硼掺杂金刚石薄膜电极和相关材料的功能化修饰及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硼掺杂的金刚石(boron-doped diamond, BDD)薄膜电极除了具有金刚石的优异性能如高的物理、化学稳定性和良好的生物兼容性外,还拥有一系列突出的电化学特性:宽电化学视窗、低背景电流、高电化学稳定性和强抗电极表面玷污能力。但是,sp3碳的高稳定性也使得其电极表面难于功能化。本论文通过各种化学修饰的手段,在其表面引入活性基团,进一步制作了生物传感器并研究了相应的性能。本文还研究了金刚石表面纳米结构的构建及立方氮化硼(cubic boron nitride, cBN)表面的修饰和功能化,并开展了其应用研究。得到的主要结论如下:
     1.首先是利用光化学的方法,即使用带有保护基的烯丙胺在紫外光照的条件下通过自由基反应的机理键合到BDD表面,脱去保护基团得到烷烃链基氨修饰的表面;其次是利用重氮盐化学及后续的电化学还原,在BDD表面得到苯胺基的单分子层。利用此两种活化的BDD电极表面进行了酪氨酸酶的固定,所制备的酪氨酸酶传感器在水体中酚类污染物的检测方面均得到了宽的检测范围、高的灵敏度、低的检测限(0.1μM)和高的稳定性。相比较来说,由于苯胺基比烷烃链基氨终端的电极具有较可逆的电化学性质,重氮盐修饰制得的生物传感器的检测灵敏度要优于光化学的方法。
     2.硼掺杂的纳米金刚石薄膜(BDND)与微米级的薄膜相比,具有更平整的表面,且sp2碳的引入在电化学过程中起到了电子传递的媒介体的作用,从而提高了金刚石电极的电化学性能。在BDND电极表面通过光化学的手段进行了羧基功能化,进一步细胞色素c通过共价键合法固定其上。细胞色素c与电极之间发生了准可逆的直接电化学行为,并有较快的电子传递速率(5.2±0.6 s-1)。此修饰电极对H2O2表现了良好的电催化性能。可以说,功能化的BDND电极是第三代生物传感器的理想基底材料。
     3.利用偏压辅助的微波等离子体技术将BDND薄膜进行了刻蚀处理,得到了纳米级、高密度和均匀的金刚石椎和柱的二维阵列。将金刚石纳米椎进行表面修饰和功能化,形成了不同尺度金纳米粒子(gold nanoparticles, AuNPs)修饰的单层。进一步研究了AuNPs修饰的金刚石椎在表面增强Raman光谱方面的应用,结果表明AuNPs (50 nm)修饰的金刚石椎是Raman活性的良好的基底材料。此金刚石表面纳米结构的构建扩展了金刚石薄膜材料的可应用领域。
     4. cBN是人工合成的又一超硬材料,它具有可比拟于甚至超越于金刚石材料的性能。本文探索了cBN表面的修饰和功能化,氢终端的cBN表面在紫外光照的条件下与含有C=C双键的烯丙胺化合物发生反应,从而得到氨基终端的表面。在氨基化的cBN表面进行了DNA生物传感器的设计与制作,初步的结果显示功能化的cBN表面是好的生物传感器的基底材料。另外,将AuNPs自组装到氨基终端的cBN表面,固定的AuNPs催化形成了银纳米片的结构,此银纳米片修饰的cBN薄膜在表面增强Raman光谱方面的应用结果表明有很好的Raman活性和很高的稳定性。此cBN表面的功能化虽然只是初步的结果,但确实也是为cBN薄膜在生物传感和分析领域的应用奠定了基础。
Conducting boron-doped diamond (BDD) thin films have emerged as attractive new electrode materials because, in addition to having good electrochemical properties including: wide electrochemical potential window, very low double-layer capacitance, extreme electrochemical stability and high resistance to deactivation by fouling, it is widely considered to be biocompatible. Thus, the BDD electrodes are of interest for a variety of electrically based chemical and biological sensing applications. In this paper, the major efforts in BDD electrodes used in biosensors essentially involve elaborate surface modification steps to impart chemical functional groups for covalent coupling of biomolecules. In addition, the construction of nano-structures on diamond films, the modification of cubic boron nitride (cBN) and their applications were investigated. The main conclusions are listed as follows:
     1. Firstly, the hydrogen-terminated BDD surface was first functionalized by photochemically linking vinyl groups of allylamine, producing covalently linked aminoalkyl-terminated surface; Sencondly, combined chemical and electrochemical modifications of the BDD film with nitrobenzenediazonium, an aminophenyl- modified surface was produced. Then amperometric biosensors based on immobilization of tyrosinase on the above two active amine-terminated BDD surfaces were developed. The resulted enzyme electrodes exhibit a good performance in terms of dynamic range of detection, sensitivity, detection limit (0.1μM) and long-term stability to the detection of phenolic compounds. By comparison, the sensitivity of the enzyme electrode prepared via diazonium method is higher than that of the electrode constructed by photochemical method, which probably because, the aryl ring is more conductive than alkyl chain.
     2. Compared with microcrystalline BDD, boron-doped nanocrystalline diamond (BDND) thin-film electrodes have a smoother surface while maintaining the intact diamond properties. Importantly, in addition to boron doping, the sp2-bonded carbon phase on grain boundaries of BDND films can provide charge carriers, which lead to better reversible properties for redox systems. Cytochrome c (Cyt c) was covalently immobilized on a carboxyl-terminated BDND electrode constructed by photochemical surface modification. The Cyt c on BDND electrode exhibited a direct electrochemistry with a pair of quasi-reversible, well-defined redox peaks and a high electron transfer constant of 5.2±0.6 s-1. The prepared Cyt c-modified BDND electrode showed excellent electrocatalytic performance in terms of fast response, low detection limit and high stability towards the reduction of H2O2. In a word, BDND thin-film is an ideal substrate as a third-generation biosensor support.
     3. High-density, uniform diamond nanocone and nanopillar arrays were fabricated by employing bias-assisted reactive ion etching in a H/Ar-plasma. Different sizes of gold nanoparticles (AuNPs) were self-assembled on the diamond nancones surface functionalized by photochemical method and AuNPs monolayer was formed. The application of the AuNPs–modified diamond nanocones film in the surface-enhanced Raman spectroscopy (SERS) was investigated and a high Raman activity was obtained. The above reslults reflect a genuine breakthrough in developing new potential applications of the diamond nanostructures films.
     4. cBN is of significant interest due to its unique set of properties that are comparable or even superior to diamond. Surface functionalization and modification scheme of cBN films was demonstrated. A homogeneous layer of amino groups was bonded covalently on the B and/or N atoms of cBN surface via a photochemical reaction with allylamine. Modification of amine-terminated cBN films with amine-modified DNA probes presents an example of applications as DNA biosensors. AuNPs self-assembled on the amine-terminated cBN surface initiate the silver deposition and homogenous, cross-linked silver nano-sheets were formed. The silver nanosheets-modified cBN film demonstrated a high activity and a long-term stability for SERS. Our work is an initial but important step towards the practical sensing applications of cBN-based devices in chem- and bio-sensing technology.
引文
[1] 金刚石编写组, 金刚石. 第一版, 北京: 中国建筑工业出版社, 1978.
    [2] 张绍和, 金刚石与金刚石工具. 第一版, 长沙: 中南大学出版社, 2005.
    [3] K. E. Nariman, J. J. Lerou, K. B. Bischoff, H. C. Foley, Design, synthesis, and properties of chemical vapor deposited diamond on inorganic oxide catalysts: experimentation and simulation. Ind. Eng. Chem. Res. 1993, 32: 263-273.
