪夫(chebyshev)正交多项式配合偏最小二乘建立地面统一生物量模型”,把生物量模型看作是连续函数空间中的一个元素,找到这个空间的一组基,则树种生物量统一模型可表示为这组基的线性组合。模型提出的过程,数学推导严密,参数用偏最小二乘方法解算,模型结果与已有的生物量模型结果比较并用地面实测数据进行验证,整个建模过程科学严谨,该模型具有很好的通用型,在地面生物量模型方面是一种新的方法。该模型应用于小兴安岭林区,建立了16个主要树种以胸径为自变量的统一生物量模型。统一生物量模型比常规统计模型平均精度高出5%以上。
     4、根据不同区域的乔、灌、草生物量模型计算森林资源清查样地的生物量,以此作为建立遥感模型的基础数据。
     5、采用逐步回归、BP神经网络和Erf-BP神经网络常规手段建立各个区域的森林生物量估算模型,结果表明逐步回归模型精度较低,为75%左右,难以达到精度要求;Erf-BP神经网络模型精度较高,达到80%以上,但受其自身算法特点的约束难以在大区域进行推广应用。
     6、偏最小二乘模型估算森林生物量是一种新的方法,使用该方法估算森林生物量与回归模型比较精度有较大提高,达到80%以上,特别是非线性偏最小二乘模型效果更好,但由于该方法算法复杂,程序运行时间长,非线性模型形式不确定,给大区域的遥感估算带来问题,因此该方法也仅停留在小区域实验上
     7、联立方程组与度量误差模型估算森林生物量,这是新型统计方法在遥感提取地物参数方面新思路,研究结果表明,该方法比常规统计方法更具合理性。联立方程组与度量误差模型在林分生长模型中有较好的应用,但尚未应用于遥感提取专题信息。本研究将联立方程组与度量误差模型引入到森林生物量的遥感估算中,一方面探索了新的遥感估算模型,另一方面为多传感器的联合估算专题信息提供了新的方法。生物量与叶面积指数的联立结合了多角度遥感,采用物理模型与统计模型相结合的算法,针叶模型平均检验精度83.3%,RMSE=17.72,阔叶模型平均检验精度83.0%,RMSE=20.28;生物量与树高联立结合了激光雷达,平均检验精度81.0%,RMSE=15.19;生物量与后向散射系数联立结合了微波遥感,对主被动遥感联合进行森林生物量估算的方法进行尝试,平均检验精度83.9%,RMSE=20.36。这些方法均能够在一定程度上提高森林生物量的估算精度,最后考虑生物量估算的可实现性选择了郁闭度联立方程组模型作为本研究的最优模型,该模型平均检验精度83.1%,RMSE=20.01。
     8、森林生物量时空变化分析。在GIS空间分析和地统计分析的基础上,广泛收集了研究区域几十年的气象数据、经营活动数据和社会经济数据,采用典型相关分析、主成分分析和偏最小二乘相结合的算法,开发了区域森林生物量变化驱动因子分析的计算程序,定量地计算出每个因子对于生物量变化影响的重要性值。
     根据上述研究得出结论,逐步回归模型精度难以满足要求,神经网络模型和偏最小二乘模型精度较高但算法复杂,仅能用于小区域实验研究,联立方程组和度量误差模型精度较高,算法简单适合大区域遥感估算。对森林生物量的时空变化分析表明森林生物量变化在70—80年代经营措施是主要驱动因子,80—90年代从各个影响生物量变化的因子重要值看,3类因子都起到重要的影响作用,90年代末到现在经营措施类因子的重要性大幅度降低,自然因素和社会经济因素的影响升高,说明天然林保护工程初见成效。
Global climate change is an indisputable fact, extreme weather and frequent natural disasters have seriously affected human production and life. Though it does not reach a binding agreement on emission issues in Copenhagen conference, the development of low-carbon economy and the promotion of energy conservation are becoming a basic consensus of all countries. Meanwhile, it shows that climate change is an extremely complex issue, far beyond the traditional scope of the environment. It involves political, economic, international law and many other complex issues. Therefore, global carbon cycle becomes a widespread concern research topic in scientific community. About 77% of the vegetation carbon stores in forest biomass in terrestrial ecosystems. So forest biomass is the most important parameter in terrestrial ecosystem carbon cycle, which directly reacts to forest carbon stocks. Northeast forest of China, one of the world's three large temperate forests which occupied above 1/3 of the country's total forest area and volume, plays an important role in China and global carbon cycle, forestry and ecological environment construction. However, forest carbon cycling in the northeast forest is not yet comprehensive, carbon cycle assessment, modeling and forecasting of our country and global are still needed research results in this region. This study is based on two scientific northeast forest-related issues, one is how to accurately obtain the large-scale forest biomass, and the other is analysis of spatial and temporal changes in forest biomass and quantitative analysis of driving. Remote sensing and geographic information systems are key technologies to solve the problem. The researches and corresponding conclusions according to the above issues are as followed:
     1、Remote sensing data processing, including geometric correction, radiometric correction and radiation normalized at different phases of large-scale remote sensing data is the right base work for using remote sensing information.
     2、The northeastern forest was divided into Daxing'an Mountain, Xiaoxing'an Mountain and Changbai Mountain by the geographical distribution of vegetation. Changbai Mountain is divided into Jilin and Heilongjiang Changbai Mountains combined with the administrative divisions. Forest biomass of four regions was estimated separately.
