含硼酸基团的糖囊泡荧光传感器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖是生物体内能量的传递物,是维持细胞生存的关键。如果糖的传递被破坏,则直接导致某些疾病如肾性糖尿、纤维囊肿、糖尿病甚至于癌症等各种疾病,严重影响着人们的身心健康。目前,控制糖尿病面临的主要挑战之一是制备能连续跟踪血糖浓度、可置入体内的器件,以便及时反馈人体血糖的浓度,为糖尿病的及时诊断、治疗提供准确的信息。化学传感器在这方面具有独特的功效,有些公司已经进行尝试,如药物传感器。众所周知,硼酸可以和含二醇化合物形成可逆硼酸酯,制备连续监测糖浓度的化学监测器;磷脂或表面活性剂在水溶液中可以形成囊泡,其中双亲分子的亲酯链构成亲酯区,亲水基团形成亲水区,囊泡的双分子层结构可以作为细胞膜的模型和药物载体。为了研发连续跟踪血糖浓度、可置入体内的化学传感器,我们通过在双亲分子上引入荧光发色团和可识别糖的硼酸功能基团,成功地实现上述目的。
     本文设计、合成了三种含有苯硼酸识别基团和喹啉或萘荧光读出基团的新型双亲化合物,并用核磁和元素分析等手段证明了三种双亲化合物的结构和组成。三种双亲化合物在选择性溶液中均可以形成球状的囊泡。详细讨论了以喹啉为生色基的两种双亲化合物形成囊泡后对糖检测的结果,并着重分析了囊泡传感器和小分子化学传感器的差异,进一步证明了囊泡传感器的优越性能。之后我们讨论了以萘为生色基的双亲化合物形成囊泡传感器对三种不同糖的检测结果,证明了PET效应对糖检测的影响。随着对DNMPBA囊泡体系认识的深入,同样是该分子的囊泡体系,在同时满足:1、糖类物质存在,2、用氮气排除溶液中的少量溶解的氧气,体系中萘的单线态发射峰发生微小变化,而在408nm处萘的激基缔合物的发射峰却出现了,随着单糖的量的增加,激基缔合物的发射峰也明显的增强。我们利用激基缔合物发射峰的强度与单线态发射峰的强度的比值变化作为检测糖的依据,得到了一种全新的高灵敏的检测方法。
     通过研究证明包含识别基团的双亲分子形成的囊泡传感器,不但可以解决血糖检测过程的连续性问题,还有可能制备出与血液长期接触的可植入式装置。使得对糖尿病患者血糖浓度及时跟踪检测成为可能。
Saccharides are nature’s conveyors of energy and therefore essential for cell survival. The breakdown of glucose transport has been correlated with certain diseases: renal glycosuria, cystic fibrosis, diabetes, and human cancer, seriously affected our normal life. At present, One of the major challenges in the management of diabetes is the monitoring of glucose concentration, the device can be placed in the body, so that the accurate information will be provided . Chemsensors do have a unique effectiveness. Such a concept has already been put into test by companies such as sensors for medicine. It’s well known that boric acid and diol compounds can form a reversible Boric acid resin to Prepare a chemical monitor for continuous glucose concentrations; phospholipids or surfactants can form Vesicles in solution, in which lipophilic chain of the parent molecular form lipophilic region, Hydrophilic group form Hydrophilic region, Bilayer structure of Vesicles Can be used as Membrane model and the drug carrier.To develop the chemical sensor we introduced fluorescent chromophore and identifiable boric acid functional groups in the parent molecule to reach the above purpose.
     This paper designed and synthesised three new parent compounds: N-(boronobenzyl)-8-hexadecyloxyquinoliniumbromide(BHQB); N-(boronobenzyl)-8- cholesterolethoxyquinolinium bromide (BCQB);(p-((5-dodecyloxy-1-oxy) naphtha- lene) methyl phenylboronic acid DNMPBA)。To study the difference between Vesicles sensor and small molecule sensor we synthesized N-(boronobenzyl)-8-methoxyquinol- inium bromide (BMQB). Characterization by NMR of the reaction product of step-by-step to prove that its structure is correct, on the four end products has been characterized by elemental analysis to determine its composition. We Characterized each reaction product by NMR to prove that the structure is correct, characterized the four end products by elemental analysis to determine its composition.
     BHQB、BCQB and DNMPBA are typical amphiphile molecole, which can form the Aggregation structure after ultrasonic vibration in the selective dilute solution of methanol or tetrahydrofuran and water. We used emission scanning electron microscope to observe the three parent compounds’morphology of aggregates are spherical, the diameter is 70-500 nm ,30-100 nm and 40-150 nm Separately. We used differential thermal scanners to test the three substances from the gel state to liquid state, the temperature is 56.8℃, 52.4℃and 61.6℃. Proved that the three substances in the selective solution formed spherical vesicle structure.
     We studied two highly similar organic compounds BMQB and BHQB , in the mixed solution The proportion of Methanol and water was 1:1 BHQB formed spherical vesicles ,however, BMQB was decentralized system.We studied the relationship between the Fluorescence spectrum of BHQB vesicle and the pH of the system. As the pH increased from 3 to 11, the fluorescence intensity of BHQB vesicles decreased at 508nm, increased at 425nm. I425nm / I508nm increased from 0.06 to 0.27 .Under the concentration condition of 10-5M(Ф=0.5 ,pH=7.4),we tested BHQB Vesicles’detection effect on sugar.Similar to the Change of pH , the fluorescence intensity of BHQB vesicles decreased at 508nm, increased at 425nm.When the glucose concentration of the system was 150 mM , the Ix / I0 value under BHQB vesicles turned into 4.12-fold compared with the non-sugar situation, while under the same conditions fructose changed 2.35-fold . The changes scope of glucose was generally less than 10mM, at this time the Ix / I0 value of BHQB vesicles compared with the non-sugar changes thrned into 1.58-fold, under the same conditions fructose changed 1.38-fold.
     BHQB Vesicle system’selectivity for glucose is better that fructose, which was not common in the past report. added 150mM glucose to BMQB small molecule system, the Ix / I0 value was 2.91-fold, added 150mM fructose to it ,the Ix / I0 value was 1.65-fold. When the amount of sugar was less than 10 mM ,the changes hardly occurred.
     Cholesterol and its derivatives are important components of material organisms,which have many physiological functions. We used cholesterol and Glycol ethers as hydrophobic groups to Synthesis parents compounds BCQB. We Prepared the BCQB methanol / water solvent selection into vesicles to detect the sugar(10-5M,Ф=0.5 ,pH=7.4). with the concentration of sugar increased, the fluorescence intensity of the vesicles decreased at 508nm, increased at 425nm, but changed slightly, The sensitivity to the sugar is low.The reason was the hydrophobic groups that connected to quinoline chromophore constrained quinoline chromophore’electronic mobile, the quinoline chromophore’electron cloud changed little After the formation of borate. Therefore fluorescence did not change significantly. DNMPBA vesicle reflected a certain selectivity to the changes of different sugar .when the concentration changed from 0 M to 2×10-2 M, the change rate of fructose ,glucose and Maltose is2.08-fold、1.84-fold、1.27-fold separatelly.Such selectivity was fructose> glucose> maltose. This is because D-glucose and D-fructose is six-ring structure, but when they dissolve in water this type exist the transformation from pyranose to furanose .The boric acid structure compounds and furanose form a borate more easily. Maltose was a typical second sugar, pyranose can not change into furanose in solution, so after its interaction with the DNMPBA vesicle, the change was far less than fructose and glucose.