    [4] O. Gaudin, S. Watson, S. P. Lansley, H. J. Looi, M. D. Whitfield, R. B. Jackman, Optimising the electronic and optoelectronic properties of thin-film diamond. Diamond Relat. Mater. 1999, 8: 886-891.
    [5] J. Olin, Direct process makes diamonds from graphite. Ind. Eng. Chem. 1963, 55: 24-25.
    [6] 吉林大学固体物理教研室高压合成组, 人造金刚石. 第一版, 北京: 科学出版社, 1975.
    [7] 周东晨, 赵国权, 金刚石合成工艺. 第一版, 北京: 机械工业出版社, 1998.
    [8] 戴达煌, 周克崧, 金刚石薄膜沉积制备工艺与应用. 第一版, 北京: 冶金工业出版社, 2001.
    [9] K. E. Nariman, D. B. Chase, H. C. Foley, Growth of free-standing diamond films on glass. Chem. Mater. 1991, 3: 391-394.
    [10] B. H. Besler, W. L. Hase, K. C. Hass, A theoretical study of growth mechanism of the (110) surface of diamond from acetylene and hydrogen mixtures. J. Phys. Chem. 1992, 96: 9369-9376.
    [11] G. Bocquillon, C. Bogicevic, C. Fabre, A. Rassat, C60 fullerene as carbon source for diamond synthesis. J. Phys. Chem. 1993, 97: 12924-12927.
    [12] K. M. Mcnamara, K. K. Gleason, Radial distribution of hydrogen in chemical vapor deposited diamond. Chem. Mater. 1994, 6: 39-43.
    [13] S. Skokov, B. Weiner, M. Frenklach, Elementary reaction mechanism of diamond growth from acetylene. J. Phys. Chem. 1994, 98: 8-11.
    [14] 郭永存, 金刚石人工合成与应用. 第一版, 北京: 科学出版社, 1984.
    [15] 方啸虎, 合成金刚石的研究与应用. 第一版, 北京: 地质出版社, 1996.
    [16] 陈光华, 张阳, 金刚石薄膜的制备与应用. 第一版, 北京: 化学工业出版社, 2004.
    [17] M. Iwaki, S. Sato, K. Takahashi, H. Sakairi, Electrical conductivity of nitrogen and argon implanted diamond. Nucl. Instrum. Methods Phys. Res. 2003, 209: 1129-1133.
    [18] L. Boonma, T. Yano, D. A. Tryk, K. Hashimoto, A. Fujishima, Observation of photocurrent from band-to-band excitation of semiconducting p-type diamond thin film electrodes. J. Electrochem. Soc. 1997, 144: L142-L145.
    [19] J.-F. Zhi, H.-B. Wang, T. Nakashima, T. N. Rao, A. Fujishima, Electrochemical incineration of organic pollutants on boron-doped diamond electrode. Evidence for direct electrochemical oxidation pathway. J. Phys. Chem. B 2003, 107: 13389-13395.
    [20] C. Lévy-Clément, N. A. Ndao, A. Katty, M. Bernard, A. Deneuville, C. Comninellis, A. Fujishima, Boron doped diamond electrodes for nitrate elimination in concentrated wastewater. Diamond Relat. Mater. 2003, 12: 606-612.
    [21] G. M. Swain, R. Ramesham, The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes. Anal. Chem. 1993, 65: 345-351.
    [22] F. Bouamrane, A. Tadjeddine, J. E. Butler, R. Tenne, C. Lévy-Clément, Electrochemical study of diamond thin films in neutral and basic solutions of nitrate. J. Electroanal. Chem. 1996, 405: 95-99.
    [23] M. C. Granger, M. Witek, J. Xu, J. Wang, M. Hupert, A. Hanks, M. D. Koppang, J. E. Butler, G. Lucazeau, M. Mermoux, J. W. Strojek, G. M. Swain, Standard electrochemical behavior of high-quality, boron-doped polycrystalline diamond thin-film electrodes. Anal. Chem. 2000, 72: 3793-3804.
    [24] B. V. Sarada, T. N. Rao, D. A. Tryk, A. Fujishima, Electroanalytical applications of conductive diamond electrodes. New Diamond Front. Carbon Technol. 1999, 9: 365-377.
    [25] Y. Maeda, K. Sato, R. Ramaraj, T. N. Rao, D. A. Tryk, A. Fujishima, The electrochemical response of highly boron-doped conductive diamond electrodes to Ce3+ ions in aqueous solution. Electrochim. Acta 1999, 44: 3441-3449.
    [26] S.-G. Park, G.-S. Kim, J.-E. Park, Y. Einaga, A. Fujishima, Use of boron-dopeddiamond electrode in ozone generation. J. New. Mat. Electrochem. Systems 2005, 8: 65-68.
    [27] B. V. Sarada, T. N. Rao, D. A. Tryk, A. Fujishima, Electrochemical detection of serotonin using conductive diamond electrodes. Chem. Lett. 1999, 28: 1213-1214.
    [28] A. Fujishima, T. N. Rao, E. Popa, B. V. Sarada, I. Yagi, D. A. Tryk, Electroanalysis of dopamine and NADH at conductive diamond electrode. J. Electroanal. Chem. 1999, 473: 179-185.
    [29] I. Tr?stera, M. Fryda, D. Herrmann, L. Sch?fer, W. H?nni, A. Perret, M. Blaschke, A. Kraft, M. Stadelmann, Electrochemical advanced oxidation process for water treatment using DiaChem electrodes. Diamond Relat. Mater. 2002, ll: 640-645.
    [30] J. J. Carey, C. S. Christ, S. N. Lowery, Method of eletrolysis employing a doped diamond anode to oxidize solutes in wastewater. US patent 5399247, 1995.
    [31] M. Fryda, A. Dietz, D. Herrmann, Waste treatment with diamond electrodes. Electrochemical Society Proceedings 1999, 99: 473-483.
    [32] F. Montilla, P. A. Michaud, E. Morallón, J. L. Vázquez, C. Comninellis, Electrochemical oxidation of benzoic acid at boron-doped diamond electrode. Electrochimica Acta 2002, 47: 3509-3513.
    [33] J. Iniesta, P. A. Michaud, M. Panizza, C. Comninellis, Electrochemical oxidation of 3-methylpyridine at a boron doped diamond electrode: application to electroorganic synthesis and wastewater treatment. Electrochem. Commun. 2001, 3: 346-351.
    [34] B. Marselli, G. J. Garcia, P. A. Michaud, Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J. Electrochem. Soc. 2003, 150: D79-D83.
    [35] C. L. Clément, N. A. Ndao, A. Katty, M. Bernard, A. Denuville, C. Comninellis, A. Fujishima, Boron doped diamond electrodes for nitrate elimination in concentrated wastewater. Diam. Relat. Mater. 2003, 12: 606-612.
    [36] M. Murugananthan, S. Yoshihara, T. Rakuma, N. Uehara, T. Shirakashi, Electrochemical degradation of 17β-estradiol (E2) at boron-doped diamond (Si/BDD) thin film electrode. Electrochimica Acta 2007, 52: 3242-3249.
    [37] M. Panizza, P. A. Michaud, G. Cerisola, C. Comninellis, Anodic oxidation of 2-naphthol at boron-dopedd iamonde lectrodes. J. Electroanal. Chem. 2001, 507:206-214.
    [38] S.-G. Park, G.-S. Kim, J.-E. Park, Y. Einaga, A. Fujishima, Use of boron-doped diamond electrode in ozone generation. J. New. Mat. Electrochem. Systems 2005, 8: 65-68.