     3、The establishment of ground biomass model is the basis of estimating forest biomass. Two methods were used to establish ground biomass model in this study, one is conventional statistical model used in Daxing'an Mountain and Changbai Mountain, including 7 main tree species of Daxing'an Mountain and 18 main tree species of Changbai Mountain, the other is uniform biomass model. "Chebyshev orthogonal polynomial with partial least square to establish ground biomass unified model" was proposed in this study. It takes the biomass model as an element in continuous function space. A group bases in this space were found to express as a linear combination for tree biomass unified model. Rigorous mathematical derivation was in model proposed process, and parameters were calculated using partial least squares method. Model results were compared with existing biomass model results and ground-measurement data. The whole modeling process is scientific and rigor. The model is a general type which is a new approach for above-ground biomass modeling. The model was applied to forest of Xiaoxing'an Mountain with the establishment of unified biomass model of same independent variable DBH for 16 major tree species. The average accuracy of unified biomass model is 5% higher than conventional statistical models.
     4、Forest biomass in inventory plot was calculated according to the tree, shrub and grass biomass models of different regions, as the basis for the establishment of remote sensing data model.
     5、Forest biomass estimation models in various regions were established by stepwise regression, BP neutral network and Erf-Bp neural network methods. The results show that the stepwise regression model was less precise, about 75%, which was difficult to achieve accuracy; Erf-BP neural network has high precision, about 80%, but is difficult to promote in large region for its own algorithm characteristics.
     6、Partial least squares model is a new method to estimate forest biomass. Compared with the regression model, the accuracy of this method to estimate forest biomass is higher, above 80%. In particular, nonlinear partial least squares model is better. However, the algorithm is complex and costs long running time. Because of the uncertainty of nonlinear model form, it is a problem to estimate by remote sensing in large area, so the method only stops at a small area experiment.
     7、Joint equations and measurement error model to estimate the forest biomass is a new statistical method to extract spatial parameters in remote sense. The results of the researches show that this method is more than reasonable than conventional statistical methods. Joint equations and measurement error model has good application in forest stand growth model, but have not yet applied to remote sensing information extraction project. In this study, joint equations and measurement error model is introduced into the remote sensing estimation of forest biomass, on one hand to explore a new remote sensing estimation model, on the other hand to provide a new method to estimate information of joint multi-sensor. Multi-angle remote sense was used in the joint equations of biomass and leaf area index. And the biomass estimation was combined with physical model and statistical model, with the average test accuracy of 83.3%, RMSR of 17.72 in needle model, and the average test accuracy of 83.0%, RMSE of 20.28 in broad-leaves. Laser radar was used in the joint equations of biomass and tree heights, with the average test accuracy of 81.0%, RMSR of 15.19. Microwave remote sense was used in the joint equations of biomass and backscattering coefficients. The joint method of active and passive remote sense for forest biomass estimation was tried, with the average test accuracy of 83.9%, RMSR of 20.36. To some extent, these methods all improved the estimation accuracy of forest biomass. Finally, considered the implementability of biomass estimation, the joint equations of biomass and crown density were chose in this study, with the average test accuracy of 83.1%, RMSR of 20.01.
     8、Analysis of spatial and temporal changes in forest biomass. Under the foundation of the GIS spatial analysis and geo-statistical analysis, a computer program for analyzing change-driven factors of regional forest biomass was developed for calculating importance value of each factor to biomass change quantitatively, using canonical correlation analysis, principal component analysis and partial least squares algorithm based on extensive collections of regional meteorological data, business activity data and socio-economic data for several years.
     According to the conclusions of the study, it is found that the stepwise regression model can not meet the required precision, the neural network model and partial least squares algorithm with high precision are complex and only used in small experimental area, the joint equations and the measurement error model is the best with high precision, simple algorithm and suitability for remote sensing estimation in large area. On the analysis of spatial and temporal changes in forest biomass, it showed that management measures are the main driving factors of forest biomass changes in the 70-80 years; three categories of factors all have played important roles in the 80-90 years from the view of importance values of various factors affecting biomass change; from the lat 90s to the present, the significance of management measures reduced, but natural factors and socio-economic factors increased, which indicated the initial success of natural forest protection project.
引文
[1]Dean, W.E. and Gorham, E., Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology,1998,26(6):535-538
    [2]Falkowski P., R. J. Scholes, et al. The Global Carbon Cycle:A test of Our Knowledge of Earth as a System. Science,2000,290:291~296.
    [3]Schulze, E.D., J. Lloyd, F.M. Kelliher, C. W. et al. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink-a synthesis. Global Change Biology,1999,5:703~722.
    [4]Brown S L, Schroeder P, Kern J S.1999.Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management,123:81~90
    [5]方精云,刘国华,徐嵩龄.中国森林植被生物量和净生产力.生态学报.1996,16(4):497~508.
    [6]汪业勖;赵士洞;牛栋.陆地土壤碳循环的研究动态.生态学杂志.1999,18(5):29~35
    [7]刘国华;傅伯杰;方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报.2000,18(5):733-740
    [8]方精云,朴世龙,赵淑清.CO2失汇与北半球中高纬度陆地生态系统的碳汇.植物生态学报.2001,25(5):594~602.
    [9]Fang J Y, Chen A P, Peng C H et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001 (292):2320~2322.
    [10]Fang J Y, Wang G G, Liu G H et al. Forest biomass of China:an estimate based on the biomass-volume relationship. Ecological Applications,1998,8(4):1984~1091.