     With in-depth understanding of DNMPBA vesicle system, the same conditions: 1, the existence of carbohydrate; 2, rule out the dissolved oxygen with nitrogen,the singlet naphthalene in the system changed little. While at 408nm Department the excimer emission peaks have emerged.With the single-sugar increased, the excimer emission peak was also enhanced significantly. We use the intensity of excimer emission and the intensity of singlet changes ratio as the basis for detection of sugar, got a new detection method. Glucose or fructose concentrations change from 0 to 5×10-5 M, I 408nm / I344nmwere increased from 0 to 3.04 and 4.51. Then we changed The ratio of tetrahydrofuran and water in the DNMPBA vesicle solution ,found that I408nm/I344nm changed when changed the amount of sugar . It’sΦ=0.5﹥Φ=0.6﹥Φ=0.8. Such differences for two reasons:Φwas smaller the water was more, the hydrophobic co-operational function of DNMPBA Parents molecule was stronger, DNMPBA Naphthalene was closer; Sugar was not soluble in tetrahydrofuran, so more tetrahydrofuran, the interaction of sugar and DNMPBA vesicles was more difficulty. Therefore, increasing the water in the solution would improve the detection sensitivity in the situation that DNMPBA Molecular dissolved .We used the intensity of excimer emission and the intensity of singlet changes ratio as the basis for the detection of sugar. This kind of sensitivity of detection reached 10-5-10-6M.
     Through the above studies ,we see that the vesicles sensors which include group identification and are formed by parent-molecules can solve the continuity of the blood glucose test, prepare long-term implantable devices.It Makes the blood glucose testing on diabetic patients in time is possible.
引文
[1] ROBERTSON R N. The Lively Membranes; Cambridge University Press[M]. New York, 1983.
    [2] ELSAA L J, ROSENBERG L E J. Long-term decay of serum cholesterol radioactivity: body cholesterol metabolism in normals and in patients with hyperlipoproteinemia and atherosclerosis [J]. J. Clin. Invest, 1969, 48: 1845-1854
    [3] DE MARCHI S, CECCHIN E, et al. Departments of Nephrology and Dialysis, Diagnostic Radiology, Pathology [J]. Am. J. Nephrol. 1984, 4: 280-287.
    [4] BAXTER P, GOLDHILL J, HARDCASTLE P T, et al. Enhanced intestinal glucose and alanine transport in cystic fibrosis [J]. J. Gut 1990, 31: 817-820.
    [5] YASUDA H, KUROKAWA T, YAMASHITA A, et al. Glucose transport across renal brush-border membrane vesicles from streptozotocin-induced diabetic rats [J]. Biochim. Biophys, Acta, 1990, : 114-118.
    [6] FEDOAK R N, GERSHON M D, FIELD M. Induction of intestinal glucose carriers in streptozocin-treated chronically diabetic rats [J].Gasteroenterology, 1989, 96, 37-44.
    [7] YAMAMOTO T, SEINO Y, FUKUMOTO H, et al. Harris RC, Brenner BM, Seifter JL: Sodium-hydrogen exchange and glucose transport in renal microvillus membrane vesicles from rats with diabetes mellitus [J].Biochem. Biophys. Res.Commun, 1990, 170: 223-229.
    [8] KOSCHINSKY T, HEINEMANN L. Glucose-responsive vesicular sensor based on boronic acid–glucose recognition in the ARS/PBA/DBBTAB covesicles Diabetes-Met. Res. Rev, 2001, 17: 113-123.
    [9] GERRITSEN M, JANSEN J A, LUTTERMAN J A. Cheeseman CI, Maenz DD: Rapid regulation of Na+-independent D-glucose transport in the basolateral membrane of rat jejunum [J]. Neth. J. Med, 1999, 54: 167-179.
    [10] DANILOFF G Y. Renin-angiotensin system inhibition prevents type 2 diabetes mellitus [J]. Diabetes Tech. Ther, 1999, 1: 261-266.
    [11] ATANASOV P, YANG S, SALEHI C, et al Amperometric Glucose Biosensor on Layer by Layer Assembled Carbon Nanotube and Polypyrrole Multilayer Film [J]. Biosen. Bioelectron, 1997, 12: 669-680.
    [12] Kerner, W. Exp. Clin. Endocrin. Diab. 2001, 109 (suppl. 2), S341.5. The Fluoroquinolones: The Last Samurai
    [13] YAN J, FANG H, WANG B H. Boronolectins and fluorescent boronolectins: An examination of the detailed chemistry issues important for the design [J]. Med. Res. Rev, 2005, 25: 490–520.
    [14] JAMES T D, SANDANAYAKE K, SHINKAI S. Novel Saccharide-Photoinduced Electron Transfer Sensors Based on the Interaction of Boronic Acid and Amine [J]. J. Am. Chem. Soc, 1995, 117: 8982–8987.
    [15] YOON J,CZARNIK A W. Fluorescent chemosensors of carbohydrates. A means of chemically communicating the binding of polyols in water based on chelation-enhanced quenching [J]. J. Am. Chem. Soc, 1992, 114: 5874–5875.
    [16] ARIMORI S, BOSCH L I, WARD C J,et al. Fluorescent Internal Charge Transfer (ICT) Saccharide Sensor [J]. Tetrahedron Lett, 2001, 42: 4553–4555
    [17] LORAND J P, EDWARDS J O. Polyol Complexes and Structure of the Benzeneboronate Ion [J]. J. Org. Chem, 1959, 24: 769-774.
    [18] SPRINGSTEEN G, WANG B H. A detailed examination of boronic acid–diol complexation [J]. Tetrahedron, 2002, 58:5291–5300.
    [19] YAN J, SPRINGTEEN G, WANG B H, et al. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols—it is not as simple as it appears [J]. Tetrahedron, 2004, 60:11205–11209.
    [20] ARIMORI S, BELL M L, JAMES T D, et al. Modular Fluorescence Sensors forSaccharides [J]. J. Chem. Soc., Perkin Trans 1, 2002, 803–808.
    [21] APPLETON B, GIBSON T D. Ferraris RP, Casirola DM, Vinnakota RR: Dietary carbohydrate enhances intestinal sugar transport in diabetic mice [J]. Sens. Actuators, B-Chem, 2000, 65: 302–304.
    [22] KARNATI V V, GAO X, GAO S, et al. A glucose-selective fluorescence sensor based on boronicacid-diol recognition[J]. Bioorg. Med. Chem. Lett, 2002, 12: 3373–3377.
    [23] CAO H S, HEAGY M D. Matrix Screening of Substituted N-Aryl-1,8-naphthalimides Reveals New Dual Fluorescent Dyes and Unusually Bright Pyridine Derivatives[J]. J. Fluoresc, 2004, 14: 569–584.
    [24] GRAY C W J, HOUSTON T A. Boronic Acid Receptors forα-Hydroxycarboxylates: High Affinity of Shinkai's Glucose Receptor for Tartrate [J]. J. Org. Chem, 2002, 67: 5426–5428.