    [39] A. Fujishima, Y. Einaga, T. N. Rao, D. A. Tryk, Diamond electrochemistry. 2005: 543-555.
    [40] M. Panizza, I. Duo, P. A. Michand, G. Cerisola, C. Comnellis, Electrochemical generation of silver (II) at boron-doped diamond electrodes. Electrochem. Solid- State Lett. 2000, 3: 550-55l.
    [41] M. Awada, J. W. Strojek, G. M. Swain, Electrodeposition of metal adlayers on boron-doped diamond thin-film electrodes. J. Electrochem. Soc. 1995, 142: L42-L45.
    [42] N. Vinokur, B. Miller, Y. Avyigal, R. Kalish, Cathodic and anodic deposition of mercury and silver at boron-doped diamond electrodes. J. Electrochem. Soc. 1999, 146: 125-130.
    [43] V. P. Huth, R. Tenne, 2nd Int. Mini-Symposium on diamond electrochemistry related topics, 1998, Tokyo Univ, Tokyo, Japan.
    [44] H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, A. Fujishima, Fabrication of a nanostructured diamond honeycomb film. Adv. Mater. 2000, 12 : 444-447.
    [45] K. Honda, T. N. Rao, D. A. Tryk, A. Fujishima, M. Watanabe, K. Yasui, H. Masuda, Electrochemical characterization of the nanoporous honeycomb diamond electrode as an electrical double-layer capacitor. J. Eleletrochem. Society 2000, 147: 659-664.
    [46] K. Honda, T. N. Rao, D. A. Tryk, A. Fujishima, M. Watanabe, H. Masuda, Impedance characteristics of the nanoporous honeycomb diamond electrodes for electrical double-layer capacitor applications. J. Electrochem. Society 2001, 148: A668-A679.
    [47] M. Yoshimura, K. Honda, R. Uchikado, T. Kondo, T. N. Rao, D. A. Tryk, A. Fujishima, Y. Sakamoto, K. Yasui, H. Masuda, Electrochemical characterization of nanoporous honeycomb diamond electrodes in non-aqueous electrolytes. Diamond Relat. Mater. 2001, 10: 620-626.
    [48] K. Honda , M. Yoshimura, R. Uchikado, T. Kondo, T. N. Rao, D. A. Tryk, A. Fujishima, M. Watanabe, K. Yasui, H. Masuda, Electrochemical characteristics for redox systems at nano-honeycomb diamond. Electrochim. Acta 2002, 47: 4373-4385.
    [49] R. Ramesham, Diferential pulse voltammetry of toxic metal ions at the boron- doped CVD diamond electrode. J. Mater. Sci. 1999, 34: 1439-1445.
    [50] C. Prado, S. J. Wilkins, F. Marken, R. G. Compton, Simultaneous electrochemical detection and determination of lead and copper at boron-doped diamond film electrodes. Electroanalysis 2002, 14: 262-272.
    [51] J. S. Xu, G. M. Swain. Oxidation of azide anion at boron-doped diamond thin-film electrodes. Anal. Chem. 1998, 70: 1502-1510.
    [52] M. D. Koppang, M. Witek, J. Blau, G. M. Swain, Electrochemical oxidation of polyamines at diamond thin-film electrodes. Anal. Chem. 1999, 71: 1188-1195.
    [53] T. N. Rao, B. V. Sarada, D. A. Tryk, A. Fujishima, Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection. J. Electroanal. Chem. 2000, 491: 175-181.
    [54] O. Chailapakul, P. Aksharandana, T. Frelink, Y. Einaga, A. Fujishima, The electrooxidation of sulfur-containing compounds at boron-doped diamond electrode. Sensor. Actuat. B 2001, 80: 193-201.
    [55] J. W. Lee, S.-M. Park, Direct electrochemical assay of glucose using boron-doped diamond electrodes. Anal. Chim. Acta 2005, 545: 27-32.
    [56] E. Popa, H. Notsu, T. Miwa, A. Fujishima, Selective electrochemical detection of dopamine in the presence of ascorbic acid at anodized diamond thin film electrodes. Electrochem. Solid-State Lett. 1999, 2: 49-51.
    [57] E. Popa, Y. Kubota, D. A. Tryk, A. Fujishima, Selective voltammetric and amperometric detection of uric acid with oxidized diamond film electrodes. Anal. Chem. 2000, 72: 1724-1727.
    [58] T. A. Ivandini, K. Honda, T. N. Rao, A. Fujishima, Y. Einaga, Simultaneous detection of purine and pyrimidine at highly boron-doped diamond electrodes by using liquid chromatography. Talanta 2007, 71: 648-655.
    [59] O. Nekrassova, N. S. Lawrence, R. G. Compton, Selective electroanalytical assayfor cysteine at a boron doped diamond electrode. Electroanal. 2004, 16: 1285-1291.
    [60] C. E. Troupe, I. C. Drummond, C. Graham, J. Grice, P. John, J. I. B. Wilson, M. G. Jubber, N. A. Morrison, Diamond-based glucose sensors. Diamond Relat. Mater. 1998, 7: 575-580.
    [61] L. Su, X. P. Qiu, L. H. Guo, F. S. Zhang, C. H. Tung, Amperometric glucose sensor based on enzyme-modified boron-doped diamond electrode by cross-linking method. Sensor. Actuat. B 2004, 99: 499-504.
    [62] J. Wu , Y. Qu, Mediator-free amperometric determination of glucose based on direct electron transfer between glucose oxidase and an oxidized boron-doped diamond electrode. Anal. Bioanal. Chem. 2006, 385: 1330-1335.
    [63] H. Notsu, T. Tatsuma, A. Fujishima, Tyrosinase-modified boron-doped diamond electrodes for the determination of phenol derivatives. J. Electroanal. Chem. 2002, 523: 86-92.
    [64] 董绍俊, 车广礼, 谢远武, 化学修饰电极. 修订版, 北京: 科学出版社, 2003: 16-44.
    [65] J. B. Miller, D. W. Brown, Photochemical modification of diamond surfaces. Langmuir 1996, 12: 5809-5817.
    [66] O. A. Williams, M. D. Whitfield, R. B. Jackman, J. S. Foord, J. E. Butler, C. E. Nebel, Formation of shallow acceptor states in the surface region of thin film diamond. Appl. Phys. Lett. 2001, 78: 3460-3462.
    [67] T. Ando, R. E. Rawles, K. Yamamoto, M. Kamo, Y. Sato, M. N.-Gamo, Chemical modification of diamond surfaces using a chlorinated surface as an intermediate state. Diamond Relat. Mater. 1996, 5: 1136-1142.
    [68] V. S. Smentkowski, J. T. Yates Jr., Fluorination of diamond surfaces by irradiation of perfluorinated alkyl iodides. Science 1996, 271: 193-195.
    [69] B. Guan, J. F. Zhi, X. T. Zhang, T. Murakami, A. Fujishima, Electrochemical route for fluorinated modification of boron-doped diamond surface with perfluorooctanoic acid. Electrochem. Commun. 2007, 9: 2817-2821.
    [70] S. Szunerits, C. Jama, Y. Coffinier, B. Marcus, D. Delabouglise, R. Boukherroub, Direct amination of hydrogen-terminated boron doped diamond surfaces. Electrochem.Commun. 2006, 8: 1185-1190.
    [71] G.-J. Zhang, K.-S. Song, Y. Nakamura, T. Ueno, T. Funatsu, I. Ohdomari, H. Kawarada, DNA micropatterning on polycrystalline diamond via one-step direct amination. Langmuir 2006, 22: 3728-3734.