    [11]Waring RH, Way J, Hunt ER et al. Imaging radar for ecosystem studies. Bioscience, 1995,45:715~723.
    [12]Rignot E, Salas WA, Skole DL. Mapping deforestation and secondary growth in Rondonia, Brazil, using imaging radar and thematic mapper data. Remote Sensing of Environment, 1997,59:167~179.
    [13]Nelson RF, Kimes DS, Salas WA, Routhier M. Secondary forest age and tropical forest biomass estimation using thematic mapper imagery. Bioscience,2000,50:419~431.
    [14]David Skole and Jiaguo Qi.1999.Optical Remote Sensing For Monitoring Forest And Biomass Change In The Context Of The Kyoto Protocol. The International Society for Photogrammetry and Remote Sensing-ISPRS Working Groups on Global Monitoring (VII/5) and Radar Applications (VII/6) in collaboration with the University of Michigan. Michigan, USA, October 20~22,1999
    [15]W. Verhoef, H. Bach. Couple soil-leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sensing of Environment,2007,10,1-17
    [16]Stenback J M, Congalton R G Using Thematic Mapper imagery to estimate forest understory. Photogram. Eng. Rem. Sens,1990 (56):1285~1290.
    [17]Steininger M K. Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia. Int. J. Rem. Sens.2000 (21):1139~1157.
    [18]Phillips D L, Brown S L, Schroeder P E et al. Toward error analysis of large-scale forest carbon budgets. Global Ecology and Biogeography.2000,9(4):305-313.
    [19]Dixon R K, Brown Is Delcourt R A. Carbon pools and flux of global forest ecosystems. Science,1994(263):185~190.
    [20]Magnussen S, Boudewyn P. Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators. Canadian Journal of Forest Research,1998,28: 1016~1031.
    [21]Means JE, Acker SA, Harding DJ et al. Use of largefootprint scanning airborne lidar to estimate forest stand characteristics in the western Cascades of Oregon. Remote Sensing of the Environment,1999,67:298~308.
    [22]Lefsky MA, Cohen WB, Acker SA, Parker GG, Spies TA, Harding D. Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sensing of Environment,1999a,70:339~361.
    [23]Lefsky MA, Harding D, Cohen WB, Parker G, Shugart HH. Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sensing of the Environment,1999b,67:83~98.
    [24]Chance, J. E. and Cantu, J. M.. A Study of Plant Canopy Reflectance models. Unpublished Report, Pan American University,1975,62
    [25]Chen J M, Leblanc S G. A four-scale bi-directional reflectance model based on canopy architecture. IEEE Trans. Remote Sens.,1997,35,1316-1337
    [26]Jupp D, Strahler A H. A Hot spot Model for Leaf Canopies. Remote Sens Environ,1991, 38:193-210
    [27]Kuusk A E. A fast invertible canopy reflectance model. Remote Sens. Environ.,1995,51: 342-350
    [28]Kuusk A E. The hot spot effect in plant canopy reflectance, in photon-vegetation interactions:applications in optical remote sensing and plant physiology, Myneni R B, Ross J (eds.). Springer-Verlag, New York,1991,139-159
    [29]Kuusk A E. The hot spot of a uniform vegetation cover. Earth Res. from Space,1983,4: 90-99
    [30]Li, X. and Strahler, A. H., Geometric-optical Bidirectional Reflectance Modeling of Mutual Shadowing Effects of Crown in a Forest Canopy, IEEE Trans. On Geosci. Remote Sensing,1992,30(2):276-292
    [31]Qin W, Jupp D. An Analytical and Computationally Efficient Reflectance Model for Leaf Canopies. A gric For Meteorol,1993,66:31-64
    [32]Smith J E, Heath L S. Identifying influences on model uncertainty:an application using a forest carbon budget model. Environmental Management.2001 (27):253-267.
    [33]Suits, G.H. The Calculation of the Directional Reflectance of Vegetative Canopy, Remote Sensing. Environ.,1972,2,117-125
    [34]高峰,A. H. Strahler,Zong-Guo Xia,朱启疆,李小文.“核”驱动BRDF模型反演新途径.科学通报,1998,43(12):1315-1318
    [35]黄健熙,吴炳方,田亦陈,曾源.作物冠层BRDF的Monte Carlo模拟与分析.农业工程学报,2006,22(6):1-6
    [36]黄健熙,吴炳方,曾源,田亦陈.基于蒙特卡罗方法的森林冠层BRDF模拟.系统仿真学报,2006,18(6):1671-1676
    [37]李静,刘强,柳钦火,肖青.基于多项式表达模型的多角度覆盖率反演研究.遥感学报,2006,10(5):812-819
    [38]李小文,高峰,王锦地.遥感反演参数的不确定性与敏感性矩阵.遥感学报,1997,1(1):1-10
    [39]李小文,汪骏发,王锦地,柳钦火.多角度与热红外对地遥感.北京:科学出版社,2001.
    [40]李小文,王锦地,A. H. Strahler.不连续植被及其下地表面对光辐射的吸收与反照率模型.中国科学(B辑),1994,24(8):828-836
    [41]李小文,王锦地,胡宝新,A.H.Strahler.先验知识在遥感反演中的作用.中国科学(D辑),1998,28(1):67-72
    [42]李小文,王锦地.植被光学遥感模型与植被结构参数化.北京:科学出版社,1995.