    [25] MULLA H R, AGARD N J, BASU A. Evidence for the presence of insulin binding sites in isolated rat intestinal epithelial cells [J]. Bioorg. Med. Chem. Lett, 2004, 14: 25–27.
    [26] EGGERT H, FREDERIKSEN J, MORIN C, et al. A New Glucose-Selective Fluorescent Bisboronic Acid. First Report of Strongα-Furanose Complexation in Aqueous Solution at Physiological pH1[J]. J. Org. Chem, 1999, 64: 3846–3852.
    [27] JAMES T D, SANDANAYAKE K R A S, SHINKAI S. Chiral Discrimination of Monosaccharides using a Fluorescent Molecular Sensor [J]. Nature (London), 1995, 374: 345–347.
    [28] CAO H, DIAZ D I, DICESARE D, et al. Monoboronic Acid Sensor That Displays Anomalous Fluorescence Sensitivity to Glucose [J]. Org. Lett, 2002, 4:1503–1505.
    [29] RUSIN O, ALPTURK O, HE M, et al. Synthesis, Evaluation, and ComputationalStudies of Naphthalimide-Based Long-Wavelength Fluorescent Boronic Acid Reporters [J]. J. Fluoresc, 2004, 14: 611–615.
    [30] YANG W, GAO X., WANG B. Boronic acid compounds as potential pharmaceutical agents [J]. Med. Res. Rev, 2003, 23: 346–368.
    [31] YANG W, HE H., DRUECKHAMMER D G. Computer-Guided Design in Molecular Recognition: Design and Synthesis of a Glucopyranose Receptor [J]. Angew. Chem., Int. Ed, 2001, 40: 1714–1718.
    [32] WANG W, GAO X, WANG B. Boronic acid-based sensors [J]. Curr. Org. Chem, 2002, 6: 1285–1317.
    [33] CABELL L A, MONAHAN M.-K, ANSLYN E V. A Competition Assay for Determining Glucose-6-phosphate Concentration with a Tris-boronic Acid Receptor [J]. Tetrahedron Lett, 1999, 40: 7753–7756.
    [34] GAO S, WANG W, WANG B. Building fluorescent sensors for carbohydrates using template-directed polymerizations [J]. Bioorg. Chem, 2001, 29: 308–320.
    [35] LAVIGNE J J, ANSLYN E V. Chemosensing Ensemble for Tartrate/Malate in Beverages [J]. Angew. Chem., Int. Ed, 1999, 38: 3666–3669.
    [36] NORRILD J C, EGGERT H. Evidence for Mono- and Bisdentate Boronate Complexes of Glucose in the Furanose Form. Application of 1JC-C Coupling Constants as a Structural Probe [J]. J. Am. Chem. Soc, 1995, 117:1479–1484.
    [37] NORRILD J C, EGGERT H. Structure determination of the complexes involved using 1JCC coupling constants [J]. J. Chem. Soc., Perkin Trans. 2, 1996, 2583–2588.
    [38] SHINKAI S, TAKEUCHI M. Direct Electrochemistry for the Imidazole Complex of Microperoxidase-11 in Dimethyl Sulfoxide Solution at Naked Electrode Substrates Including Glassy Carbon, Gold, and Platinum [J]. Trends Anal. Chem, 1996, 15: 188–193.
    [39] WISKUR S L, LAVIGNE J L, AIT-HADDOU H, et al. Values and Geometries of Secondary and Tertiary Amines. Complexed to Boronic Acids- Implications for Sensor Design Anslyn, E. V [J] .Org. Lett, 2001, 3: 1311–1314.
    [40] YANG W, GAO S, GAO X., et al. Diboronic Acids as Fluorescent Probes for Cells Expressing Sialyl Lewis X [J]. Bioorg. Med. Chem. Lett, 2002, 12: 2175–2177.
    [41] PAUGAM M. F, BIEN J T, SMITH B D, et al. Facilitated Catecholamine Transport Through Bulk and Polymer-Supported Liquid Membranes [J]. J. Am. Chem. Soc, 1996, 118: 9820–9825.
    [42] WESTMARK P R, GARDINER S J, SMITH B D. Selective Monosaccharide Transport Through Lipid Bilayers Using Boronic Acid carriers[J]. J. Am. Chem. Soc, 1996, 118: 11093–11100.
    [43] RIGGS J A, HOSSLER K A, SMITH B D, et al. Liquid Membrane Transport Using Boronic Acid Carriers [J]. Tetrahedron Lett, 1996, 37: 6303–6306.
    [44] DRAFFIN S P, DUGGAN P J, DUGGAN S A M. Harmata, M.; Rashatasakhon, P. A [4+3] Cycloaddition Approach to the Synthesis of Spatol. A Formal Total Synthesis of Racemic Spatol [J].Org. Lett, 2001, 3: 917–920.
    [45] GARDINER S J, SMITH B D, DUGGAN P J, et al. Selective Fructose Transport Through Supported Liquid Membranes Containing Diboronic Acid or Conjugated Monoboronic Acid-Quaternary Ammonium Carriers [J]. Tetrahedron,1999, 55: 2857–2864.
    [46] SMITH B D, GARDINER S J, MUNRO T A, et al. Facilitated Transport of Carbohydrates, Catecholamines, and Amino Acids through Liquid and Plasticized Organic Membranes[J]. J. Inclusion Phenom. Mol. Recognit. Chem, 1998, 32: 121–131.
    [47]黄建滨,赵国玺,吴世康,等.荧光探针研究混合阴阳离子表面活性剂的有序组合体[J].物理化学学报,1993,9: 577-580
    [48] FENDLER J H. Microemulsions, micelles, and vesicles as media for membrane mimetic photochemistry [J]. J. Phys. Chem, 1980,84: 1485-1491.
    [49] AHLARS M, MULLER W, REICHERT A, et al. Specific Interactions of Proteins with Functional Lipid Monolayers - Ways of Simulating Biomembrane Processes [J]. Angew. Chem. Int. Ed. Engl. , 1990, 29:1269-1285.
    [50]于网林,赵国玺,囊泡的形成与两亲分子结构[J].化学通报,1996,6:21-25.
    [51] BANGHAM A D, STANDISH M M, WATKING J C. Diffusion of Univalent Ions Across the Lamellae of Swollen Phospholipids [J]..J.Mol.Biol,1965,13:238-252.
    [52] TIEN T H.“Bilayer Lipid Membranes (BLM) Theory and Practice”,Marcel Dekker [M] // New York, 1974.
    [53] TABUSHI I, KOBUKE y, IMUTA J. Comparison of protein structures reveals monophyletic origin of the AdoMet-dependent methyltransferase family and mechanistic convergence rather than recent differentiation of N 4 -cytosine and N 6 -adenine DNA methylation [J]. Nucleic Acid Res, 1979, 6:175-182.
    [54] HIRATA F, AXELROD J. Phospholipid methylation and biological signal transmission [J]. Science, 1980,209:1082-1990.
    [55] SHIMOMURA M, KUNITAKE T. Interactions of ions with the surface receptor of the azobenzene-containing bilayer membrane. Discrimination, transduction, and amplification of chemical signals [J]. J. Am. Chem. Soc., 1982, 104:1757-1759,
    [56] CALVIN M. Simulating photosynthetic quantum conversion [J].Acc. Chem. Res, 1978, 11: 369-374,
    [57] FENDLER J H. Membrane Mimetic Chem. [M] //Wiley-Interscience New York, 1982..