    [72] J. S. Hovis, S. K. Coulter, R. J. Hamers, M. P. D’Evelyn, J. N. Russell, Jr., J. E. Butler, Cycloaddition chemistry at surfaces: reaction of alkenes with the diamond (001)-2 × 1surface. J. Am. Chem. Soc. 2000, 122: 732-733.
    [73] N. J. Yang, H. Uetsuka, H. Watanabe, T. Nakamura, C. E. Nebel, Photochemical amine layer formation on H-terminated single-crystalline CVD diamond. Chem. Mater. 2007, 19: 2852-2859.
    [74] T. L. Lasseter, B. H. Clare, N. L. Abbott, R. J. Hamers, Covalently modified silicon and diamond surfaces: resistance to nonspecific protein adsorption and optimization for biosensing. J. Am. Chem. Soc. 2004, 126: 10220-10221.
    [75] W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, JR., L. M. Smith, R. J. Harmers, DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat. Mater. 2002, 1: 253.
    [76] Y. C. Liu, R. L. McCreery, Reactions of organic monolayers on carbon surfaces observed with unenhanced raman spectroscopy. J. Am. Chem. Soc. 1995, 117: 11254-11259.
    [77] B. P. Corgier, C. A. Marquette, L. J. Blum, Diazonium-protein adducts for graphite electrode microarrays modification: direct and addressed electrochemical immobilization. J. Am. Chem. Soc. 2005, 127: 18328-18332.
    [78] C. A. Dyke, J. M. Tour, Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett. 2003, 3: 1215-1218.
    [79] S. E. Baker, K.-Y. Tse, E. Hindin, B. M. Nichols, T. L. Clare, R. J. Hamers, Covalent functionalization for biomolecular recognition on vertically aligned carbon nanofibers. Chem. Mater. 2005, 17: 4971-4978.
    [80] W. Yang, S. E. Baker, J. E. Butler, C. Lee, J. N. Russell, Jr., L. Shang, B. Sun, R. J. Hamers, Electrically addressable biomolecular functionalization of conductivenanocrystalline diamond thin films. Chem. Mater. 2005, 17: 938-940.
    [81] 司士辉, 生物传感器. 第一版, 北京: 化学工业出版社, 2003.
    [82] M. D. Morales, S. Morante, A. Escarpa, M. C. Gonázlez, A. J. Reviejo, J. M. Pingarrón, Design of a composite amperometric enzyme electrode for the control of the benzoic acid content in food. Talanta 2002, 57: 1189-1198.
    [83] 李元光, 蒋中华. 丝网印刷胆酯酶电极测定神经性毒剂沙淋、梭曼. 分析化学 2000, 28: 95-98.
    [84] A. K?nig, T. Reul, C. Hamreling, F. Spener, M. Knoll, C. Zaborosch, Multimicrobial sensor using microstructured three-dimensional electrodes based on silicon technology. Anal. Chem. 2000, 72: 2022-2028.
    [85] N. Imanaka, M. Kamikawa, G. Y. Adachi, A carbon dioxide gas sensor by combination of multivalent cation and anion conductors with a water-insoluble oxycarbonate-based auxiliary electrode. Anal. Chem. 2002, 74: 4800-4804.
    [86] M. Su, S. Li, V. P. Dravid, Miniaturized chemical multiplexed sensor array. J. Am. Chem. Soc. 2003, 125: 9930-9931.
    [87] J. H. Shin, D. S. Sakong, H. Nam, G. S. Cha, Enhanced serum carbon dioxide measurements with a silicone rubber-based carbonate ion-selective electrode and a high-pH dilution bufer. Anal. Chem. 1996, 68: 221-225.
    [88] M. Hoshi, Y. Sasamoto, M. Nonaka, K. Toyama, E. Watanabe, Microbial sensor system for nondestructive evaluation of fish meat quality. Biosens. Bioelectron. 1991, 6: 15-20.
    [89] W. Trettnak, Fiber-optic remote detection of pesticides and related inhibitors of the enzyme acetylcholinee esterase. Sens. Actuators. B 1993, 11: 87 -93.
    [90] M. Sriyudthsak, H. Yamagishi, T. Moriizumi, Enzyme-immobilized Langmuir- Blodgett film for a biosensor. Thin Solid Films 1988, 160: 463-469.
    [91] G. Fortier, E. Brassard, D. Bélanger, Optimization of a polypyrrole glucose oxidase biosensor. Biosens. Bioelectron. 1990, 5: 473-490.
    [92] J. Wang, L.-H. Wu, Z. Lu, R. Li, J. Sanchez, Mixed ferrocene-glucose oxidase-carbon-paste electrode for amperometric determination of glucose. Anal. Chim. Acta 1990, 228: 251-257.
    [93] P. D. Hale, H. L. Lan, L. I. Boguslavsky, H. I. Karan, Y. Okamoto, T. A. Skotheim, Amperometric glucose sensors based on ferrocene-modified poly(ethylene oxide) and glucose oxidase. Anal. Chim. Acta 1991, 251: 121-128.
    [94] S. J. Dong, B. X. Wang, B. F. Liu, Amperometric glucose sensor with ferrocene as an electron transfer mediator. Biosens. Bioelectron. 1992, 7: 215-222.
    [95] S. Iijima, F. Mizutani, S. Yabuki, Y. Tanaka, M. Asai, T. Katsura, S. Hosaka, M. Ibonai, Ferrocene-attached L-lysine polymers as mediators for glucose-sensing electrodes. Anal. Chim. Acta 1993, 281: 483-487.
    [96] C. L. Chuang, Y. J. Wang, H. L. Lan, Amperometric glucose sensors based on ferrocene-containing B-polyethylenimine and immobilized glucose oxidase. Anal. Chim. Acta 1997, 353: 37-44.
    [97] Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 2004, 4: 191-195.
    [98] H. H. Zhou, H. Chen, S. L. Luo, J. H. Chen, W. Z. Wei, Y. F. Kuang, Glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline. Biosens. Bioelectron. 2005, 20: 1305-1311.
    [99] S. Zhang, N. Wang, Y. Niu, C. Sun, Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor. Sensor. Actuat. B 2005, 109: 367-374.
    [100] J. Lu, L. T. Drzal, R. M. Worden, I. Lee, Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chem. Mater. 2007, 19: 6240-6246.
    [101] Z. W. Zhao, X. J. Chen, B. K. Tay, J. S. Chen, Z. J. Han, K. A. Khor, A novel amperometric biosensor based on ZnO: Co nanoclusters for biosensing glucose. Biosens. Bioelectron. 2007, 23: 135-139.
    [102] J. Li, X. Q. Lin, Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosens. Bioelectron. 2007, 22: 2898-290.
    [1] 吴忠标, 吴祖成, 沈学优, 管宝红, 环境监测. 第一版, 北京: 化学工业出版社, 2003.
    [2] S.-Y. Seo, V. K. Sharma, N. Sharma, Mushroom tyrosinase: recent prospects. J. Agric. Food Chem. 2003, 51: 2837-2853.
    [3] J. H. Yu, S. Q. Liu, H. X. Ju, Mediator-free phenol sensor based on titania sol-gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method. Biosens. Bioelectron. 2003, 19: 509-514.
    [4] Z. M. Liu, Y. L. Liu, H. F. Yang, Y. Yang, G. L. Shen, R. Q. Yu, A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode. Anal. Chim. Acta 2005, 533: 3-9.
    [5] S. Campuzano, B. Serra, M. Pedrero, F. J. M. de Villena, J. M. Pingarrón, Amperometric flow-injection determination of phenolic compounds at self-assembled monolayer-based tyrosinase biosensors. Anal. Chim. Acta 2003, 494: 187-197.
