有关可调光子晶体及金属表面周期性结构超强透射的几个理论问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的主要内容分为两部分,金属薄膜上二维周期性结构阵列的超强透射机理(第三章)及可调光子晶体的理论研究(第四章)。
     第一章主要介绍背景知识,其中最重要的是当金属光栅缝宽很小时缝内出现的共振。这正是长方形小孔和同轴波导周期性阵列超强透射的机理。另外还介绍了光子晶体的概念,表面等离子体波的基本性质,金属表面小圆孔阵列超强透射现象等。
     第二章第一部分介绍FDTD的有关内容。第二部分介绍传输矩阵法。
     第三章主要讨论正方形小孔和同轴波导周期性阵列的超强透射机制。第一部分介绍圆形小孔阵列的超强透射机制,第二部分介绍一维狭缝不同厚度时的投射机理。第三部分介绍一些相关的实验结果。第四部分分析正方形小孔和同轴波导周期性阵列的超强透射机制。对于周期性圆形小孔阵列,超强透射的主要机理是周期性结构诱导的表面等离子体激元及金属薄膜前后两面之间的耦合。对于狭长的长方形小孔和缝隙很小的同轴波导阵列,超强透射的主要机理是局域于孔内的共振。
     第四章介绍用磁场调制一维光子晶体的理论分析。第一部分是磁场和光都垂直于界面的情况,一维光子晶体的带隙可以被调制。第二部分是磁场垂直于界面或入射面时倾斜入射的情况,Brewster角的大小可以被调制,甚至可以被调制为虚值。
This thesis consists mainly of two parts: the mechanism of extraordinary transmission through two-dimensional periodic array of apertures perforated on the metal film(chapter 3); the theoretical study of tunable photonic crystals(chapter 4).In chapter 1, we give introductions of photonic crystals, surface plasmon, extraordinary transmission, and cavity resonance, the most important of which is the resonance inside the slit when the width of the slit is very small in comparison to the wavelength of incident light. Cavity resonance may be the key to understand the extraordinary transmission of array of rectangular holes or coaxial holes.In the first section of chapter 2,1 detail some selected topics on FDTD method. In the second section, transfer matrix method is detailed.In chapter 3 the mechanism of extraordinary transmission through metal film perforated by periodic arrays of apertures is discussed. We believe that for arrays of circular holes the mechanism is the surface plasmon polaritons induced by periodicity on the metal surface and the coupling between the front surface and the back surface. However for rectangular holes or coaxial holes, local resonance inside the cavity is predominant.In chapter 4, tunability of photonic crystals is studied when external magnetic field is applied along the normal to the interface. Either photonic bandgap or Brewster angle can be tuned.
引文
[1] Wulin Jia, Yizhou Li, Yonggang Xi, Ping Jiang, Xiaohua Xu, Xiaohan Liu, Rongtang Fu and Jian Zi1, J. Phys.: Condens. Matter 15 (2003) 6731.
    [2] Busch K and John S 1999 Phys. Rev. Lett. 83 967
    [3] Kang D, Maclennan J E, Clar N A, Zakhidov A A and Baughman R H 2001 Phys. Rev. Lett. 86 4052
    [4] Yoshino K, Shimoda Y, Kawagishi Y, Nakayama K and Ozaki M 1999 Appl. Phys. Lett. 75 932
    [5] Leonard SW, Mondia J P, van Driel HM, Toader O, John S, Busch K, Bimer A, Gosele U and Lehmann V 2000 Phys. Rev. B 61 R2389
    [6] Figotin A, Godin Y A and Vitebsky I 1998 Phys. Rev. B 57 2841
    [7] Kee C S, Kim J E, Park H Y, Park I and Lim H 2000 Phys. Rev. B 61 15523
    [8] Halevi P and Ramos-Mendieta F 2000 Phys. Rev. Lett. 85 1875
    [9] Zhou J, Sun C Q, Pita K, Lam Y L, Zhou Y, Ng S L, Kam C H, Li L T and Gui Z L 2001 Appl. Phys. Lett. 78 661
    [10] Kim S and Gopalan V 2001 Appl. Phys. Lett. 78 3015
    [11] Pershan P S 1967 J. Appl. Phys. 38 1482
    [12] Pidgeon C R 1980 Handbook on Semiconductors vol 2, ed M Balkanski (Amsterdam: North-Holland) p 223
    [13] Kittel C 1976 Introduction to Solid State Physics 5th edn (New York: Wiley)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700