    [43]Hussin Y A, Reich M & Hoffer Roger M. Estimating slash pine biomss using radar backscatter. IEEE transactions on geoscience and remote sensing,1991.29(3):427-431
    [44]Kurvonen L, Pulliainen J & Hallikainen M. Retrieval of biomass in boreal forests from multitemporal ERS-1 and JERS-1 SAR images. IEEE Transactions on Geoscience and Remote Sensing,1999 (37):198-205.
    [45]Pulliainen J T, Mikkela P J, Hallikainen M T et al. Seasonal dynamics of C-band backscatter of boreal forests with applications. IEEE Trans. Geosci. Remote Sensing,1996, 34(3):758-770.
    [46]Ranson K J & Sun G Q. Mapping Biomass of Northern Forest Using Multfrequency SAR data. IEEE Trans. Geosci. Remote Sensing,1994,32:388-396.
    [47]Rignot E, Salas WA, Skole DL. Mapping deforestation and secondary growth in Rondonia, Brazil, using imaging radar and thematic mapper data. Remote Sensing of Environment, 1997.59,167-179.
    [48]W. Verhoef, H. Bach. Couple soil-leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sensing of Environment,2007,10,1-17
    [49]Waring RH, Way J, Hunt ER et al. Imaging radar for ecosystem studies. Bioscience, 1995.45,715~723.
    [50]唐世浩,朱启疆,闫广建.遥感地表参量反演的理论和方法.北京师范大学学报,2001,37(2):266-273
    [51]Ebermeyr E. Die gesamte Lehre der Waldstreu mit Rucksicht auf die chemische statik des Waldbaues. Berlin:J. Springer,1876,116.
    [52]Boysen J P, Studier over skovtraernes forhold til lyset Tidsskr. F. Skorvaessen,1910, (22): 11~16.
    [53]李文华.森林生物生产量的概念及其研究的基本途径.自然资源.1978.
    [54]潘维俦,李利村,高正衡.2个不同地域类型杉木林的生物产量和营养元素分布.中南林业科技,1979(4):1~14.
    [55]冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定.林业科学.1982,18(2):127~134.
    [56]李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究.森林生态系统研究(试刊),1981,34~50.
    [57]刘世荣.兴安落叶松人工林群落生物量及净初级生产力的研究.东北林业大学学报,1990,18(2):40~46.
    [58]陈灵芝,任继凯,鲍显诚.北京西山人工油松林群落学特征及生物量的研究.植物生态学与地植物学报,1984,8(3):173~181.
    [59]党承林,吴兆录.季风长绿阔叶林短刺栲群落的生物量研究.云南大学学报(自然科学版).1992,14(2):95~107.
    [60]Xue L. Nutrient cycling in a Chinese fir (Cunninghamia lanceloata) stand on a poor site in Yishan, Guangxi. For Ecol Manage,1996 (89):115~123.
    [61]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力.北京:科学出版社,1999.
    [62]王玉光.不同杉木混交幼林生物量与生产力研究成果.福建林学院学报,1996,16(2):156~159.
    [63]杨旭静,应金花.收获与迹地清理对二代杉木幼林生长影响初报.福建林学院学报,1999,19(2):174~177.
    [64]林开敏,俞新妥,何智英.不同密度杉木林分生物量结构与土壤肥力差异研究.林业科学,1996,32(5):385~392.
    [65]肖文发,聂道平,张家诚.我国杉木林生物量与能量利用率的研究.林业科学研究.1999,12(3):237~243.
    [66]廖克服.高海拔地区火炬松人工林生长与生物量研究.福建林学院学报,1996,16(4):375~377.
    [67]王淼,代力民,姬兰柱等.长白山阔叶红松林主要树种对干旱胁迫的生态反应及生物量分配的初步研究.应用生态学报.2001,12(4):496~500.
    [68]丁贵杰.马尾松人工林生物量和生产力研究.不同造林密度生物量及密度效应.福建林学院学报,2003,23(1):34~38.
    [69]莫江明,彭少麟,Sandra Brown等.鼎湖山马尾松林群落生物量生产对人为干扰的响应.态学报,2004,24(2):193~200.
    [70]罗水发.尾叶桉人工林生物量的研究.福建林学院学报.1999,19(3):279~281.
    [71]杨忠,张建平,王道杰等.元谋干热河谷桉树人工林生物量初步研究.山地学报.2001,19(2):503~510.
    [72]林德喜,罗水发,高小坤.引种的尾叶桉林生物量的动态特征研究.福建林学院学报.2003,23(3):261~265.
    [73]黄清麟,郑群瑞,阮学瑞.福建青冈萌芽林分结构及生产力的研究.福建林学院学报,1995,15(2):107~111.
    [74]郑燕明.青钩栲人工林生物量及其分配的初步研究.福建林学院学报,1996,16(2):114~118.
    [75]郑征,冯志立,曹敏等.西双版纳原始热带湿性季节雨林生物量及净初级生产.植物生态学报.2000,24(2):197~203.
    [76]蚁伟民,张祝平,丁明懋等.鼎湖山格木群落的生物量和光能利用效率.生态学报.2000,20(2):397~403.
    [77]郑郁善,陈明阳,林金国等.肿节少穗竹各器官生物量模型研究.福建林学院学报.1998,18(2):159~162.
    [78]郑蓉,吴新才,翁金珊等.黄甜竹林生长量和鲜笋营养成分的研究.福建林学院学报.1999,19(1):65~68.
    [79]董文渊,黄宝龙,谢泽轩,等.筇竹无性系种群生物量结构与动态研究.林业科学研究.2002,15(4):416~420.
