小麦wcs120基因的克隆、表达及与其耐逆性的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物正常发育需要适合的外界环境条件,在最适的条件下植物可以正常生长、发育,达到最大生物量和最高的生长效率;在并不适合植物生长发育的外界环境条件即非生物胁迫下,会影响植物的生长和发育,严重时可造成作物大减产甚至绝收。利用现代遗传学的方法深入研究作物响应这些非生物胁迫的机理和其应答基因,对作物进行必要的遗传改良,可以提高作物对逆境的抗性,更好地指导农业生产。小麦是世界上重要的粮食作物之一,本实验室利用不对称体细胞杂交育种新技术,成功育成了国际上首例高产、耐盐、抗旱的小麦体细胞杂交新品种——山融3号。以该新品种为研究对象,探讨其耐盐、抗旱的分子机理,寻找新的抗性基因,对今后小麦的抗逆性育种,提高植物抗逆性具有极其重要的参考价值和指导作用。
     李朔等利用抑制性差减杂交(suppressive subtractive hybridization, SSH)从山融3号中筛选到大量与盐胁迫相关的EST,本研究从这些EST中得到一个同时响应低温胁迫的EST序列,并利用山融3号小麦cDNA全长库,获得该EST的基因全长序列。经过序列比对获知其在Genbank中注释为wcs120,是小麦在低温春化过程中诱导表达并大量积累产物的主要基因之一。但我们分离的该基因序列有三个SNP位点,并发现其可变剪接现象。在盐、渗透以及低温胁迫下,山融3号、济南177小麦的wcs120基因具有相似的表达模式,但山融三号对胁迫的响应要更早、更强、更持久;为研究该蛋白的作用我们构建了原核表达载体,在大肠杆菌BL21中表达获得一个50 kDa蛋白,该蛋白在煮沸(100℃)后仍然保持可溶状态,与报道的结果一致;表达该蛋白质的大肠杆菌对多种逆境的抗性/耐受性大大提高,说明该基因的产物可能具有多种保护作用。为了验证其在真核生物中的功能,我们构建了GFP融合蛋白瞬时表达载体和过表达载体,转化后的拟南芥菜原生质体,GFP荧光信号广泛存在于细胞核和细胞质中。转基因拟南芥菜和烟草后代纯系,对盐、旱、低温等多种胁迫的耐受性明显提高,证实了其产物确实对植物在逆境下有保护作用。本工作为探讨植物耐逆性的机理、进一步培育耐逆作物新品种提供了有益的线索。
Plant growth and development need suitable environment, under optimum conditions, it will get the maximum biomass and highest growth efficiency. Abiotic stress always cause great threat on plant growth and huge yield loss when climate is serious. So its very important to reveal the mechanism of plant resistant or tolerance to salt stress. Identify and isolate salt tolerant genes by modern genetic techniques and made some necessary genetic modification to salt sensitive plant will be greatly benefit to breeder for salt tolerance improvement of plant.
     Wheat is one of the important food crops in the world, to increase salt and drought tolerance of it is very crucial to its yield and quality. Shanrong No.3, the first somatic hybrid introgression line from common wheat JN177 and Agropyron elongatum, had been generated in our laboratory and with high salt and drought tolerance. To understand the mechanism of plant response to abiostress resistance, we need to study some stress-relative genes extensively, this may be very important to breeder for improve wheat abiostress resistance.
     Suo Li et al., obtained a large number of ESTs which related to salt stress from SR3 through the suppressive subtractive hybridization (SSH). In this paper we got a sequence from those ESTs that is greatly induced by salt stress, after clone, sequence and blast NCBI, the result shows that this gene is a cold induced protein (WCS120) gene of wheat. WCS120 is mainly induced and accumulated during the vernalization of wheat. There are some difference in wcs120 gene between Shanrong No.3 and Chinese spring, for example:3 SNPs in ORF,21 bp INDEL in promoter and there may be a alternative splicing of this gene (due to different poly A site of its mRNA). We study the expression patten of this gene in various abiostress condition (such as cold, salt and PEG) between SR3 and JN177, the result show that wcs120 gene had similar expression pattern between JN177 and SR3, while it's expression more early, strong and durable in SR3 than JN177. The OFR of wcs120 gene were inserted into pET24a+, after transformed E.coli BL21 and induced with IPTG, we got a 50 kDa protein that is heat stable (up to 100℃), the bacteria with this protein is also cold tolerance.