    [58] PORTER G.. Proceedings of the Royal Society of London Series A:Mathematicaland Physical Sciences [J]. Proc. R. Soc. London, Ser. A, 1978,362: 281-303,.
    [59] GRATZEL M. Graetzel M. Artificial photosynthesis: Water cleavage into hydrogen and oxygen by visible light [J]. Acc. Chem. Res., 1981,14: 376-384.
    [60] GREGORIADIS G.. Drug Carriers in Biology and Medicine [M] //Academic Press, London, 1979.
    [61] KIMEBERG H.K, MAYHEW E G.. Morphology of a novel cyanobacterium and characterization of light-harvesting complexes from it: Implications for phycobiliprotein evolution [J]. CRC Crit. Rev. Toxicol. , 1978,6: 25-79.
    [62] SINGER S J, NICOLSON G.. The fluid Mosaic Model of the Structure of Cell Membranes [J]. Science, 1972,175: 720-731.
    [63] GRAY G. W. Molecular Structure and the Propertier of Liquid Crystal [M] // Academic Press, London, 140, 1962.
    [64] KUNITAKE T, OKAHATA Y, TAKAYANAGI M, et al. Formation of the bilayer membrane from a series of quaternary ammonium salts [J]. Chem. Lett, 1977,387-390.
    [65] OKAHATA Y, IHARA H, SHIMOMURA M, et al. Formation of disk-like a ggregates form single-chain phosphocholine amphiphiles in water [J]. Chem. Lett., 1980, 1169-1672.
    [66] KUNITAKE T, KIMIZUKA N, HIGASHI N , et al . Bilayer membranes of triple-chain ammonium amphiphiles [J].J. Am. Chem. Soc., 1984, 106, 1978-1983.
    [67] KIMIZUKA N., OHIRA H, TANAKA M,et al. Bilayer Membranes of Four Chained. Ammonium Amphiphiles [J]. Chem. Lett., 1990, 29.
    [68]王煜,晋卫军.基于光诱导电子转移作用的荧光/磷光分子开关和传感器[J].广西师范大学学报,2003,21:146-147
    [69] BISSEL R A, DE SILVA A P, GUNARATNA H Q N, et al. Fluorescent PET(photoinduced electron transfer) sen- sors [J]. Top. Curr. Chem, 1993, 168: 223-264.
    [70] CZAMIK A W. Fluorescenr Chemosensors for Ion and Molecule Recognition [M] // American Chemical Society: Washington, D.C., 1993.
    [71] CZAMIK A W. Chemical Communication in Water Using Fluorescent Chemosensors [J]. Arc. Chem. Res, 1994, 27: 302-308.
    [72] RAYMO F M. Digital Processing and Communication with Molecular Switches [J]. Adv. Mater, 2002, 14: 401-414.
    [73] BROWN G J, DE SILVA A P, PAGLIARI S. Molecules that add up GARETH J.BROWN,A. PRASANNA DE SILVA AND SARA PAGLIARI [J].Chem. Commun. 2002, 21: 2461-2464.
    [74] LAVIGNE J J, ANSLYN E V. Sensing A Paradigm Shift in the Field of Molecular Recognition: From Selective to Differential Receptors[J]. Angew. Chem. Int. Ed, 2001, 40: 3119-3130.
    [75] WASIELEWSKI M R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis [J]. Chem. Rev, 1992, 92: 435-461.
    [76] AYADIM M, JIWAN J L H, DE SILVA A P. Photosensing by a fluorescing probe covalently attached to the silica [J]. Tetrahedron Lett., 1996, 37: 7039-7042.
    [77]蒋林玲,丁立平,高莉宁等.基于PET过程的分子开关型荧光传感器研究进展[J].陕西师范大学学报(自然科学版),2004, 32: 65.
    [78] Niu C G, ZENG G M, CHEN L.X, et al. Proton“off-on”behaviour of methylpiperazinyl derivative of naphthalimide: a pH sensor based on fluorescence enhancement [J] .Analyst, 2004, 129,20-24.
    [79] PEARSON A J, XIAO W J. A. J. Pearson and W. Xiao. Fluorescence and NMR Binding Studies of N-Aryl-N’-(9-methylanthryl)diaza-18-crown-6 Derivatives[J]. J. Org. Chem 2003, 68: 5369-5376.
    [80] BU J H, ZHENG Q Y, CHEN C F, et al . New Fluorescence-Quenching Process through Resumption of PET Process Induced by Complexation of Alkali Metal Ion [J]. Org. Lett, 2004, 6:3301-3303.
    [81] ROYZEN M, DURANDIN A, YOUNG V G. J, et al. Method and associated pyrimido[4,5-d]pyrimidine-2,5-diones and pyrido[4,3-d]pyrimidin-2-ones for forming nanotubes [J]. J. Am. Chem. Soc (Communication), 2006, 128(12): 3854-3855.
    [82] GRANT K W, SHAWN C B, STEPHEN J L,et al. A New Cell-Permeable Fluorescent Probe for Zn2+[J]. J. Am. Chem. Soc, 2000, 122: 5644-5645.
    [83] BOSCH L I, MAHONB M F, JAMES T D. The B-N Bond Controls the Balance between Locally Excited (LE) and Twisted Internal Charge Transfer (TICT) States observed for Aniline Based Fluorescent Saccharide Sensors [J]. Tetrahedron Letters, 2004 ,45: 2859–2862.
    [84] ARIMORI S, PHILLIPS M D, JAMES T D. Probing Disaccharide Selectivity with Modular Fluorescent Sensors [J]. Tetrahedron Letters, 2004, 45:1539–1542.
    [85] ZHAO J, JAMES T D. Chemoselective and enantioselective fluorescent recognition of sugar alcohols by a bisboronic acid receptor [J]. J. Mater. Chem., 2005, 15: 2896–2901.
    [86] ZHAO J, JAMES T D. Fluorescence quenching in a dual fluorophore boronic acid receptor enhances the chiral discrimination of the receptor for tartaric acid [J]. Chem. Commun., 2005, 1889–1891.
    [87] ARIMORI S, USHIRODA S, JAMES T D, et al. A modular electrochemical sensor for saccharides [J]. Chem. Commun., 2002, 2368–2369.
    [88] HARTLEY J H, PHILLIPS M D, JAMES T D. Saccharide-accelerated hydrolysis of boronic acid imines [J]. New J. Chem, 2002, 26: 1228–1237
    [89] ARIMORI S, WARD C J, JAMES T D. The first fluorescent sensor for boronic and boric acids with sensitivityat sub-micromolar concentrations—a cautionary tale [J]. Chem. Commun., 2001, 2018–2019.
    [90] JAMES T D, SHINMORI H, SHINKAI S. Novel fluorescence sensor for small saccharides [J].Chem. Commun., 1997, 70:71-72.
    [91] ZHAO J, DAVIDSON M G, JAMES T D, et al. An Enantioselective Fluorescent Sensor for Sugar Acids [J]. J. Am. Chem. Soc, 2004, 126:16179-16186.
    [92] ARIMORI S, BELL M L, JAMES T D, et al. A modular fluorescence intramolecular energy transfer saccharide sensor [J]. Org. Lett., 2002, 4: 4249-4251.