    [6] Rajesh, S. S. Pandey, W. Takashima, K. Kaneto, Simultaneous co-immobilization of enzyme and a redox mediator in polypyrrole film for the fabrication of an amperometric phenol biosensor. Current Appl. Phys. 2005, 5: 184-188.
    [7] B. Serra, S. Jiménez, M. L. Mena, A. J. Reviejo, J. M. Pingarrón, Composite electrochemical biosensors: a comparison of three different electrode matrices for the construction of amperometric tyrosinase biosensors. Biosens. Bioelectron. 2002, 17: 217-226.
    [8] T. N. Rao, I. Yagi, T. Miwa, D. A. Tryk, A. Fujishima, Electrochemical oxidation of NADH at highly boron-doped diamond electrodes. Anal. Chem. 1999, 71: 2506-2511.
    [9] T. Tatsuma, H. Mori, A. Fujishima, Electron transfer from diamond electrodes to heme peptide and peroxidase. Anal. Chem. 2000, 72: 2919-2924.
    [10] L. Su, X. P. Qiu, L. H. Guo, F. S. Zhang, C. H. Tung, Amperometric glucose sensor based on enzyme-modified boron-doped diamond electrode by cross-linking method. Sensor. Actuat. B 2004, 99: 499-504.
    [11] J. Lee, S.-M. Park, Direct electrochemical assay of glucose using boron-doped diamond electrodes. Anal. Chim. Acta 2005, 545: 27-32.
    [12] H. Notsu, T. Tatsuma, A. Fujishima, Tyrosinase-modified boron-doped diamond electrodes for the determination of phenol derivatives. J. Electroanal. Chem. 2002, 523: 86-92.
    [13] J.-F. Zhi, H.-B.Wang, T. Nakashima, T. N. Rao, A. Fujishima, Electrochemical incineration of organic pollutants on boron-doped diamond electrode. Evidence for direct electrochemical oxidation pathway. J. Phys. Chem. B 2003, 107: 13389-13395.
    [14] R. N. Lamb, J. Baxter, M. Grunze, C. W. Kong, W. N. Unertl, An XPS study of the composition of thin polyimide films formed by vapor deposition. Langmuir 1988, 4: 249-256.
    [15] T. Knickerbocker, T. Strother, M. P. Schwartz, J. N. Russell, Jr., J. Butler, L. M. Smith, R. J. Hamers, DNA-Modified Diamond Surfaces. Langmuir 2003, 19: 1938-1942
    [16] K. Hasebe, J. Osteryoung, Differential pulse polarographic determination of some carcinogenic nitrosamines. Anal. Chem. 1975, 47: 2412-2418.
    [17] S. Liu, J. Yu, H. Ju, Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode. J. Electroanal. Chem. 2003, 540: 61-67.
    [18] E. Dempsey, D. Diamond, A. Collier, Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly(thionine) film. Biosens. Bioelectron. 2004, 20: 367-377.
    [19] Rajesh, K. Kaneto, A new tyrosinase biosensor based on covalent immobilization of enzyme on N-(3-aminopropyl) pyrrole polymer film. Curr. Appl. Phys. 2005, 5: 178-183.
    [20] Z. Liu, B. Liu, J. Kong, J. Deng, Probing trace phenols based on mediator-free alumina sol-gel-derived tyrosinase biosensor. Anal. Chem. 2000, 72: 4707-4712.
    [21] C. Védrine, S. Fabiano, C. Tran-Minh, Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support. Talanta 2003, 59: 535-544.
    [22] R. M. Wightman, C. Amatore, R. C. Engstrom, P. D. Hale, E. W. Kristensen, W.G. Kuhr, L. J. May, Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience 1988, 25: 513-523.
    [23] A. H. Liu, I. Honma, H. S. Zhou, Electrochemical biosensor based on protein-polysaccharide hybrid for selective detection of nanomolar dopamine metabolite of 3,4-dihydroxyphenylacetic acid (DOPAC). Electrochem. Commun. 2005, 7: 233-236.
    [24] M. Zhang, K. Gong, H. Zhang, L. Mao, Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid. Biosens. Bioelectron. 2005, 20: 1270-1276.
    [25] J.-B. Raoof, R. Ojani, S. Rashid-Nadimi, Voltammetric determination of ascorbic acid and dopamine in the same sample at the surface of a carbon paste electrode modified with polypyrrole/ferrocyanide films. Electrochim. Acta 2005, 50: 4694-4698.
    [1] X. Yang, S. B. Hall, S. N. Tan, Electrochemical reduction of a conjugated cinnamic acid diazonium salt as an immobilization matrix for glucose biosensor. Electroanal. 2003, 15: 885-890.
    [2] O. Rüdiger, J. M. Abad, E. C. Hatchikian, V. M. Fernandez, A. L. De Lacey, Oriented immobilization of desulfovibrio gigas hydrogenase onto carbon electrodes by covalent bonds for nonmediated oxidation of H2. J. Am. Chem. Soc. 2005, 127: 16008-16009.
    [3] J. Wang, J. A. Carlisle, Covalent immobilization of glucose oxidase on conducting ultrananocrystalline diamond thin films. Diamod Relat. Mater. 2006, 15: 279-284.
    [4] S. Liu, Z. Tang, Z. Shi, L. Niu, E. Wang, S. Dong, Electrochemical preparation and characterization of silicotungstic heteropolyanion monolayer electrostatically linked aminophenyl on carbon electrode surface. Langmuir 1999, 15: 7268-7275.
    [5] J. Wang, M. A. Firestone, O. Auciello, J. A. Carlisle, Surface fictionalization of ultrananocrystalline diamond films by electrochemical reduction of aryldiazonium salts. Langmuir 2004, 20: 11450-11456.
    [6] P. Allongue, M. Delamar, B. Desbat, O. Fagebaume, R. Hitmi, J. Pinson, J.-M. Savéant, Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. J. Am. Chem. Soc. 1997, 119: 201-207.
    [7] C. A. Widrig, C. A. Alves, M. D. Porter, Scanning tunneling microscopy of ethanethiolate and n-octadecanethiolate monolayers spontaneously adsorbed at gold surfaces. J. Am. Chem. Soc. 1991, 113: 2805-2810.
    [8] R. N. Lamb, J. Baxter, M. Grunze, C. W. Kong, W. N. Unertl, An XPS study of the composition of thin polyimide films formed by vapor deposition. Langmuir 1988, 4: 249-256.
    [9] N. Kitajima, Y. Moro-oka, Copper-dioxygen complexes. inorganic and bioinorganic perspectives. Chem. Rev. 1994, 94: 737-757.
    [10] D. Kertesz, R. Zito, Mushroom polyphenol oxidase I. purification and general properties. Biochim. Biophys. Acta 1965, 96: 447-462.
    [11] J. Wang, M. S. Lin, Mixed plant tissue-carbon paste bioelectrode. Anal. Chem. 1988, 60: 1545-1548.
    [12] T. Zhang, B. Tian, J. Kong, P. Yang, B. Liu, A sentive mediator-free tyrosinase biosensor based on an inorganic-organic hybrid titania sol-gel matrix. Anal. Chim. Acta 2003, 489: 199-206.
    [13] Rajesh, K. Kaneto, A new tyrosinase biosensor based on covalent immobilization of enzyme on N-(3-aminopropyl) pyrrole polymer film. Current Appl. Phys. 2005, 5: 178-183.
    [14] K. Hasebe, J. Osteryoung, Differential pulse polarographic determination of some carbinogenic nitrosamines. Anal. Chem. 1975, 47: 2412-2418.