     In order to study the function of wcs120 gene in eukaryote, we constructed two eukaryotic expression vectors, one of this is fused wcsl20 gene to green fluorescent protein (GFP), after transformation of Arabidopsis thaliana protoplast, WCS120 fusion protein is targeted to nucleus and cytoplasm; another one is wcs120 gene overexpressing vector, we transfer it to Arabidopsis thaliana (Col-0) and Nicotiana tabacum (NC89), pure lines of the transgenic plants were obtained. Transgenic plants show significant tolerance to salt, drought, cold and other stress, this result confirmed that WCS120 protein does protect plants from various abiotic stresses. This work provides some clues to investigate the mechanism of plant response to abiotic stress and must be benefit to breeder for new stress resistance varieties cultivatation.
引文
1 Aharon R., Shahak Y. and Wininger S. et al., Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell,2003.15:p. 439-447
    2 Alan Tunnacliffe and Michael J. Wise, The continuing conundrum of the LEA proteins. Naturwissenschaften,2007.94:p.791-812.
    3 Alsheikh M.K., Heyen B.J. and Randall S.K., Ion binding propertiesof the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem,2003 278:p. 40882-40889.
    4 Alsheikh M.K., Svensson J.T. and Randall S.K., Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant C-ell Environ,2005.28:p.1114-1122.
    5 Anthony-Cahill S.J., Benfield P.A. and Fairman R. et al., Molecular char-acterization of helix-loop-helix peptides. Science,1992.255:p.979-983.
    6 Apel K. and Hirt H., Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol.,2004 55:p.373-99.
    7 Apse M.P., Aharon G.S. and Snedden W.A. et al., Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiporter in Arabidopsis. Science,1999. 285:p.1256-1258.
    8 Artus N.N., Uemura M. and Steponkus P.L. et al., Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci (USA),1996.93:p. 13404-13409.
    9 Badawi G.H., Kawano N. and Yamauchi Y. et al., Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol. Plant.,2004.121:p.231-238.
    10 B. Han and A.R. Kermode, Dehydrin-like proteins in castor bean seeds and seedling are differentially produced in response to ABA and water-deficit-related stresses. J. Exp. Bot.,1996.42:p.933-939.
    11 Blackwell T.K. and Weintraub H., Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science,1990.250:p.1104-1110.
    12 Bohnert H.J. and Jensen R.G., Strategies for engineering water-stress tolerance in plants. Trends Biotechnol,1996.14:p.89-87.
    13 Borovskii G.B., Stupnikova I.V. and Antipina A.I., Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. Plant Biol.,2002.2:p.5.
    14 Bouche N., Fait A. and Bouchez D. et al., Mitochondrial succinic-semialdehyde dehydrogenase of the gamma-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc. Nat. Acad. Sci. (USA),2003.100: p.6843-6848.
    15 Bracale M., Levi M. and Savini C., Water deficit in pea root tips:Effects on the cell cycle and on the production of dehydrin-like proteins. Ann. Bot.,1997.79:p. 593-600.
    16 Bravo L.A., Gallardo J. and Navarrete A. et al., Cryoprotective activity of a cold-induced dehydrin purified from barley. Physiol Plant,2003.118:p.262-269.
    17 Bray E.A., Molecular responses to water deficit. Plant Physiol.,1993.103:p. 1035-1040.
    18 Bray E.A., Bailey-Serres J. and Weretilnyk E., Responses to abiotic stress. In: Buchanan B., Gruissem W., Jones R., eds. Biochemistry and Molecular Biology of Plants. The American Society of Plant Physiologists,2000. pp.1158-1203.
    19 Browne J., Tunnacliffe A. and Burnell A., Plant desiccation gene found in a Nematode. Nature,2002. p.416-38.
    20 Burke M.J., The vitreous state and survival of anhydrous biological systems. In: Leopold AC (ed) Membranes, metabolism and dry organisms. Cornell University Press, New York,1986. pp.358-364.
    21 Calestani C., Bray E.A. and Close T.J., Constitutive expression of a dehydrin in Arabidopsis thaliana enhances tolerance to salt stress. University of Wisconsin-Madison, USA,1998.
    22 Campbell S.A. and Close T.J. Dehydrins:genes, proteins, and associations with phenotypic traits. New. Phytol.,1997.137:p.61-74.
    23 Chauvin L.P., Houde M. and Sarhan F., Nucleotide sequence of a new member of the freezing tolerance-associated protein family in wheat. Plant Physiol,1994. 105:p.1017-1018.
    24 Cheng L.H., Zhang B. and Xu Z.Q., Genetic transformation of buckwheat (Fagopyrum esculentum Moench) with AtNHXl gene and regeneration of salt-tolerant transgenic plants. Sheng Wu Gong Cheng Xue Bao,2007.23(1):p. 51-60.
    25 Cheong Y.H., Kim K.N. and Pandey G.K. et al., CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell,2003.15:p.1833-1845.
    26 Choi D.W., Zhu B. and Close T.J., The barley (Hordeum vulgare L.) dehydrin multigene family:sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor. Appl. Genet., 1999.98:p.1234-1247.