    [93] TONG A.-J, YAMAUCHI A, HAYASHITA T, et al. Boronic Acid Fluorophore/a-Cyclodextrin Complex Sensors for Selective Sugar Recognition in Water [J]. Anal. Chem (Article), 2001, 73(7): 1530-1536.
    [94] NAKATA E, NAGASE T, SHINKAI S, et al. Coupling a Natural Receptor Protein with an Artificial Receptor to Afford a Semisynthetic Fluorescent Biosensor[J]. J. Am. Chem. Soc. (Article), 2004, 126(2): 490-495.
    [95] GAO X, ZHANG Y, WANG B. A highly fluorescent water-soluble boronic acid reporter for saccharide sensing that shows ratiometric UV changes and significant fluorescence changes [J]. Tetrahedron 2005, 61: 9111–9117.
    [96] GAO X, ZHANG Y, WANG B. New Boronic Acid Fluorescent Reporter Compounds II. A Naphthalene-based Sensor Functional at Physiological pH [J]. Org. Lett., (Letter), 2003, 5(24): 4615-4618.
    [97] WANG W, GAO S, WANG B. Building Fluorescent Sensors by Template Polymerization: The Preparation of a Fluorescent Sensor for D-Fructose Org. Lett., (Letter),1999, 1(8): 1209-1212.
    [98] MORIN G. T, HUGHES M P, PAUGAM M.-F, et al. Boronic Acids SelectivelyFacilitate Glucose Transport through a Lipid Bilayer[J]. J. Am. Chem. Soc, 1994, 116(20): 8895-8901.
    [99] BADUGU R, LAKOWICZ J R, GEDDES C D. The non-invasive continuous monitoring of physiological glucose using a monosaccharide-sensing contact lens [J]. Anal. Chem (Article), 2004, 76(3):610-618.
    [100] DICESARE N, LAKOWICZ J R. Spectral properties of fluorophores combinng the boronic acid group with electron donor group or withdrawing groups, Implication in the development if fluoresence probes for saccharides [J]. J. Phys. Chem. A.; (Article), 2001, 105(28): 6834-6840.
    [101] HE M., JOHNSON R J, ESCOBEDO J O,et al. Chromophore Formation in Resorcinarene Solutions and the Visual Detection of Mono- and Oligosaccharides [J]. J. Am. Chem. Soc.; (Article), 2002,124(18): 5000-5009.
    [102] KAUR G, FANG H., GAO X.,et al. Lipophilic Polymer Membrane Optical Sensor with a Synthetic Receptor for Saccharide Detection [J]. Tetrahedron, 2006; 62: 2583-2589.
    [103] LINDA K M, ANTHONY W C. Alpha.-Amino acid chelative complexation by an arylboronic acid [J]. J. Am. Chem. Soc, 1993, 115: 7037-7038.
    [104]YASUMASA KANEKIYO, HIROAKI TAO. Fluorescence detection of ATP based on the ATP-mediated aggregation of pyrene-appended boronic acid on a polycation[ J]. Chem. Commun, 2004, 1006-1007.
    [105] BADUGU R, LAKOWICZ J R, GEDDES C D, et al. A glucose-sensing contact lens: from bench top to patient [J]. Current Opinion in Biotechnology 2005, 16:100-107.
    [1] LORAND J P, EDWARDS J O. Polyol Complexes and Structure of the Benzeneboronate Ion [J]. J. Org. Chem, 1959, 24: 769-774.
    [2] CABELL L A, MONAHAN M.-K, ANSLYN E V. A Competition Assay for Determining Glucose-6-phosphate Concentration with a Tris-boronic Acid Receptor [J]. Tetrahedron Lett, 1999, 40: 7753–7756.
    [3] YOON J,CZARNIK A W. Fluorescent chemosensors of carbohydrates. A means of chemically communicating the binding of polyols in water based on chelation-enhanced quenching [J]. J. Am. Chem. Soc, 1992, 114: 5874–5875.
    [4] BAXTER P, GOLDHILL J, HARDCASTLE P T, et al. Enhanced intestinal glucose and alanine transport in cystic fibrosis [J]. J. Gut 1990, 31: 817-820.
    [5] GAO X, ZHANG Y, WANG B. A highly fluorescent water-soluble boronic acid reporter for saccharide sensing that shows ratiometric UV changes and significant fluorescence changes [J]. Tetrahedron 2005, 61: 9111–9117.
    [6] GAO X, ZHANG Y, WANG B. New Boronic Acid Fluorescent Reporter Compounds II. A Naphthalene-based Sensor Functional at Physiological pH [J]. Org. Lett., (Letter), 2003, 5(24): 4615-4618.
    [7] WANG W, GAO S, WANG B. Building Fluorescent Sensors by Template Polymerization: The Preparation of a Fluorescent Sensor for D-Fructose Org. Lett., (Letter),1999, 1(8): 1209-1212.
    [8] GREGORY T M, MARTIN P H, MARIE-FRANCE P, et al. Transport of Glycosides through Liquid Organic Membranes Mediated by Reversible Boronate Formation is a Diffusion-Controlled Process [J]. J. Am. Chem. Soc, 1994, 116: 8895-8901.
    [9] BADUGU R, LAKOWIZ J R, GEDDES C D. Noninvasive Continuous Monitoring of Physiological Glucose Using a Monosaccharide-Sensing Contact Lens [J].Anal. Chem, 2004, 76: 610-618.
    [10] DICESARE N , LAKOWIZ J R. Spectral Properties of Fluorophores Combining the Boronic Acid Group with Electron Donor or Withdrawing Groups. Implication in the Development of Fluorescence Probes for Saccharides [J]. J. Phys. Chem. A, 2001, 105: 6834-6840.
    [11] HE M, JOHNSON R J, ESCOBEDO J O, el at. Chromophore Formation in Resorcinarene Solutions and the Visual Detection of Mono- and Oligosaccharides [J]. J. Am. Chem. Soc, 2002, 124: 5000-5009.
    [12] JAMES T D, SANDANAYAKE K R A S, SHINKAI S. Novel Saccharide-Photoinduced Electron Transfer Sensors Based on the Interaction of Boronic Acid and Amine [J]. J. Am. Chem. Soc, 1995, 117: 8982–8987.
    [13] ARIMORI S, BELL M L, JAMES T D, el at. Modular Fluorescence Sensors for Saccharides [J]. J. Chem. Soc., Perkin Trans. 1, 2002, 803–808.
    [14] JAMES T D, SANDANAYAKE K R A S, SHINKAI S, et al. Chiral Discrimination of Monosaccharides using a Fluorescent Molecular Sensor [J]. Nature (London), 1995, 374: 345–347.
    [15] ARIMORI S, PHILLIPS M D, JAMES T D. Probing Disaccharide Selectivity with Modular Fluorescent Sensors [J]. Tetrahedron Letters, 2004, 45:1539–1542.
    [16] ZHAO J, JAMES T D. Chemoselective and enantioselective fluorescent recognition of sugar alcohols by a bisboronic acid receptor [J]. J. Mater. Chem, 2005, 15: 2896–2901.
    [17] RAMACHANDRAM B, JOSEPH R L, GEDDES C D. Wavelength-ratiometric near-physiological pH sensors based on 6-aminoquinolinium boronic acid probes [J]. Talanta, 2005, 66: 569–574.