    [15] M. Hedenmo, A. Narváez, E. Domínguez, I. Katakis, Improved mediated tyrosinase amperometric enzyme electrodes. J. Electroanal. Chem. 1997, 425: 1-11.
    [16] B. Wang, J. Zhang, S. Dong, Silica sol–gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor. Biosens. Bioelectron. 2000, 15: 397-402.
    [17] C. Védrine, S. Fabiano, C. Tran-Minh, Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support. Talanta 2003, 59: 535-544.
    [18] H. Notsu, T. Tatsuma, A. Fujishima, Tyrosinase-modified boron-doped diamond electrodes for the determination of phenol derivatives. J. Electroanal. Chem. 2002, 523: 86-92.
    [1] 王夔, 生物无机化学. 第一版, 北京: 清华大学出版社, 1988: 122.
    [2] M. J. Eddowes, H. A. Hill, Novel method for the investigation of the electrochemistry of metalloproteins : cytochrome c. J. Chem. Soc. Chem. Commun. 1977, 771-772.
    [3] Y. H. Wu, S. S. Hu, Voltammetric investigation of cytochrome c on gold coated with a self-assembled glutathione monolayer. Bioelectrochemistry 2006, 68: 105-112.
    [4] H. Park, J. S. Park, Y. B. Shim, Electrochemical and in situ UV–Visible spectroscopic behavior of cytochrome c at a cardiolipin-modified electrode. J. Electroanal. Chem. 2001, 514: 67-74.
    [5] K. J. Mckenzie, F. Marken, M. Opallo, TiO2 phytate films as hosts and conduit for cytochrome c electrochemistry. Bioelectrochemistry 2005, 66: 41-47.
    [6] F. D. Souza, L. M. Rogers, E. S. O’Dell, A. Kochman, W. Kutner, Immobilization and electrochemical redox behavior of cytochrome c on fullerene film-modified electrodes. Bioelectrochemistry 2005, 66: 35-40.
    [7] J. X. Wang, M. X. Li, Z. J. Shi, N. Q. Li, Z. N. Gu, Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal. Chem. 2002, 74: 1993-1997.
    [8] E. R. Kiranas, S. M. Tzouwara-Karayanni, M. I. Karayannis, Substitution of peroxidase in Trinder’s reagent with iron(II) for the determination of hydrogen peroxide in enzymic reactions by applying flow injection. Analyst 1993, 118: 727-729.
    [9] N. Kiba, T. Tokizawa, S. Kato, M. Tachibana, K. Tani, H. Koizumi, M. Edo, E. Yonezawa, Flow-through micro sensor using immobilized peroxidase with chemiluminometric FIA system for determining hydrogen peroxide. Anal. Sci. 2003, 19: 823-827.
    [10] M. Pa?dzioch-Czochra, A. Wideńska, Spectrofluorimetric determination of hydrogen peroxide scavenging activity. Anal. Chim. Acta 2002, 452: 177-184.
    [11] B. Ge, F. Lisdat, Superoxide sensor based on cytochrome c immobilized on mixed-thiol SAM with a new calibration method. Anal. Chim. Acta 2002, 454: 53-64.
    [12] X. Jiang, L. Zhang, S. J. Dong, Assemble of poly(aniline-co-o- aminobenzenesulfonic acid) three-dimensional tubal net-works onto ITO electrode and its application for the direct electrochemistry and electrocatalytic behavior of cytochrome c. Electrochem. Commun. 2006, 8: 1137-1141.
    [13] J.-M. Xu, W. Li, Q.-F. Yin, Y.-L. Zhu, Direct electrochemistry of Cytochrome c on natural nano-attapulgite clay modified electrode and its electrocatalytic reduction for H2O2. Electrochim. Acta 2007, 52: 3601-3606.
    [14] H. X. Ju, S. Q. Liu, B. X. Ge, F. Lisdat, F. W. Scheller, Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity. Electroanal. 2002, 14: 141-147.
    [15] F. Marken, C. A. Paddon, D. Asogan, Direct cytochrome c electrochemistry at boron-doped diamond electrodes. Electrochem. Commun. 2002, 4: 62-66.
    [16] I. Duo, A. Fujishima, C. Comninellis, Electron transfer kinetics on composite diamond (sp3)-graphite (sp2) electrodes. Electrochem. Commun. 2003, 5: 695-700.
    [17] J. A. Bennett, J. Wang, Y. Show, G. M. Swain, Effect of sp2-bonded nandiamond carbon impurity on the response of boron-doped polycrystalline diamond thin-film electrodes. J. Electrochem. Soc. 2004, 151: E306-E313.
    [18] J. Rubio-Retama, J. Hernando, B. López-Ruiz, A. H?rtl, D. Steinmüller, M. Stutzmann, E. López-Cabarcos, J. A. Garrido, Synthetic nanocrystalline diamond as a third-generation biosensor support. Langmuir 2006, 22: 5837-5842.
    [19] S. Haymond, G. T. Babcock, G. M. Swain, Direct electrochemistry of cytochrome c at nanocrystalline boron-doped diamond. J. Am. Chem. Soc. 2002, 124: 10634-10635.
    [20] C. Terashima, T. N. Rao, B. V. Sarada, N. Spataru, A. Fujishima, Electrodeposition of hydrous iridium oxide on conductive diamond electrodes for catalytic sensor applications. J. Electroanal. Chem. 2003, 544: 65-74.
    [21] T. A. Ivandini, R. Sato, Y. Makide, A. Fujishima, Y. Einaga, Pt-implanted boron-doped diamond electrodes and the application for electrochemical detection ofhydrogen peroxide. Diamond Relat. Mater. 2005, 14: 2133-2138.
    [22] R. J. Zhang, S. T. Lee, Y. W. Lam, Characterization of heavily boron-doped diamond films. Diamond Relat. Mater. 1996, 5: 1288-1294.
    [23] C. Lévy-Clément, N. A. Ndao, A. Katty, M. Bernard, A. Deneuville, C. Comninellis, A. Fujishima, Boron doped diamond electrodes for nitrate elimination in concentrated wastewater. Diamond Relat. Mater. 2003, 12: 606-612.
    [24] K. Ushizawa, K. Watanabe, T. Ando, I. Sakaguchi, M. Nishitani-Gamo, Y. Sato, H. Kanda, Boron concentration dependence of Raman spectra on {100} and {111} facets of B-doped CVD diamond. Diamond Relat. Mater. 1998, 7: 1719-1722.
    [25] Y. Show, M. A. Witek, P. Sonthalia, G. M. Swain, Characterization and electrochemical responsiveness of boron-doped nanocrystalline diamond thin-film electrodes. Chem. Mater. 2003, 15: 879-888.
    [26] S. Prawer, K. W. Nugent, D. N. Jamieson, J. O. Orwa, L. A. Bursill, J. L. Peng, The Raman spectrum of nanocrystalline diamond. Chem. Phys. Lett. 2000, 332: 93-97.
    [27] E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 1979, 101: 19-28.
    [28] G.-C. Zhao, Z.-Z. Yin, L. Zhang, X.-W. Wei, Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2. Electrochem. Commun. 2005, 7, 256-260.
    [29] Y.-C. Liu, S.-Q. Cui, J. Zhao, Z.-S. Yang, Direct electrochemistry behavior of cytochrome c/L-cysteine modified electrode and its electrocatalytic oxidation to nitric oxide. Bioelectrochem. 2007, 70: 416-420.
    [30] E. Laviron, The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J. Electroanal. Chem. 1979, 100: 263-270.