    27 Close T.J. and Chandler P.M., Cereal dehydrins:Serology, gene mapping and potential functional roles. Aust. J. Plant Physiol,1990.17:p.333-344.
    28 Close T.J., Dehydrins:a commonalty in the response of plants to dehydration and low temperature. Physiol. Plant.,1997.100:p.291-296.
    29 Crowe J.H., Carpenter J.F. and Crowe L.M., The role of vitrification in anhydrobiosis. Annu Rev Physiol,1998.60:p.73-103.
    30 C. Somerville and J. Dangl, Plant biology in 2010. Science,2000.290:p. 2055-2059.
    31 Cuming A.C., LEA proteins. In:Shewry P.R., Casey R., eds. Seed proteins. Kluwer, Dordrecht, The Netherlands,1999. pp.753-780.
    32 Danyluk J. and Sarhan F., Differential mRNA transcription during the induction of freezing tolerance in spring and winter. Cell Physiol,1990.31:p.609-619.
    33 Danyluk, J., Identification et caracterisation moleculaire degenes induits aucours de I' acclimatation au froid chez leble (Triticum aestivumi). Ph D Thesis, Universite de Montreal, Canada,1996.
    34 Danyluk J., Perron A. and Houde M., Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell, 1998.10:p.623-638.
    35 Danyluk J., Rassart E. and Sarhan F., Gene expression during cold and heat shock in wheat. Biochem Cell Biol,1991.69:p.383-391.
    36 D.E. Scoltis and P. Soltis, The role of phylogenetic in comparative genet-ics. Plant Physiol,2003.132:p.1790-1800.
    37 DeWald D.B., Torabinejad J, and Jones C.A. et al., Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol.,2001 126: p.759-769.
    38 Dure L. and Crouch M., Devel opmental biochemistry of cotton seed embryogenesis and germination:changing messenger ribonucleicacid populations as shown by in vitro and in vivo protein synthesis. Biochemistry,1981.20:p. 4162-4168.
    39 Dure L.III, Greenway S.C. and Galau G.A., Developmental biochemistry of cottonseed embryogenesis and germination:changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry, 1981.20:p.4162-4168.
    40 Dure L.III., Structural motifs in Lea protein. In:Close T.J., Bray E.A., eds. Plant Responses to Cellular Dehydration during Environmental Stress. American Society of Plant Physiologists, Rockville, M.D,1993. p.91-103.
    41 Editoral, Plant systems biology. Plant Physiol,2003.132 (2):p.403-404.
    42 Ellis R.J., From chloroplasts to chaperones:how one thing led to another. Photosynth Res,2004.80:p.333-343.
    43 Eom J., Baker W.R. and Kintanar A., The embryo-specific EMB-1 protein of Daucus carota is flexible and unstructured in solution. Plant Sci.,1996.115:p. 17-24.
    44 Espelund M., Larssen S.S. and Hughes D.W. et al., Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. Plant J.,1992.2:p. 241-252.
    45 Fathey Sarhan, Francois Ouellet and Alejandro Vazquez-Tello,1997. The wheat wcs120 gene family. A useful model to understand the molecular genetics of freezing tolerance in cereals. Physiologia Plantarum,1997.101:p.439-445.
    46 Figueras M., Pujal J. and Saleh A. et al., Maize Rab17 overexpression in Arabidopsis plants promotes osmotic stress tolerance. Ann Appl Biol.,2004.144: p.251-257.
    47 Francois Ouellet, Alejandro Vazquez-Tello and Fathey Sarhan, The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous
    species. FEBS Letters,1998.423:p.324-328.
    48 Fu D., Huang B. and Xiao Y. et al., Overexpression of barley HVA1 gene in creeping bentgrass for improving drought tolerance. Plant Cell Rep.,2007.26:p. 467-77.
    49 Galau G.A., Hughes D.W. and Dure L.Ⅲ, Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Mol Biol.,1986.7:p. 155-170.
    50 Galiba G., Tuberosa R. and Kocsy G. et al., Involvement of chromosomes 5A and 5D in cold-induced abscisic acid accumulation in and frost tolerance of wheat calli. Plant Breed,1993.110:p.237-242.
    51 Garay-Arroyo A., Colmenero-Flores J.M. and Garciarrubio A. et al., Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. JBiol Chem,2000.275:p.5668-5674.
    52 Gaspar T., Franck T. and Bisbis B. et al., Concepts in plant stress physiology. Plant Growth Regul.,2002.37:p.263-285.
    53 Goday A., Jensen A.B. and Culiafiez-Marcia F.A., et al., The maize abscisic acid-responsive protein Rab 17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell,1994.6:p.351-360.