    [18] RAMACHANDRAM B, JOSEPH R L, GEDDES C D. A wavelength–ratiometric fluoride-sensitive probe based on the quinolinium nucleusand boronic acid moiety [J]. Sensors and Actuators B, 2005,104: 103–110.
    [19] RAMACHANDRAM B, JOSEPH R L, GEDDES C D. Excitation and emission wavelength ratiometric cyanide-sensitive probes for physiological sensing [J]. Analytical Biochemistry, 2004, 327: 82–90.
    [20] RAMACHANDRAM B, JOSEPH R L, GEDDES C D. A wavelength-ratiometric pH sensitive probe based on the boronic acid moiety and suppressed sugar response [J]. Dyes and Pigments, 2004, 61: 227–234.
    [21] RAMACHANDRAM B, JOSEPH R L, GEDDES C D. Wavelength–Ratiometric Probes for the Selective Detection of Fluoride Based on the 6-Aminoquinolinium Nucleus and Boronic Acid Moiety [J]. Journal of Fluorescence, 2004, 14,693-703.
    [23] RAMACHANDRAM B, JOSEPH R L, GEDDES C D. Fluorescence intensity and lifetime-based cyanide sensitive probes for physiological safeguard [J]. Analytica Chimica Acta, 2004, 522: 9–17
    [24] RAMACHANDRAM B, JOSEPH R L, GEDDES C D. Fluorescence sensors for monosaccharides based on the 6-methylquinolinium nucleus and boronic acid moiety: potential application to ophthalmic diagnostics [J].Talanta, 2005, 65 : 762–768
    [25] RAMACHANDRAM B, JOSEPH R L, GEDDES C D. Boronic acid fluorescent sensors for monosaccharide signaling based on the 6-methoxyquinolinium heterocyclic nucleus: progress toward noninvasive and continuous glucose monitoring [J].Bioorganic & Medicinal Chemistry, 2005,13: 113–119
    [26]于网林,赵国玺,囊泡的形成与两亲分子结构[J].化学通报,1996,6:21-25.
    [27] BANGHAM A D, STANDISH M M, WATKING J C. Diffusion of Univalent Ions Across the Lamellae of Swollen Phospholipids [J]..J.Mol.Biol,1965,13:238-252.
    [28] TIEN T H.“Bilayer Lipid Membranes (BLM) Theory and Practice”,Marcel Dekker [M] // New York, 1974.
    [29] TABUSHI I, KOBUKE y, IMUTA J. Comparison of protein structures reveals monophyletic origin of the AdoMet-dependent methyltransferase family and mechanistic convergence rather than recent differentiation of N 4 -cytosine and N 6 -adenine DNA methylation [J]. Nucleic Acid Res, 1979, 6:175-182.
    [30] HIRATA F, AXELROD J. Phospholipid methylation and biological signal transmission [J]. Science, 1980,209:1082-1990. [51] BANGHAM A D, STANDISH M M, WATKING J C. Diffusion of Univalent Ions Across the Lamellae of Swollen Phospholipids [J]..J.Mol.Biol,1965,13:238-252.
    [31] SHIMOMURA M, KUNITAKE T. Interactions of ions with the surface receptor of the azobenzene-containing bilayer membrane. Discrimination, transduction, and amplification of chemical signals [J]. J. Am. Chem. Soc., 1982, 104:1757-1759,
    [32] CALVIN M. Simulating photosynthetic quantum conversion [J].Acc. Chem. Res, 1978, 11: 369-374,
    [33] FENDLER J H. Membrane Mimetic Chem. [M] //Wiley-Interscience New York, 1982..
    [34] PORTER G.. Proceedings of the Royal Society of London Series A:Mathematical and Physical Sciences [J]. Proc. R. Soc. London, Ser. A, 1978,362: 281-303,.
    [35] GRATZEL M. Graetzel M. Artificial photosynthesis: Water cleavage into hydrogen and oxygen by visible light [J]. Acc. Chem. Res., 1981,14: 376-384.
    [36] GREGORIADIS G.. Drug Carriers in Biology and Medicine [M] //Academic Press, London, 1979.
    [37] WILEY J P, HUGHES K A R, KAISER J, et al. Phenylboronic Acid?Salicylhydroxamic Acid Bioconjugates. 2. Polyvalent Immobilization of Protein Ligands for Affinity Chromatography [J]. Bioconjugate Chem, 2001, 12:240-250.
    [38] GARDIBER S J, SMITH B D, DUGGAN P J, et al.. Selective fructose transport through supported liquid membranes containing diboronic acid or conjugated monoboronic acid-quaternary ammonium carriers [J].Tetrahedron, 1999, 55, 2857-2864.
    [39] HOPKINS T A, ARMSTRONG N R, SHAHEEN S, et al. Substituted Aluminum and Zine Quinolates with Blue-Shifted Absorbance/Luminescence Bands Synthesis and Spectroscopic, Photoluminescence, and Electroluminescence Characterization [J]. Chem Mater, 1996,8: 344-351.
    [40] IZILDA A B, HENRIQUE E T. Acalix[4]arene receptor modified with 8-hydroxyquinoline for supramolecular energy transfer [J].New J.Chem, 2000, 24: 841-844.
    [41] DAVIS S C, SZOKA J F C. Cholesterol Phosphate Derivatives: Synthesis and Incorporation into a Phosphatase and Calcium-Sensitive Triggered Release Liposome [J]. Bioconjugate Chem, 1998, 9: 783-792.
    [1] JAMES T D , SANDANAYAKE K R A S, SHINKAI. S. Saccharide Sensing with Molecular Receptors Based on Boronic Acid [J]. Angew. Chem., Int. Ed. Engl, 1996, 35: 1910-1922.
    [2] MEYERHOFF C, MENNEL F J, STERNBERG F, et al. New approach to the diagnosis of growth hormone [J]. The Endocrinologist, 1996, 6: 51-58
    [3] HENNING T P, CUNNINGHAM D C. In Commercial biosensors:Applications to clinical, bioprocess, and environmental samples [M] // Ramsay,G., Ed.; J. Wiley: New York, 1998,3.
    [4] JAMES T D, SHINKAI S. Artificial Receptors as Chemosensors for Carbohydrates [J] . Top. Curr. Chem, 2002, 218:159-200.
    [5] STEIDGLER S. Selective carbohydrate recognition by synthetic receptors in aqueous solution [J]. Curr. Org. Chem, 2003, 7: 81-102 .
    [6] NI W , FANG H. , SPRINGSTEEN G., et al. The Design of Boronic Acid Spectroscopic Reporter Compounds by Taking Advantage of the pKa-lowering Effect of Diol-binding: Nitrophenol-based Color Reporters for Diols [J]. Org. Chem., 2004, 69: 1999-2007.
    [7] GRANDA-VALDES M, BADIA R, PINA-LUIS G., et al. Synthesis and biological activity of substituted amides and hydrazides of 1,4-dicarboxylic acids [J] .Quim. Anal , 2000, 19: 38-53
    [8] SUSUMU A , MICHAEL L B, JAMES T D, et al. Total Synthesis of Spirotryprostatin B via Asymmetric Nitroolefination [J]. Organic Letters, 2002, 24: 4249-4251
    [9] SUSUMU A , MICHAEL L B, JAMES T D, et al. Probing disaccharide selectivity with modular fluorescent sensors [J].Tetrahedron Letters, 2004, 1539-1542.