    [31] R.-H. Tian, J.-F. Zhi, Fabrication and electrochemical properties of boron-doped diamond film–gold nanoparticle array hybrid electrode. Electrochem. Commun. 2007,9: 1120-1126.
    [32] F. D’Souza, L. M. Rogers, E. S. O’Dell, A. Kochman, W. Kutner, Immobilization and electrochemical redox behavior of cytochrome c on fullerene film-modified electrodes. Bioelectrochem. 2005, 66: 35-40.
    [33] C. L. Xiang, Y. J. Zou, L.-X. Sun, F. Xu, Direct electrochemistry and electrocatalysis of cytochrome c immobilized on gold nanoparticles–chitosan–carbon nanotubes-modified electrode. Talanta 2007, 74: 206-211.
    [1] M. Fleischman, P. J. Hendra, A. J. Mcquillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26: 163-166.
    [2] D. L. Jeanmaire, M. R. Suchanski, R. P. Van Duyne, Resonance Raman spectroelectrochemistry. I. tetracyanoethylene anion radical. J. Am. Chem. Soc. 1975, 97: 1699-1707.
    [3] D. L. Jeanmaire, R. P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 1977, 84: 1-20.
    [4] A. Otto, Surface enhanced Raman scattering, Vacuum 1983, 33: 797-802.
    [5] A. Otto, Surface enhanced Raman scattering (SERS), what do we know? Appl. Surf. Sci. 1980, 6: 309-355.
    [6] Y. Mo, P. Wachter, U. Martin, F. K. Reinhart, Raman scattering of molecules adsorbed on a rough Al surface. J. Phys. Chem. Solids 1995, 56: 975-980.
    [7] T. Vo-Dinh, Surface-enhanced Raman spectroscopy using metallic nanostructures. TrAC Trends Anal. Chem. 1998, 17: 557-582.
    [8] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 1999, 99: 2957-2975.
    [9] R. K. Chang, T. E. Furtak, Surface enhanced Raman scattering. New York: Plenum press, 1982.
    [10] I. Pockrand, Surface enhanced Raman vibrational studies at solid/gas interfaces. Springer Tracts in Modern Physics 1985, 158: 407-408.
    [11] A. Campion, P. Kambhampati, Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27: 241-250.
    [12] Y. Saito, J. J. Wang, D. A. Smith, D. N. Batchelder, A simple chemical method for the preparation of silver surfaces for efficient SERS. Langmuir 2002, 18: 2959-2961.
    [13] R. Aroca, C. Jennings, G. J. Kovac, R. O. Loutfy, P. S. Vincett,Surface-enhanced Raman scattering of Langmuir-Blodgett monolayers of phthalocyanine by indium and silver island films. J. Phys. Chem. 1985, 89: 4051-4054.
    [14] D. J. Semin, K. L. Rowlen, Influence of vapor deposition parameters on SERS active Ag film morphology and optical properties. Anal. Chem. 1994, 66: 4324-4331.
    [15] L. M. Sudnik, K. L. Norrod, K. L. Rowlen, SERS-active Ag Films from photoreduction of Ag+ on TiO2. Appl. Spectrosc. 1996, 50: 422-424.
    [16] K. L. Norrod, L. M. Sudnik, D. Rousell, K. L .Rowken, Quantitative comparison of five SERS substrates: sensitibity and limit of detection. Appl. Spectrosc. 1997, 51: 994-1001.
    [17] M. Suzuki, T. Miyazaki, H. Hisamitsu, Y. Kadoma, Y. Morioka, Study on chemical reaction of methylthiirane on gold colloid by surface-enhanced Raman scattering. Langmuir 1999, 15: 7409-7410.
    [18] N. Leopold, B. Lendl, A new method for fast preparation of highly surface-enhanced raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J. Phys. Chem. B. 2003, 107: 5723-5727.
    [19] J. T. Zhang, X. L. Li, X. M. Sun, Y. D. Li, Surface enhanced raman scattering effects of silver colloids with different shapes. J. Phys. Chem. B 2005, 109: 12544-12548
    [20] X. Q. Zou, S. J. Dong, Surface-enhanced raman scattering studies on aggregated silver nanoplates in aqueous solution. J. Phys. Chem. B 2006, 110: 21545-21550.
    [21] Y. Yang, J. Shi, T. Tanaka, M. Nogami, Self-assembled silver nanochains for surface-enhanced Raman scattering. Langmuir 2007, 23: 12042-12047.
    [22] D. H. Jeong, Y. X. Zhang, M. Moskovits, Polarized surface enhanced Raman scattering from aligned silver nanowire rafts. J. Phys. Chem. B. 2004, 108: 12724-12728.
    [23] H. H. Lin, J. Mock, D. Smith, T. Gao, M. J. Sailor, Surface-enhanced Raman scattering from silver-plated porous silicon. J. Phys. Chem. B 2004, 108: 11654-11659.
    [24] K. Kim, H. S. Kim, H. K. Park, Facile Method to prepare surface-enhanced- Raman-scattering-active Ag nanostructures on silica spheres. Langmuir 2006, 22: 8083-8088.
    [25] T. Qiu, X. L. Wu, J. C. Shen, Peter C. T. Ha, Paul K. Chu, Surface-enhanced Raman characteristics of Ag cap aggregates on silicon nanowire arrays. Nanotechnology 2006, 17: 5769-5772.
    [26] W. Leng, A. A.Yasseri, S. Sharma, Z. Li, H. Y. Woo, D. Vak, G. C. Bazan, A. M. Kelley, Silver nanocrystal-modified silicon nanowires as substrates for surface-enhanced Raman and hyper-Raman scattering. Anal. Chem. 2006, 78: 6279-6282.
    [27] S. Chattopadhyay, H.-C. Lo, C.-H. Hsu, L.-C. Chen, K.-H. Chen, Surface-enhanced Raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips. Chem. Mater. 2005, 17: 553-559.
    [28] G. Braun, S. J. Lee, M. Dante, T.-Q. Nguyen, M. Moskovits, N. Reich, Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J. Am. Chem. Soc. 2007, 129: 6378-6379.
    [29] W. Song, Y. Wang, B. Zhao, Surface-enhanced Raman scattering of 4-mercaptopyridine on the surface of TiO2 nanofibers coated with Ag nanoparticles. J. Phys. Chem. C 2007, 111: 12786-12791.
    [30] T. Bhuvana, G. V. P. Kumar, G. U. Kulkarni, C. Narayana, Carbon assisted electroless gold for surface enhanced Raman scattering studies. J. Phys. Chem. C 2007, 111: 6700-6705.
    [31] M. Scolari, A. Mews, N. Fu, A. Myalitsin, T. Assmus, K. Balasubramanian, M. Burghard, K. Kern, Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles. J. Phys. Chem. C 2008, 112: 391-396.
    [32] H. Masuda, T. Yanagishita, K. Yasui, K. Nishio, I. Yagi, T. N. Rao, A. Fujishima, Synthesis of well-aligned diamond nanocylinders. Adv. Mater. 2001, 13: 247-249.
    [33] M. Bernarda, A. Deneuvillea, L. Ortegab, K. Ayadia, P. Mureta, Electron cyclotron resonance oxygen plasma etching of diamond. Diamond Relat. Mater. 2004,13: 287-291.
    [34] Q. Yang, T. Hamilton, C. Xiao, A. Hirose, A. Moewes, Plasma-enhanced synthesis of diamond nanocone films. Thin Solid Films 2006, 494: 110-115.