    54 Godoy J.A., Lunar R. and Torresschumann S., Expression, tissue distribution and subcellular-localization of dehydrin Tas14 in salt-stressed tomato plants. Plant Mol. Biol.,1994.26:p.1921-1934.
    55 Goyal K., Walton L.J. and Tunnacliffe A., LEA proteins prevent protein aggregation due to water stress. Biochem J,2005a.388:p.151-157.
    56 Grelet J., Benamar A. and Teyssier E. et al., Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol,2005.137:p.157-167.
    57 G.T. Wang, Z.H. Hu and J.Q. Chen, CBF transcriptional activators and their roles in enhancing stress tolerance. Plant Physiol. Commun,2003.39(4):p.402-410.
    58 Guerrero F.D., Jones J.T. and Mullet J.E., Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol. Biol.,1990.15:p.11-26.
    59 Guiltinan M.J., Marcotte W.R. and Quatrano R.S., A plant leucine zipper protein that recognizes an abscisic acid responsive element. Science,1990.250:p. 267-271.
    60 Hajheidari M., Abdollahian-Noghabi M. and Askari H., Proteome analysis of sugar beet leaves under draught stress. Proteomics.,2005.5:p.463-99.
    61 Harada J.J., Delisle A.J. and Baden C.S., Unusual sequence of an abscisic acid-inducible mRNA which accumulates late in Brassica napus seed development. Plant Mol. Biol.,1989.12:p.395-401.
    62 Hara M., Terashima S. and Fukaya T., Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta, 2003217:p.290-298.
    63 Hara M., Fujinaga M. and Kuboi T., Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem,2004.42:p.657-662.
    64 Harter K., Kircher S. and Frohnmeyer H. et al., Light-regulated modification and nuclear translocation of cytosolic G-box binding factors in parsley. Plant Cell,1994.6:p.545-559.
    65 Hayes P.M., Blake T. and Chen T.H.H. et al., Quantitative trait loci on barley (Hordeum vulgare L.) chromosome 7 associated with components of winter hardiness. Genome,1993.36:p.66-71.
    66 Herzer S., Kinealy K. and Asbury R. et al., Purification of native dehydrin from Glycine max cv., Pisum sativum, and Rosmarinum officinalis by affinity chroma-tography. Protein Expr Purif,2003.28:p.232-240.
    67 Heyen B.J., Alsheikh M.K. and Smith E.A., The calcium-binding activity of a vacuole-associated, dehydrin like protein is regulated by phosphorylation. Plant Physiol.,2002.130:p.675-687.
    68 Holmstrom K.O., Somersalo S. and Mandal A.et al., Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J. Exp. Bot.,2000.51:p.177-185.
    69 Honjoh K., Matsumoto H. and Shimizu H. et al., Cryoprotective activities of group 3 late embryo genesis abundant proteins from Chlorella vulgaris C-27. Biosci. Biotechnol. Biochem.,2000.64:p.1656-1663.
    70 Houde M., Daniel C. and Lachapella M., Immunolocalization of freezing tolerance associated proteins in the cytoplasm and nucleoplasm of wheat crown tissue. Plant J.,1995.8:p.583-593.
    71 Houde M., Dallaire S. and N'Dong D. et al., Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotech J.,2004.2:p.381-387.
    72 Hughes M. A. and Dunn M. A.The molecular biology of plant acclimation to low temperature. J. Exp. Bot.1996.47:p.291-305.
    73 Imai R., Chang L. and Ohta A., A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene,1995.170: p.243-248.
    74 Ingram J. and Bartels D., The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1996.47:p.377-403.
    75 Iturbe-Ormaetxe I., Escuredo P.R. and Arrese-Igor C. et al., Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol,1998 116:p. 173-181.
    76 Javot H., Lauvergeat V. and Santoni V. et al., Role of a single aquaporin isoform in root water uptake. Plant Cell,2003.15:p.509-522.
    77 J.F. Zhang, X.P. Deng and X.Q. Mu, Plant aquaporin. Plant Physiol. Commun, 2002.38(1):p.88-91.
    78 J.N. Yu, Cloning and characterization of tolerant stress genes from Triticum aestivum dissertation for Doctor's degree of Northwestern Sci-tech University of Agriculture and Forestry, Yangling, China,2003.
    79 J.X. He and J.R. Fu, The research progresses in Lea proteins of seeds. Plant Physiol. Commun,1996.32(4):p.241-246.
    80 Kaldenhoff R., Grote K. and Zhu J.J. et al., Significance of plasmalemma
    aquaporins for water-transport in Arabidopsis thaliana. Plant J.,1998.14:p.