    [80]陈礼光,郑郁善,姚庆端,等.沿海沙地新造绿竹林生物量结构.福建林学院学报.2002,22(3):249~252.
    [81]Botkin,D.B.,Woodwell,G1M1Tempel,N1Forest productivity estimated from carbon dioxide uptake.Ecology,1970,51:1057~1060
    [82]佐藤大七郎,堤利夫.陆地植物群落的物质生产[M].北京:科学出版社,1986.21~47
    [83]Ovington J D. The weight and Productivity of Trees Species Grown in Close Stands. New Phytol,1956 (55):289~304.
    [84]Baskerville G L. Estimation of dry weight of tree components and total standing crop in conifer stands. Ecology,1965 (46):867~869.
    [85]Whittaker R H, Likens G E. Methods of Assessing Terrestrial Productivity. New York: Springer Verlag.1975:305~328.
    [86]赵敏,周广胜.基于森林资源清查资料的生物量估算模式及其发展趋势.应用生态学报.2004,15(8):1468~1472.
    [87]Zhou Guangsheng, Yuhui Wang,Yanling Jiang,Zhengyu Yang. Estimating biomass and net primary production from forest inventory data:a case study of China's Larix forests.Forest Ecology and Management,2002,169:149~157
    [88]Kitterge J. Estimation of amount of foliage of trees and shrubs. J. Forest,1944 (42): 905~912.
    [89]Bergen K M, Dobson M C, Pierce L E & Ulaby F T. Characterizing carbon in a northern forest by using SIR-C/X-SAR imagery. Remote Sensing of Environment,1998 (63): 24~39.
    [90]Brown S J, Gillespie R, Lugo A E. Biomass estimation methods for tropical forests with application to forest inventory data. For Sci,1989 (36):881~902
    [91]Brown S, Lugo A E. Biomass of tropical forests:a new estimate based on forest volumes. Science,1984(223):1290~1293.
    [92]Brown S, Sathaye J, Cannell M, Kauppi P. Management of forests for mitigation of greenhouse gas emissions. In:Watson.1996.
    [93]Schroeder P, Brown S, Mo J et al. Biomass estimation for temperate broadleaf forests of the US using inventory data. ForSci,1997 (43):424~434.
    [94]Woodwell G M, Whittaker R H, Reiners W A et al. The biota and the world carbon budget. Science.1978 (199):141~146.
    [95]Fang J Y, Wang G G, Liu G H et al. Forest biomass of China:an estimate based on the biomass-volume relationship. Ecological Applications,1998,8(4):1984~1091.
    [96]Krankina O N, Harmon M E, Winjum J K. Carbon storage and sequestration in Russian forestsector. Ambio,1996,25(4):284~288.
    [97]Brown S, Lugo A E. The storage and production of organic matter in tropical forest and their role in the global carbon cycle. Biotropica,1982 (14):161~187.
    [98]Isaev A, Korovin G, Zamolod D, et al. Carbon stock and de2 position in phytomass of the Russian forests. Water Air Soil Poll.1995:247~256.
    [99]李意德,曾庆波,吴仲民.尖峰岭热带山地雨林生物量的初步研究.植物生态与地植物学学报.1992,16(4):293~300.
    [100]Gilabert M.A,et al, Analyses of spectral-biophysical relationships for a aorn canopy. Remote Sensig Environment,1996.55:11~20
    [101]Curran P J, Dungan JL, GholzH L. Seasonal LAI in slash pine estimated with Landsat TM[J].Remote Sensing ofEnvironment,1992,39:3-13
    [102]Daolan Zheng, John Radem acherb, Jiquan Chena, et al Estimating aboveground biomassusingLandsat7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sensing of Environment,2004,93:402-411
    [103]De JongSM S, PebesmaE J, LacazeB. Above-ground Biomass Assessment of mediterranean forests using airborne imaging spectrometry. International Journal of Remote Sensing,2003,24(7):1505-1520
    [104]Dengsheng, Mateus BATISTELLA. Exploring TM mi age texture and its relationships with biomass estmiation in Rondia, Brazilian, Amazon. ActaAmazonica,2005,35(2):261-268
    [105]李建龙,黄敬峰,王秀珍.草地遥感,北京气象出版社.1997
    [106]邢素丽,张广录,刘慧涛,等.基于Landsat ETM+数据的落叶松林生物量估算模式.福建林学院学报,2004,24(2):153-15
    [107]郭志华,彭少麟,王伯荪.利用TM数据提取粤西地区的森林生物量.生态学报,2002,22(11):1832-1839
    [108]杨存建,刘纪远,张增详.热带森林植被生物量遥感估算探讨.地理与地理信息科学,2004,20(6):22-25
    [109]国庆喜,张锋.基于遥感信息估测森林的生物量.东北林业大学学报,2003,31(2):13-16
    [110]李健,舒晓波,等.基于Landsa-t TM数据鄱阳湖湿地植被生物量遥感监测模型的建立[J].广州大学学报(自然科学版),2005,(4):32-38
    [111]Franklin S E. Remote sensing for sustainable forest management. Boca Raton:Lewis, 2001.
    [112]Horler D N H, Ahern F J. Forestry information content of Thematic Mapper data. Int. J. Rem. Sens,1986 (7):405~428.
    [113]Peterson B & Drake J B. University of Maryland.personal communication.1999.