    [10] GAO X M , ZHANG Y L , WANG. B. Acid Reporter for Saccharide Sensing thatalso Shows Ratiometric UV Changes [J]. Tetrahedron ,2005 , 61 : 9111-9117.
    [11] BADUGU R, LAKOWICZ J R, GADDES C D. Wavelength-ratiometric near-physiological pH sensors based on 6-aminoquinolinium boronic acid probes [J]. Talanta, 2005,66: 569–574.
    [12] BADUGU R, LAKOWICZ J R, GADDES C D. A biosensor monitoring DNA hybridization based on polyaniline intercalated graphite oxide nanocomposite[J]. Sensors and Actuators B, 104 (2005) 103–110.
    [13] BADUGU R, LAKOWICZ J R, GADDES C D. Excitation and emission wavelength ratiometric cyanide-sensitive probes for physiological sensing [J].Analytical Biochemistry ,2004,327, 82–90.
    [14] BADUGU R, LAKOWICZ J R, GADDES C D. A wavelength-ratiometric pH sensitive probe based on the boronic acid moiety and suppressed sugar response[J]. Dyes and Pigments, 2004, 61 : 227–234.
    [15] BADUGU R, LAKOWICZ J R, GADDES C D. The Journal of Fluorescence Finds Greater Impact [J]. J. Fluorescence, 2004, 14: 617-633.
    [16] BADUGU R, LAKOWICZ J R, GADDES C D. An environmental friendly method for the automatic determination of hypochlorite in commercial products using multisyringe flow injection analysis [J]. Analytica Chimica Acta, 2004,522 : 9–17.
    [17] BADUGU R, LAKOWICZ J R, GADDES C D. Fluorescence sensors for monosaccharides based on the. 6-methylquinolinium nucleus and boronic acid moiety[J]. Talanta, 2005,65 : 762–768.
    [18] BADUGU R, LAKOWICZ J R, GADDES C D. Boronic acid fluorescent sensors for monosaccharide signaling based on the 6-methoxyquinolinium heterocyclic nucleus: progress toward noninvasive and continuous glucose monitoring [J]. Bioorganic & Medicinal Chemistry, 2005,13: 113–119.
    [19] MOSS R A , OKUMURA Y. Reactivity of fluorenylideneketene towards amines. A laser photolysis study with ultraviolet and infrared detection [J]. Am. Chem. Soc, 1992, 114:1750-1756.
    [20] AKIRA M, RYO Y, KAZUNORI K. Dynamic Behavior of Glucose-Responsive Poly(methacrylic acid-g-ethylene glycol) Hydrogels[J]. Biomacromolecules, 2004, 5: 1038-1045.
    [21] GAO X , ZHANG Y , WANG B. A new boronic acid fluorescent reporter that changes emission intensities at three wavelengths upon sugar binding[J]. New J Chem, 2005, 29: 579-586.
    [22] BADUGU R, LAKOWICZ J R, GADDES C D. Wavelength-ratiometric and colorimetric probes for glucose determination[J]. Dyes and Pigments, 2006,68 :159–163.
    [22] YANG W, YAN J, WANG B,et al. Cytochrome P450/NADPH-dependent formation of trans epoxides from trans-arachidonic acids [J]. Biooranic & Medicinal Chemistry Letters , 2003, 13:1019-1022.
    [23] GAO H, DIAZ D I., NICOLAS D C, et al. Photochemical preparation and application research of Au nanoparticles [J]. Organic Letters, 2002, 4:1503-1505.
    [24] ZHAO J, DAVIDSON M G., MAHON M F, et al. An Enantioselective Fluorescent Sensor for Sugar Acids[J]. J.Am Chem Soc, 2004, 126: 16179-16186.
    [25] NICOLAS D C, LAKOWICZ J R . Modeling supramolecular assemblages [J]. Analytical Biochemistry, 2001, 294: 154-160.
    [1] GALE P A. Pyrrolic and polypyrrolic anion binding agents [J]. Coord. Chem. Rev, 2003, 240: 17-55.
    [2] HURTLEY S, SERBICE R, SZUROMI P. A complementation analysis of the restriction and modification of DNA in Escherichia coli [J]. Science, 2001, 291: 2337-2337.
    [3] JAMES T D, SHINKAI S. Artificial Receptors as Chemosensors for Carbohydrates [J] .Top. Curr. Chem, 2002, 218: 159-200.
    [4] STRIEGLER S. Synthesis and crystal structure of 4-amino-3-fluorophenylboronic acid [J]. Curr, Org. Chem, 2003, 7: 81-102.
    [5] NI W, FANG H, SPRINGSTEEN G, et al. Anion recognition by N-benzamido-N '-phenylthioureas in aqueous-organic binary solvents [J]. Org. Chem, 2004, 69: 1999–2007.
    [6] GRANDA-VALDES M, BADIA R, PINA-LUIS G., et al. Some sources of variability in application of the three-stage sequential extraction procedure recommended by BCR to industrially-contaminated soil [J]. Quim. Anal, 2000, 19: 38-53.
    [7] CLAREMONT D J, SAMBROOK I E, PENTON C, et al. Implantation of a Ferrocene-Mediated glucose sensor in Pigs [J]. Diabetologa, 1986, 29: 817-821.
    [8] ROBINSON M R, EATON R P, HAALAND D M, et al. Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation [J]. Clin. Chem, 1992, 38: 1618–1622.
    [9] RABINOVITCH B, MARCH W F, ADAMS R L. In vivo glucose sensing for diabetes management: progress towards non-invasive monitoring [J]. Diabetes Care, 1982, 5: 254–258.
    [10] SCHIER G. M, MOSES R G., GAN I E T, et al. Implementation of cancer prevention guidelines in clinical practice [J]. Diabetes Res. Clin. Pract, 1988, 4: 177–181.
    [11] AURIA S D, DICESARE N, GRYCZYNSKI Z, et al. A Thermophilic Apoglucose Dehydrogenase as Nonconsuming Glucose Sensor [J]. Biochem. Biophys. Res. Commun, 2000, 274: 727–731.
    [12] KENNETH E R, ERNEST K J. Accuracy of continuous nocturnal glucose monitoring after 48 and 72 hours in type 2 diabetes patients on combined oral and insulin therapy [J]. Diabetes Technol. Ther, 1999, 1: 3-11.
    [13] KOSCHINSKY T, HEINEMANN L . The European perspective on vitamin E: current knowledge and future research [J]. Diabetes Met, Res. Rev, 2001, 17: 113-123.
    [14] ATANASOV P, YANG S, SALEHI et al. Implantation of a refillable glucose monitoring-telemetry device [J]. Biosens. Bioelectron, 1997, 12: 669-680.
    [15] GERRITSEN M, JANSEN J A, LUTTERMAN J A. Performance of subcutaneously implanted glucose sensors for continuous monitoring [J]. Neth. J. Med, 1999, 54: 167-179.
    [16] DANILOFF G Y. Identification of a receptor for reg (regenerating gene) protein [J]. Diabetes Technol. Ther, 1999, 1: 261-266.