    81 Kang J.Y., Choi H.I. and Im M.Y. et al., Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell,2002. 14:p.343-357.
    82 Katiyar-Agarwal S., Agarwal M. and Grover A., Heat-tolerant basmati rice engineered by over-expression of HSP101. Plant Mol. Biol.,2003.51:p. 677-686.
    83 Kazuoka T. and Oeda K. Purification and characterization of COR85-oligomeric complex from cold-acclimated spinach. Plant and Cell Physiol.,1994.35:p. 601-611.
    84 Kim H.S., Lee J.H. and Kim J.J., Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from Capsicum annuum. Gene, 2005.344:p.115-23.
    85 Knight H., Calcium signaling during abiotic stress in plants. Int. Rev. Cytol.,2000. 195:p.269-324.
    86 Krogh A., Larsson B. and von Heijne G., Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes. J Mol Biol,2001.305:p.567-580.
    87 Kruger C., Berkowitz O. and Stephan U.W., A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem,2002.277:p.25062-25069.
    88 Lal S., Gulyani V. and Khurana P., Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res.,2008.17(4):p.651-663.
    89 Lee J.H. and Schoffl F., An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol. Gen. Gen.,1996.252:p.11-9.
    90 Levitt J., Stresses terminology. In:Turner N.C., Kramer PJ., eds. Adaptation of Plants to Water and High Temperature Stress. Wiley:New York,1980. pp. 437-439.
    91 Lilius G., Holmberg N. and Bulow L., Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnol.,1996. 14:p.177-180.
    92 Limin A.E., Houde M. and Chauvin L.P., Expression of the cold-induced wheat gene Wcs120 and its homologs in related species and interspecific combinations. Genome,1995.38:p.1023-1031.
    93 Lin C., and Thomashow M.F., A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochem Biophys Res Commun.,1992a.183:p.1103-1108.
    94 Lin C., Guo W.W. and Everson E. et al., Cold acclimation in Arabidopsis and wheat. Plant Physiol,1990.94:p.1078-1083.
    95 Liu G., Chen J. and Wang X., VfCPK1, a gene encoding calcium-dependent protein kinase from Vicia faba, is induced by drought and abscisic acid. Plant Cell Environ.,2006.29:p.2091-2099.
    96 Liu Y. and Zheng Y., PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Commun.,2005.331:p.325-332.
    97 L.S. Zhang and W.M. Zhao, LEA protein functions to tolerance drought of the plant. Plant Physiol. Commun,2003.39(1):p.61-66.
    98 Maggio A., Miyazaki S. and Veronese P. et al., Does proline accumulation play an active role in stress-induced growth reduction? Plant J.,2002.31:p.699-712.
    99 Makarova K.S., Aravind L. and Wolf Y.I., Genome of the extremely radiation-resistant bacterium deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev.,2001.65:p. 44-79.
    100 Maqbool S.B., Zhong H. and El-Maghraby Y. et al., Competence of oat (Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing HVA1. Theor. Appl. Gen.,2002.105:p.201-208.
    101 Mario Houde, Jean Danyluk and Jean-Frantois Laliberte et al., Cloning, Characterization, and Expression of a cDNA Encoding a 50-Kilodalton Protein Specifically Induced by Cold Acclimation in Wheat. Plant Physiol,1992.99:p. 1381-1387.
    102 Maruyama K., Sakuma Y. and Kasuga M. et al., Identification of cold-inducible downstream genes of the Arabidopsis DREB1/CBF3 transcriptional factor using two microarray systems. Plant Cell,2004.38:p.982-993.
    103 Ma S.Y. and Wu W.H., AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol. Biol.,2007.65:p.511-518.
    104 Maurel C. and Chrispeels M.J., Aquaporins:a molecular entry into plant water relations. Plant Physiol.,2001.125:p.135-138.
    105 McCubbin W.D., Kay C.M. and Lane B.G., Hydrodynamic and optical properties of the wheat germ Em protein. Can. J. Biochem. Cell Biol.,1985.63:p.803-811.
    106 McGee B.M., Hydrophilic proteins in the anhydrobiosis of bdelloid rotifers. Ph.D. Thesis.University of Cambridge,2006.
    107 McKersie B.D., Bowley S.R. and Harjanto E. et al., Water-deficit tolerance and field performance of transgenic Alfalfa overexpressing superoxide dismutase. Plant Physiol.,1996111:p.1177-1181.
    108 McKersie B.D., Murnaghan J. and Jones K.S. et al., Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol.,2000.122:p. 1427-1437.
    109 M. Koornneef and P. Starn, Changing paradigms in plant breeding. Plant Physiol, 2001.125(1):156-159.
    110 Mohanty A., Kathuria H. and Ferjani A. et al., Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor. Appl. Genet.,2003.106:p.51-57.