    [114]Spanner M A, Pierce L L, Peterson D L et al. Remote sensing of temperate coniferous leaf area index:the influence of canopy closure, understory vegetation, and background reflectance. Int. J. Rem. Sens,1990 (11):95~111.
    [115]Stenback J M, Congalton R G.Using Thematic Mapper imagery to estimate forest understory. Photogram. Eng. Rem. Sens,1990 (56):1285~1290.
    [116]Lathrop Jr R G & Pierce L L. Ground-based canopy transmittance and satellite remotely sensed measurements for estimation of coniferous forest canopy structure. Rem. Sens. Environ,1991 (36):179~188.
    [117]Ardo J. Volume quantification of coniferous forest compartments using spectral radiance record by Landsat Thematic Mapper. Int. J. Rem. Sens,1992 (13):1779~1786.
    [118]Curran P J, Dungan J L& Gholz H L. Seasonal LAI in slash pine estimated with Landsat TM. Rem. Sens. Environ,1992 (39):3~13.
    [119]Cohen W B, Spies T A. Estimating structural attributes of Douglas fir/western hemlock forest stands from Landsat SPOT imagery. Rem. Sens. Environ,1992 (41):1~17.
    [120]Gemmell F M. Effects of forest cover, terrain, and scale on timber volume estimation with Thematic Mapper data in the rocky mountain site. Rem. Sens. Environ,1995 (51): 291~305.
    [121]Kimes D S, Holben B N & Nickeson J E et al. Extracting forest ages in a pacific northwest forest from Thematic Mapper and topographic data. Rem. Sens. Environ,1996 (56):133~140.
    [122]Trotter C M, Dymond J R, Goulding C J. Estimation of timber volume in a coniferous plantation forest using Landsat TM. Int. J. Rem. Sens,1997 (18):2209~2223.
    [123]Turner D P, Cohen W B, Kennedy R E. et al. Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Rem. Sens. Environ.1999 (70):52~68.
    [124]Eklundh L, Harrie L & Kuusk A. Investigating relationships between Landsat ETMt sensor data and leaf area index in a boreal conifer forest. Rem. Sens. Environ,2001 (78): 239~251.
    [125]Franco-Lopez H, Ek A R & Bauer M E. Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method. Rem. Sens. Environ,2001 (77):251~274.
    [126]万猛,李志刚,李富海,阿不都克依木.基于遥感信息的森林生物量估算研究进展.河南林业科技,2009,29(4):42-45
    [127]罗云建,张小全,王效科等.森林生物量的估算方法及其研究进展.林业科学,2009,45(8):129-134
    [128]李锦业,吴炳方,周月敏.三峡库区植被生物量遥感估算方法研究.遥感技术与应用,2009,24(6):784-788.
    [129]张元元.大兴安岭地区森林生物量遥感模型研究.东北林业大学硕士学位论文,2009.
    [130]刘玉峰.西天山云衫林生物量遥感监测研究—以尼勒克林区为例.福建师范大学硕士学位论文,2008.
    [131]马泽清,刘琪璟,徐雯佳.基于TM遥感影像的湿地松林生物量研究.自然资源学报,2008,23(3):467-478.
    [132]Cook E A, Iverson L R & Graham R L. Estimating forest productivity with Thematic Mapper and biogeographical data. Rem. Sens. Environ,1989 (28):1~17.
    [133]Sader S A, Hayes D J, Hepinstall J A et al. Forest change monitoring of a remote biosphere reserve. International Journal of Remote Sensing,2001(22):1937~1950.
    [134]Wu S. Assessment of tropical forest stand characteristics with multipolarisation SAR data acquired over a mountainous region in Costa Rica. IEEE Trans. Geosci. Rem. Sens,1990 (28):752-755.
    [135]Lucas R M, Honza k M, Foody G M et al. Characterizing tropical secondary forests using Multitemporal Landsat sensor imagery. Int. J. Rem. Sens,1993 (14):3061~3067.
    [136]Foody G M, Boyd S B, Cutler M E J. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment,2003 (85):463~474.
    [137]Nelson R F, Kimes D S, Salas W A. et al. Secondary forest age and tropical forest biomass estimation using Thematic Mapper Imagery. BioScience 2000 (50):419~431.
    [138]Steininger M K. Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia. Int. J. Rem. Sens.2000 (21):1139~1157.
    [139]Lu D. Estimation of forest stand parameters and application in classification and change detection of forest cover types in the Brazilian Amazon Basin, Ph.D. Dissertation. Indiana State University,2001.
    [140]Santos J R, Pardi Lacruz M S, Araujo L S et al. Savanna and tropical rainforest biomass estimation and spatialization using JERS-1 data. Int. J. Rem. Sens.2002 (23):1217~1229.
    [141]Tetuko J, Tateishi R, Wikantika K. A method to estimate tree trunk diameter and its application to discriminate Java-Indonesia tropical forests. Int. J. Rem. Sens,2001 (22): 177~183.
    [142]Lu D, Mausel P, Brondizio E et al. Aboveground biomass estimation of successional and mature forests using TM images in the Amazon Basin. In:D. Richardson, P. van Oosterom (Eds.), Advances in Spatial Data Handling, Springer-Verlag, New York,2002,183~196.
    [143]De Wasseige C, Defourny P. Retrieval of tropical forest structure characteristics from bi-directional reflectance of SPOT images. Rem. Sens. Environ.2002 (83):362~375.
    [144]Drake J B, Dubayah R O, Knox R G et al. Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest. Rem. Sens. Environ,2002 (81):378~392.