    [17] YOON J, CZARNIK A W. Selective Recognition of Alkyl Pyranosides in Protic and Aprotic Solvents [J] . J.Am. Chem. Soc, 1992, 114:5874-5875.
    [18] SANDANAYAKE K R A S , SHINKAI S. Multicavitands IV: Synthesis of linear koilands obtained by fusion of calix[4]arene derivatives by silicon atoms [J]. Chem. Soc., Chem. Commun, 1994, 1083-1084.
    [19] ROBERTSON A, SHINKAI S. A Conformationally Programmable Ligand [J]. Coord, Chem. Rev, 2000, 205: 157- 199.
    [20] LORAND J P, EDWARDS J O. Reductive cleavage of resin bound arylsulfonates [J]. Org. Chem, 1959, 24: 769-774.
    [21] JAMES T D, SANDANAYAKE K R A S , SHINKAI S. Saccharide Sensing with Molecular Receptors Based on Boronic Acid [J]. Angew. Chem. Int. Ed. Engl, 1996, 35: 1910-1922.
    [22] OKAHATA Y, KUNITAKE T. Polymer films on electrodes. 4. Nafion-coated electrodes and electrogenerated chemiluminescence of surface-attached tris(2,2'-bipyridine)ruthenium(2+) [J]. Phys. Chem, 1980, 84: 550-556.
    [23] LI G., TIAN Y, LIANG Y. Oxidation of gum arabic by soluble colloidal MnO2 [J]. Chem. Soc. Faraday Thans, 1993, 89: 1365-1371.
    [24] FENDLER J H. Glucose-responsive vesicular sensor based on boronic acid–glucose recognition in the ARS/PBA/DBBTAB covesicles Membrane [M]// Mimetic Chemistry , John Wiley & Sons, 1982, p113.
    [25] MOSS R A, OKUMURA Y . Production and IR Absorption of Cyclic CS2 in Solid Ar[J]. J. Am. Chem. Soc, 1992, 114: 1750-1756.
    [26] KUNITAKE T, OKAHATA Y. Actin Binding to the Central Domain of WASP/Scar Proteins Plays a Critical Role in the Activation of the Arp2/3 Complex [J]. J. Am. Chem. Soc, 1980, 102: 549-553.
    [27] EGGERT H, FREDERIKSEN J, MORIN C, et al. Phase transfer of monosaccharides through noncovalent interactions: Selective extraction of glucose by a lipophilic cage receptor [J]. Org. Chem, 1999, 64: 3846-3852.
    [28] WULFF G.. Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates - A Way towards Artificial Antibodies[J] . Angew. Chem. Int. Ed. Engl, 1995, 34: 1812-1832.
    [29] SCRAFTON D K, TAYLOR J E , MAHON M F , et al.“Click-fluors”: Modular Fluorescent Saccharide Sensors Based on a 1,2,3-Triazole Ring [J]. J. Org.Chem, 2008, 73: 2871-2874.
    [30] GAO X. , ZHANG Y , WANG B. Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction [J]. Tetrahedron, 2005, 61: 9111-9117.
    [31] BOSCH L I, MAHON M F, JAMES T D. Fe-pillared bentonite—an efficient catalyst for sulfonylation of arenes using aryl and alkyl sulfonyl chlorides [J]. Tetrahedron Letters, 2004, 45: 2859-2862.
    [32] BADUGUA R , LAKOWICZA J R , GEDDES C D. An Efficient Synthesis of Sterically Hindered Arylboronic Acids[J]. Bioorganic & Medicinal Chemistry, 2005, 13: 113-119.
    [33] BADUGUA R , LAKOWICZA J R , GEDDES C D . The Journal of Fluorescence Finds Greater Impact [J] . J.Fluorescence, 2004, 14: 617-633.
    [34] BADUGUA R , LAKOWICZA J R , GEDDES C D. An environmental friendly method for the automatic determination of hypochlorite in commercial products using multisyringe flow injection analysis [J]. Analytica Chimica Acta, 2004, 522: 9–17.
    [35] BADUGUA R , LAKOWICZA J R , GEDDES C D. Fluorescence sensors for monosaccharides based on the. 6-methylquinolinium nucleus and boronic acid moiety[J]. Talanta, 2005, 65: 762–768.
    [1] LEE J J , NOLL B C, SMITH B D. Fluorescent Chemosensor for Chloroalkanes [J]. Org. Lett, 2008, 10: No. 9,
    [2] ZHANG M, DUHAMEL J. Study of the Microcrystallization of Ethylene-Propylene Random Copolymers in Solution by Fluorescence [J]. Macromolecules, 2007, 40: 661-669.
    [3] NISHIZAWA S, KATO Y, TERAMAE N. Fluorescence Sensing of Anions via Intramolecular Excimer Formation in a Pyrophosphate-Induced Self-Assembly of a Pyrene-FunctionalizedGuanidinium Receptor [J]. J. Am. Chem. Soc, 1999, 121:9463-9464
    [4] ] ZHANG L M, CHEN S X. Study on exciplexes formed by Benzene, Naphthalene, Anthracene and 1,4-Dicyanobenzene [J]. J. Luminesc, 1988, 40-41: 233-234.
    [5] ZHANG L M, CHEN S X. Enhancing affection of excimer formation of phenyl propionate byβ-cyclodextrin [J]. J. Luminesc, 1988, 40-41, 267-268.
    [6] ASPLER Z S, GUILLET J E. Kinetics of Excimer Formation in Poly(1-naphthyl methacrylate) [J]. Macromoleculs, 1979, 12: 1082-1088.
    [7] JIANG X K. Plenary Lecture at the 34th[C]. IUPAC Congress Aug, 1993,15-20, Beijing.
    [8] ZHAO B, ZHANG Z, Li G.,et al. Structure of 5-(Dodecyloxy)-1-((6-(trimethylammonio)hexyl)oxy)naphthalene- Sodium Dextran Sulfate Langmuir-Blodgett Films As Studied by Fluorescence Spectroscopy [J]. Langmuir, 1994, 10: 4670-4675.
    [9] KANEKIYO Y, NAGANAWA R, TAO H. Fluorescence detection of ATP based on the ATP-mediated aggregation of pyrene-appended boronic acid on a polycation [J].Chem. Commun , 2004, 1006–1007.
    [10] CLARES M P, AGUILAR J, AUCEJO R, et al. Synthesis and H+, Cu2+, and Zn2+Coordination Behavior of a Bis(fluorophoric) Bibrachial Lariat Aza-Crown [J]. Inorganic Chemistry, 2004, 43: 6114-6122.
    [11] FUJIWARA Y, AMAO Y. Optical oxygen sensor based on controlling the excimer formation of pyren-1-butylic acid chemisorption layer onto nano-porous anodic oxidized aluminium plate by myristic acid [J]. Sensors and Actuators B, 2003, 89 :58-61.
    [12] FUJIWARA Y, AMAO Y. An oxygen sensor based on the fluorescence quenching of pyrene chemisorbed layer onto alumina plates [J]. Sensors and Actuators B, 2003, 89: 187-191.
    [13] EGGERT H, FREDERIKSEN J, MORIN C, et al. A New Glucose-Selective Fluorescent Bisboronic Acid. First Report of Strongα-Furanose Complexation in Aqueous Solution at Physiological pH1[J]. J.Org. Chem, 1999, 64: 3846-3852.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700