    111 Momma M., Kaneko S. and Haraguchi K. et al., Peptide mapping and assessment of cryoprotective activity of 26/27-kDa dehydrin from soybean seeds. Biosci
    Biotechnol Biochem,2003.67:p.1832-1835.
    112 Monroy A.F. and Dhindsa R.S., Low-temperature signal transduction:Induction of cold acclimation-specific genes of alfalfa by calcium at 25℃. Plant Cell,1995. 7:p.321-331.
    113 Mouillon J.M., Gustafsson P. and Harryson P., Structural investiga-tion of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments. Plant Physiol,2006.141:p.638-650.
    114 Mundy J. and Chua N.H., Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J.,1988.7:p.2279-2286.
    115 Munns R., Comparative physiology of salt and water stress. Plant Cell Environ., 2002.25:p.239-250.
    116 Narusaka Y., Nakashima K. and Shinwari Z.K. et al., Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J.,2003.34:p.137-148.
    117 Neven L.G., Haskell D.W. and Hofig A., Characterization of a spinach gene responsive to low-temperature and water-stress. Plant Mol. Biol.,1993 21:p. 291-305.
    118 Nylander M., Svensson J. and Palva E.T., Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol. Biol., 2001.45:p.263-279.
    119 Oliverae, Leprinceo and Wolkerswf et al., Non-disaccharide-based mechanisms of protein during drying. Cryobiology,2001.43(2):p.151-167.
    120 Olsen A.N., Ernst H.A, and Leggio L.L. et al., NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci.,2005.10:p.79-87.
    121 Ouellet E., Houde M. and Sarhan E., Purification, characterization and cDNA cloning of the 200 kDa protein induced by cold acclimation in wheat. Plant Cell Physiol,1993.34:p.59-65.
    122 Pan A., Hayes P.M. and Chen E. et al., Genetic analysis of the components of winterhardiness in barley (Hordeum vulgare L.). Theor. Appl. Genet,1994.89:p. 900-910.
    123 Pandey G.K., Reddy V.S., and Reddy M.K. et al., Transgenic tobacco expressing Entamoeba histolytica calcium binding protein exhibits enhanced growth and tolerance to salt stress. Plant Sci.,2002.162:p.41-47.
    124 Park J.M., Park C.J. and Lee S.B. et al., Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell,2001.13:p. 1035-1046.
    125 Pelah D. and Cohen E., Cellular response of Chlorella zofingiensis to exogenous selenium. Plant Growth Regul,2005.45:p.225-232.
    126 Pla M., Gomez J. and Goday A., Regulation of the abscisic acid-responsive gene rab 28 in maize viviparous mutants. Mol. Gen. Gen.,1991 230:p.394-400.
    127 Prilusky J., Felder C.E. and Zeev-Ben-Mordehai T. et al., FoldIndex:a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics,2005.21:p.3435-3438.
    128 Puhakainen T., Hess M.W. and Makela P., Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol. Biol.,2004. 54:p.743-753.
    129 Q.H. Yang, W.H. Ye and S.Q. Song, Seed desiccation tolerance and its relationship to seed types and developmental stages. Acta Bot. Boreal-Occident Sin,2002.22(6):p.1518-1525.
    130 Quan R., Shang M. and Zhang H. et al., Engineering of enhanced glycine betaine symthesis improves drought tolerance in maize. Plant Biotechnol.J.,2004 2:p. 477-486.
    131 Queitsch C., Hong S.W. and Vierling E. et al., Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell,2000.12:p.479-492.
    132 Ray S., Agarwal P. and Arora R. et al., Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol. Genet. Genomics,2007.278: p.493-505.
    133 Reddy A.S.N., Calcium:silver bullet in signaling. Plant Sci.,2001 160:p. 381-404.
    134 Reddy V.S. and Reddy A.S., Proteomics of calcium-signaling components in plants. Phytochem.,2004.65:p.1745-76.
    135 Reyes J.L., Rodrigo M.J. and Colmenero-Flores J.M. et al., Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ,2005.28:p.709-718.
    136 Ried J.L. and Walker-Simmonsm K., Group 3 late embryogenesis abundant proteins in desiccation-tolerant seedlings of wheat(Triticum aestivum L.). Plant Physiol,1993.102(1):p.125-131.
    137 Rinne P.L.H., Kaikuranta P.L.M. and van der Plas L.H.W., Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh):production, localization and potential role in rescuing enzyme function during dehydration. Planta,1999. 209:p.377-388.
    138 Roberts D.W.A., Identification of loci on chromosome 5A of wheat involved in control of cold hardiness, vernalization, leaf length, rosette growth habit, and height of hardened plants. Genome,1990.33:p.247-259.