    [145]王维芳,宋丽楠,隋欣.帽儿山林场森林生物量估测及时空动态格局分析.东北林业大学学报,2010,38(1):47-49.
    [146]徐天蜀.基于遥感信息的森林生物量、碳储量估测技术研究.林业调查规划,2008,33(3):11-13.
    [147]徐天蜀,岳彩荣.基于印度遥感卫星IRS-P6的森林生物量估测模型研究.中南林业调查规划,2008,27(1):42-45.
    [148]张慧芳,张晓丽,黄瑜.遥感技术支持下的森林生物量研究进展.世界林业研究,2007,20(4):30-34.
    [149]杨昆,管东生.珠江三角洲地区森林生物量及其动态.应用生态学报,2007,18(4):705-712.
    [150]王海鹏,金亚秋,大内和夫.Pi-SAR极化数据与K分布指数估算森林生物量与实验验证.遥感学报,2008,12(3):477-482.
    [151]郑元润,周广胜.基于NDVI的中国天然森林植被净第一性生产力模型.植物生态学报,2000(1):38~42.
    [152]LUCKMANA,BAKERJ,HONZAKM, et al Tropical forest biomass density estimation using JERS-1 SAR:seasonal variation, confidence limits, and application to image Mosaics[J].Remote Sensing of Environment,1998,64(3):126-139
    [153]KUPLICH T M, SALVATORI V, CURRAN P J. JERS-1/SA Rbackscatter and its relationship with biomass of regenerating forests[J].International Journal of Remote Sensing,2000,21(12):2513-2518
    [154]陶华学,孙英君.GIS空间分析模型的建立[J].四川测绘,2002,24(4):147-149.
    [155]赖格英.地理信息系统空间分析模型与实现方法的分析和比较.江西师范大学学报(自然科学版),2003,27(2):164-166.
    [156]马天智,张燕妮.空间分析方法、应用模型与GIS的关系.湖南地质,2003,22(1):70-72.
    [157]王文慧,邱淑媛.GIS的空间分析技术[J].吐哈油气,2003,8(3):377-352.
    [158]杨驰.GIS空间分析建模构想.测绘通报,2006(11):22-25.
    [159]吴建华,雷金平.空间分析方法在航线设计和航路监视中的应用.中国航海,2004(1):41-43.
    [160]徐京华.交通地理信息空间分析.西南交通大学学报,2004,39(3):353-357.
    [161]王明生,于金金.GIS空间分析与铁路线路评价指标的量化.铁道勘察,2005,31(6):57-60.
    [162]韩勇,陈戈,李海涛.基于GIS的城市地下管线空间分析模型的建立与实现.中国海洋大学学报,2004,34(3):506-512.
    [163]柯新利.空间分析在数字城市中的应用.咸宁学院学报,2005,25(6):98-101
    [164]廖崇高,杨武年,刘登忠等.基于GIS空间分析进行多源信息成矿预测.物探化探计算技术,2002,24(2):146-150.
    [165]施冬,陈军,朱庆.利用GIS的空间分析功能进行油气储层综合评价.物探化探计算技术,2004,26(2):149-154.
    [166]陈彦军,吴国平,李敬民.基于GIS空间分析的物流配送模型研究及应用.南京师范大学学报(工程技术版),2004,4(3):68-72.
    [167]谢华,都金康.基于优化理论和GIS空间分析技术的公交站点规划方法.武汉理工大学学报(交通科学与工程版),2004,25(6):907-910.
    [168]朱会义,何书金,张明.土地利用变化研究中的GIS空间分析方法及其应用.地理科学进展,2001,20(2):104-110.
    [169]任鸿昌,吕永龙,姜英等.西部地区荒漠生态系统空间分析.水土保持通报,2004, 24(5):54-59.
    [170]郭怀成,周丰,刀谓.地统计方法学研究进展,地理研究,2008,27(5):1191-1202
    [171]Webster R. Quantitative Spatial analysis of soil in the field. Advance in the Soil Science, 1985,3:1-7
    [172]王仁铎,胡道光.线性地质统计学,北京地质出版社1987
    [173]Isaaks E. H, R. M. Srivastava. An introduction to applied geostatistics. Oxford Univ. Press. New York 1989
    [174]侯景儒,郭光裕.矿床统计预测及地质统计学的理论与应用,北京冶金工业出版社1993
    [175]王政权.地统计学及在生态学中的应用.北京科学出版社1999
    [176]吕军,俞劲炎.水稻土物理性质空间变异性研究.土壤学报,1990,27(1):8-15
    [177]张有山,秦姐东,林启美.大比例尺区域土坡养分空间变异定量分析.华北农学报,1998.13(1):122-128
    [178]胡克林,李保国,林启美.农田土壤养分的空间变异性特征.农业工程学报,1999.15(3):33-38.
    [179]胡克林,余艳,张风荣等.北京郊区土壤有机质含量的时空变异及其影响因素.中国农业科学,2006,39(4):764-771.