    [35] Y. S. Zou, K. L. Ma, W. J. Zhang, Q. Ye, Z. Q. Yao, Y. M. Chong, S. T. Lee, Fabrication of diamond nanocones and nanowhiskers by bias-assisted plasma etching. Diamond Relat. Mater. 2007, 16: 1208-1212.
    [36] W. J. Zhang, Y. Wu, W. K. Wong, X. M. Meng, C. Y. Chan, I. Bello, Y. Lifshitz, S. T. Lee, Structuring nanodiamond cone arrays for improved field emission. Appl. Phys. Lett. 2003, 83: 3365-3367.
    [37] Y. S. Zou, Y. Yang, W. J. Zhang, Y. M. Chong, B. He, I. Bello, S. T. Lee, Fabrication of diamond nanopillars and their arrays. Appl. Phys. Lett. 2008, 92, 053105 (1-3).
    [38] 李铭岫, 无机化学实验. 第一版, 北京: 北京理工大学出版社, 2002: 120.
    [1] C. B. Samantaray, R. N. Singh, Review of synthesis and properties of cubic boron nitride (c-BN) thin films. International Mater. Rev. 2005, 50: 313-344.
    [2] P. B. Mirkarimi, K. F. Mccarty, D. L. Medlin, Review of advances in cubic boron nitride film sythesis. Mater. Mater. Sci. Engin. 1997, R21: 47-100.
    [3] R. H. Tian, T. N. Rao, Y. Einaga, J. F. Zhi, Construction of two-dimensional arrays gold nanoparticles monolayer onto boron-doped diamond electrode surfaces. Chem. Mater. 2006, 18: 939-945.
    [4] T. Knickerbocker, T. Strother, M. P. Schwartz, J. N. Russell, Jr., J. Butler, L. M. Smith, R. J. Hamers, DNA-modified diamond surfaces. Langmuir 2003, 19: 1938-1942.
    [5] W. L. Wang, K. J. Liao, J. Y. Gao, Cubic boron nitride films formed by DC plasma CVD. Phsica Status Solidi A 1993, 139: K25-K28.
    [6] Y. P. Guo, Z. Z. Song, Y. X. Zhang, F. Q. Zhang, G. H. Chen, Growth of cubic boron nitride films by hot filament assisted RF plasma CVD. Phsica Status Solidi A 1994, 143: K13-K17.
    [7] I. Konyashin, J. Bill, F. Aldinger, Plasm-assisted CVD of cubic boron nitride. Chem. Vapor Deposition 1997, 3: 239-255.
    [8] L. Jiang, A. G. Fitzgerald, M. J. Rose, A. Lousa, S. Gimeno, Formation of cubic boron nitride films by r.f. magnetron sputtering. Surf. interface anal. 2002, 34: 732-734.
    [9] J. Mclaren, H. Akasaka, J. Heberlein, Deposition of cubic boron nitride in a supersonic plasma jet reactor with secondary discharge. Plasma Processes Polym. 2007, 4: S166-S170.
    [10] H. Yang, C. Iwamoto T. Yoshida, Direct nucleation of cubic boron nitride on silicon substrate. Diamond Relat. Mater. 2007, 16: 642-644.
    [11] W. J. Zhang, C. Y. Chan, X. M. Meng, M. K. Fung, I. Bello, Y. Lifshitz, S. T. Lee, X. Jiang, The mechanism of chemical vapor deposition of cubic boron nitride films from fluorine-containing species. Angew. Chem. Int. Ed. 2005, 44: 4749-4753.
    [12] W. J. Zhang, I. Bello, Y. Lifshitz, K. M. Chan, X. M. Meng, Y. Wu, Epitaxy on diamond by chemical vapor deposition: a route to high-quality cubic boron nitride for electronic applications. Adv. Mater. 2004, 16: 1405-1408.
    [13] W. J. Zhang, X. M. Meng, C. Y. Chan, K. M. Chan, Y. Wu, I. Bello, S. T. Lee, Interfacial study of cubic boron nitride films deposited on diamond. J. Phys. Chem. B 2005, 109: 16005-16010.
    [14] G. Frens, Controlled nucleation for the regulation of the particle size in monodispersed gold suspensions. Nat. Phys. Sci. 1973, 241: 20-22.
    [15] P. C. Lee, D. Meisel, Adsorption and surface-enhanced raman of dyes on silver and gold sols. J . Phys. Chem. 1982 , 86: 3391-3395.
    [16] Y.-S. Chen, A. Tal, D. B. Torrance, S. M. Kuebler, Fabrication and characterization of three-dimensional silver-coated polymeric microstructures. Adv. Funct. Mater. 2006, 16: 1739-1744.
    [17] 李铭岫, 无机化学实验. 第一版, 北京: 北京理工大学出版社, 2002: 120.
    [18] Y.-M. Chong, K.-L. Ma, K.-M. Leung, C.-Y. Chan, Q. Ye, I. Bello, W. J. Zhang, S.-T. Lee, Synthesis and mechanical properties of cubic boron nitride/nanodiamond composite films. Chem. Vap. Deposition 2006, 12: 33-38.
    [19] J. X. Deng, G. H. Chen, Surface properties of cubic boron nitride thin films. Appl. Surf. Sci. 2006, 252: 7766-7770.
    [20] P. Reinke, H. Feldermann, P. Oelhafen, C60 bonding to graphite and boron nitride surfaces. J. Chem. Phys. 2003, 119: 12547-12552.
    [21] S. L. Horswell, C. J. Kiely, I. A. O’Neil, D. J. Schiffrin, Alkyl isocyanide- derivatized platinum nanoparticles. J. Am. Chem. Soc. 1999, 121: 5573-5574.
    [22] J. A. Harnisch, A. D. Pris, M. D. Porter, Attachment of gold nanoparticles to glassy carbon electrodes via a mercaptobenzene film. J. Am. Chem. Soc. 2001, 123: 5829-5830.
    [23] M.-C. Daniel, D. Astruc, Gold Nanoparticles: assembly, supramolecularchemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104: 293-346.
    [24] L. Basabe-Desmonts, J. Beld, R. S. Zimmerman, J. Hernando, P. Mela, M. F. G. Parajó, N. F. van Hulst, A. van den Berg, D. N. Reinhoudt, M. Crego-Calama, A simple approach to sensor discovery and fabrication on self-assembled monolayers on glass. J. Am. Chem. Soc. 2004, 126: 7293-7299.
    [25] M. Ishikawa, O. Yogi, J. Y. Ye, T. Yasuda, Grouping of independent single molecules on silicon surfaces. Anal. Chem. 1998, 70: 5198-5208.
    [26] S.-J. Park, T. A. Taton, C. A. Mirkin, Array-based electrical detection of DNA with nanoparticle probes. Science 2002, 295: 1503-1506.
    [27] C. M. Niemeyer, B. Ceyhan, DNA-directed functionalization of colloidal gold with proteins. Angew. Chem. Int. Ed. 2001, 40: 3685-3688.
    [28] F. Xie, M. S. Baker, E. M. Goldys, Homogeneous silver-coated nanoparticle substrates for enhanced fluorescence detection. J. Phys. Chem. B 2006, 110: 23085-23091.
    [29] J. T. Zhang, X. L. Li, X. M. Sun, Y. D. Li, Surface enhanced Raman scattering effects of silver colloids with different shapes. J. Phys. Chem. B 2005, 109: 12544-1254.
    [30] L. Lu, A. Eychmüller, A. Kobayashi, Y. Hirano, K. Yoshida, Y. Kikkawa, K. Tawa, Y. Ozaki, Designed fabrication of ordered porous Au/Ag nanostructured films for surface-enhanced Raman scattering substrates. Langmuir 2006, 22: 2605-2609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700