    139 Rohila J.S., Jain R.K. and Wu R. Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hval cDNA. Plant Sci., 2002.163:p.525-532.
    140 Rorat T., Plant dehydrins-Tissue location, structure and function. Cell. Mol. Biol. Lett.,200611:p.536-556.
    141 Saijo Y., Hata S. and Kyozuka J.et al., Over-expression of a single Ca2+ dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J.,2000.23:p.319-327.
    142 Sanchez-Ballesta M.T., Rodrigo M.J. and Lafuente M.T. et al., Dehydrin from Citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold
    and water stress in leaves. JAgric Food Chem,2004.52:p.1950-1957.
    143 Sanders D., Pelloux J. and Brownlee C. et al., Calcium at the crossroads of signaling. Plant Cell,2002.14:p. S401-S417.
    144 Sarhan F., Ouellet F. and Vazquez-Tello A., The wheat wcs120 gene fami-ly. A useful model to understand the molecular genetics of freezing tolera-nce in cereals. PHYSIOLOGIA PLANTARUM,1997.101:p.439-445.
    145 Schneider K., Wells B. and Schmelzer E., Desiccation leads to the rapid accumulation of both cytosolic and chloroplastic proteins in the resurrection plant Craterostigma plantagineum Hochst. Planta,1993.189:p.120-131.
    146 Seki M., Narusaka M. and Abe H. et al., Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell,2001.13:p.61-72.
    147 Shi H., Lee B.H. and Wu S.J. et al., Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotechnol.,2003.21:p.81-85.
    148 Shinozaki K. and Yamaguchi-Shinozaki K., Molecular responses to dehydration and low temperature, differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol.,2000.3:p.217-223.
    149 Shinozaki K. and Yamaguchi-Shinozaki K., Gene networks involved in drought stress response and tolerance. J. Exp. Bot.,2007.58:p.221-227.
    150 Shinozaki K., Yamaguchi-Shinozaki K. and Seki M., Regulatory network of gene expressions in the drought and cold stress responses. Curr. Opin. Plant Biol, 2007.6:p.410-417.
    151 Singh S., Cornilescu C.C. and Tyler R.C. et al., Solution structure of a late embryo genesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein. Protein Sc.i,2005.14:p.2601-2609.
    152 Sivamani E., Bahieldin A. and Wraith J.M. et al., Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci.,2000.155:p.1-9.
    153 Soulages J.L., Kim K. and Walters C., Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean. Plant Physiol.,2002 128:p.822-832.
    154 Stacy R.A.P and Aalen R.B., Identification of sequence homology between the internal hydrophilic repeated motifs in group 1 Late-Embryogenesis-Abundant proteins in plants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis. Planta,1998.206:p.476-478.
    155 Steponkus P.L., Uemura M. and Joseph R.A. et al., Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci (USA),1998.95:p.14570-14575.
    156 Stephenson T.J., McIntyre C.L. and Collet C. et al., Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum. Plant Mol. Biol.,2007.65:p.77-92.
    157 Sugino M., Hibino T. and Tanaka Y., Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytice acquires resistance to salt stress in transgenic tobacco plants. Plant Sci.,1999.146:p.81-88.
    158 Sun W., Bernard C., and van de Cotte B. et al., At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J.,2001.27:p.407-15.
    159 Sutka J., Genetic control of frost tolerance in wheat (Triticum aestivum L.). Euphytica,1994.77:p.277-282.
    160 Svensson J., Palva E.T. and Welin B., Purification of recombinant Arabidopsis thaliana dehydrins by metal ion affinity chromatog-raphy. Protein Expr Purif, 2000.20:p.169-178.
    161 Swire-Clark G.A. and Marcotte Jr W.R., (1999). The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Mol. Biol.,1999.39:p.117-128.
    162 Takahashi S., Katagiri T. and Hirayama T. et al., Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5,-triphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol,2001.42:p.214-222.
    163 Tanino K.K. and McKersie B.D., Injury within the crown of winter wheat seedlings after freezing and icing stress. Can. J. Bot,1984.63:p.432-436.
    164 Thomas J.C. and Bohnert H.J., Salt stress perception and plant growth regulators in the halophyte Mesembryanthemum crystallinum. Plant Physiol.,1993.103:p. 1299-1304.
    165 T.J. Close, Dehydrins:emergence of a biochemical role of a family of plant dehydration proteins. Plant Physiol,1996.97:p.795-803.
    166 Tolleter D., Jaquinod M. and Mangavel C. et al., Drying reveals structure and function of a plant mitochondrial protein. Plant Cell,2007. (in press).
    167 Trans L.S.P., Nakashima K. and Sakuma Y. et al., Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell,2004.16:p.2481-2491.