    [180]赵斌,蔡庆华.地统计学分析方法在水生态系统研究中的应用水生生物学报,2000,24(5):514-520
    [181]孙志虎,牟长城,孙龙.采用地统计学方法对落叶松人工纯林表层细根生物量的估计.植物生态学报,2006,30(5):771-779
    [182]孙志虎,王庆成.采用地统计学方法对水曲柳人工纯林林表层根量的估计.生态学报,2005,25(4):923-930
    [183]孙志虎,牟长城,张彦东.地统计学方法在长白落叶松人工林掉落物现存量估测中的应用.生物数学学报,2007,22(4):703-710
    [184]张雪艳,胡云锋,庄大方等.蒙古高原NDVI的空间格局及空间分异.地理研究,2009,28(1):10-18
    [185]王淑君,管东生,黎夏等.广州森林碳储量时空演变及异质性分析[J]环境科学学报,2008,28(4):778-785
    [186]中华人民共和国林业部林业区划办公室.中国林业区划,北京:中国林业出版社,1987.12
    [187]J.Pearlman, S. Carman, C. Segal, P. Jarecke, P. Barry, "Overview of the Hyperion imaging spectrometer for the NASA EO-1 mission," in Proc. IGARSS, Sydney. Australia, 2001.
    [188]S.G.Ungar, "Overview of EO-1, the first 120 days," in proc. IGARSS, Sydney. Australia, 2001.
    [189]Richard Beck. EO-1 User Guide, V.2.3.2003. Http://eol.usgs.gov& Http://eol.gsfs.nasa.gov.
    [190]Datt, B., McViear, T.R., VanNiel, T.G., et al. Per-Processing EO-1 Hyperion hyperspectral data to support the application of agricultural indices. IEEE Transactions on Geoscience and Remote Sensing,2003,41(6):1246-1259.
    [191]Gondenough, D.G., Andrew, D., Niemann, K.O., et al. Processing Hyperion and ALI for forest classifications. IEEE Transactions on Geoscience and Remote Sensing,2003,41(6): 1321-1331.
    [192]Harding, D. J.& Carabajal, C. C. ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophysical Research Letters,32. L21S10.doi:10.1029/2005GL023471.
    [193]Abshire, J. B., Sun, X., Riris, H., Sirota, J. M., McGarry, J. F., Palm, S., et al. Geoscience Laser Altimeter System (GLAS) on the ICESat mission:On-orbit measurement performance. Geophysical Research Letters,2005,32(22).
    [194]Schutz, B. E., Zwally, H. J., Shuman, C.A., Hancock, D.& DiMarzio, J. P. Overview of the ICESat Mission. Geophysical Research Letters,2005,32(22).
    [195]David J. Diner, Jewel C. Beckert, Terrence H. Reilly et al. Multi-angle Imaging SpectroRadiometer (MISR) Instrument Description and Experiment Overview. IEEE Transactions on geoscience and remote sensing,1998,36(4):1072-1087.
    [196]Gill.S.J., Stochastic models of tree crown profiles. Ph.D.Thesis,environmental science policy and management, Berkeley, CA,University of CA,1997.185
    [197]Mayer D G, Butler D G. Statistical Validation[J]. Ecological Modelling,1993,(68):21-32
    [198]丁宝永,孙继华.红松人工林生态系统生物生产力及养分循环研究.东北林业大学学报,1989.17(S2):18-19
    [199]罗天祥.中国主要森林类型生物生产力格局及其数学模型.中国科学院研究生院(国家计划委员会自然资源综合考察委员会),北京,1996.
    [200]陈传国,朱俊凤.东北主要林木生物量手册.中国林业出版社.1989
    [201]江洪.东灵山落叶阔叶林生物量与净生产量的研究.博士后研究报告.1992
    [202]刘恩斌,周国模,姜培坤,葛宏立,杜华强.生物量统一模型构建及非线性偏最小二乘辩识——以毛竹为例,生态学报,2009,29(10):5561-5569
    [203]王惠文,吴载斌,孟洁.偏最小二乘回归的线性与非线性方法.北京:国防工业出版社,2006.
    [204]田庆久,闵祥军.植被指数研究进展[J],地球科学进展,1998,13(4):328-333.
    [205]John,R.J著;陈晓玲,龚威,李平湘,等译.遥感数字影像处理导论[M].北京:机械工业出版社,2007.
    [206]Haralick, R. M..Statistical and Structural Approaches to Texture [J]. Proceeding of the IEEE,1979,67(5):786-804.
    [207]曾文华.基于灰度共生法和小波变换的遥感影像纹理信息提取[D].长春市:东北师范大学,2006.
    [208]贾丽会,张修如.BP算法分析与改进[J].计算机技术与发展,2006,16(10):101-107.
    [209]王惠文,吴载斌,孟洁.偏最小二乘回归的线性与非线性方法.北京:国防工业出版社,2006.
    [210]Nguyen,H, Lee,B. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression[J]. European Journal of Agronomy, 2006,24:349-356.
    [211]琚存勇,邸雪颖,蔡体久.变量筛选方法对郁闭度遥感估测模型的影响比较[J],林业科学,2007,43(12):33-38.
    [212]李喜.偏最小二乘回归理论的研究及软测量应用[D].大连理工大学,2008
    [213]唐守正,李勇.生物数学模型的统计学基础.北京:科学出版社.2002:132~133,249~250.
    [214]X. Li and A.H. Strahler. Modeling the gap probability of discontinuous vegetation canopy. IEEE Transactions on Geoscience and Remote Sensing.1988,26:161-170
    [215]X. Li, A.H. Strahler and C.E. Woodcock. A Hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinous canopies. IEEE Transactions on Geoscience and Remote Sensing.1995,33:466-480
    [216]J.M. Chen and S. Leblanc. A 4-scale bidirectional reflection model based on canopy architecture. IEEE Transactions on Geoscience and Remote Sensing.1997,35:1316-1337

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700