    168 Vallivodan B. and Nguyen H.T., Understanding regulatory networks'and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol., 2006.9:p.189-195.
    169 Vazquez-Tello A., Ouellet E. and Sarhan E., The expression of the cold-responsive Wcs120 gene is upregulated by phosphorylation of nuclear repressors. In Proceedings of the Annual Meeting of the Canadian Society of Plant Physiologists, Communications FSAA:LL,1996, Universite Laval, Quebec.
    170 Verma D., Singla-Pareek S.L. and Rajgopal D. et al., Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing alinity tolerance in rice. J. Biosci.,2007.32:p.621-628.
    171 Wang W., Vinocur B. and Shoseyov O. et al., Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci.,2004. 9:p.244-252.
    172 Wang Y.J., Yu J.N. and Chen T. et al., Functional genomics of putative Ca2+ channel gene TATPC1 from wheat. J. Exp. Bot.,2005.56:p.3051-3060.
    173 Waters E.R., Lee G.J. and Vierling E. Evolution, structure and function of the
    small heat shock proteins in plants. J. Exp. Bot.,199647:p.325-338.
    174 Wehmeyer N. and Vierling E., The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol.,2000.122:p.1099-108.
    175 Weisshaar B., Armstrong G.A. and Block A. et al., Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness. EMBO J.,1991.10:p. 1777-1786.
    176 Welin B.V., Olson A. and Nylander M. et al., Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol. BioI,1994.26:p.131-144.
    177 Weretilnyk E.A. and Hanson A.D., Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought. Proc. Natl. Acad. Sci, (USA),1990.87:p.2745-2749.
    178 White P.J. and Broadley M.R., Calcium in Plants. Annals Bot.,2003.92:p. 487-511.
    179 Williams M.E., Foster R. and Chua N.H., Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell,1992.4: p.485-496.
    180 Wise M.J. and Tunnacliffe A. POPP the question:what do LEA proteins do? Trends Plant Sci.,2004.9:p.13-17.
    181 Wise M.J., LEAping to conclusions:a computational reanalysis of late embryogenesis abundant proteins and their possible roles. Bioinformatics,2003.4: P.
    182 Wisniewski M., Webb R. and Balsamo R., Purification, immunolocalization, cryoprotective and antifreeze activity of PCA60:A dehydrin from peach (Prunus persica). Physiol. Plant.,1999.105:p.600-608.
    183 Wolkers W.F., McCready S. and Brandt WF. et al., Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta,2001.1544:p.196-206.
    184 Wolkers W.F., van Kilsdonk M.G. and Hoekstra F.A., Dehydration-induced conformational changes of poly-L-lysine as influenced by drying rate and carbohydrates. Biochim Biophys Acta,1998.1425:p.127-136.
    185 Xiong L. and Zhu J.K., Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ.,2002.25:p.131-139.
    186 Xu D., Duan X. and Wang B., Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol.,1996.110:p.249-257.
    187 X.W. Hou and Y. Guo, Ubiquitin and response of plant to stress. Plant Physiol. Commun,1998.34(6):p.474-478.
    188 Yamada S., Katsuhara M. and Kelly W.B. et al., A family of transcripts encoding water channel proteins:tissue-specific expression in the common ice plant. Plant Cell,1995.7:p.1129-1142.
    189 Yamaguchi-Shinozaki K., Koizumi M. and Urao S. et al., Molecular cloni- ng and characterization of 9 cDNAs for genes that are responsive to desic-cation in Arabidopsis thaliana:sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol.,1992. 33:p.217-224.
    190 Y. Chen, Y.Q Qu and X. Jia, The characters and gene expression of rice seed proteins. Hereditas,2003.25(3):p.367-372.
    191 Yin Z., Rorat T. and Szabala B.M. et al., Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci.,2006.170:p.1164-1172.
    192 Yu Q., Osborne L.D. and Rengel Z. Increased tolerance to Mn deficiency in transgenic tobacco overproducing superoxide dismutase. Ann. Bot.,1999.84:p. 543-547.
    193 Zhang L., Ohta A. and Takagi M. et al., Expression of plant group 2 and group 3 Lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. J. Biochem.,2000.127:p.611-616.
    194 Zhang Y., Li J. and Yu F. et al., Cloning and expression analysis of SKn-type dehydrin gene from bean in response to heavy metals. Mol Biotechnol,2006.32: p.205-217.
    195 Zhu J.K., Salt and drought stress signal transduction in plants. Ann. Rev. Plant Biol.,2002.53:p.247-73.
    196 Zhu J.K., Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol., 2003.5:p.441-445.
    197崔凯荣,邢更生,周克功等,体细胞胚胎发生的生化基础。生命科学,2001,13(1):p.28~33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700