生物相容性两亲分子溶致液晶的构筑及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物相容性是指任何一种外源性物质,进入生物体或者与生物组织共存时,生物体自身容许这种外源性的物质在生物体内存留,包括生物体与这种外源性物质产生相互作用的能力和性质。而生物相容性的两亲分子,则指与生物体具有较好的相容性的两亲分子。以壳聚糖、烷基糖苷、葡糖酰胺、蔗糖酯、环糊精及其衍生物等为代表的生物相容性两亲分子,被食品和化学领域誉为世界级的新一代绿色无毒两亲分子,对人体几乎没有刺激,极为温和,还具有生物易降解的特性。生物相容性的两亲分子在应用方面的优越性主要表现在:(1)生物相容性两亲分子几乎没有毒性,对人体的眼睛以及皮肤极为温和,无不舒适的刺激感。促使这些生物相容性的两亲分子在药品和食品领域广泛使用,尤其是人们日常使用的化妆品和蔬菜水果洗涤剂中大幅增加使用。(2)生物相容性两亲分子与聚氧乙烯类表面活性剂相比易生物降解,且代谢物质有一定的营养价值。(3)生物相容性的两亲分子有非常理想的复配效果,几乎能与所有类型的表面活性剂复配使用。(4)部分生物相容性两亲分子具有药用价值,如壳聚糖可抗癌抑制癌细胞转移,蔗糖酯可降低血清中的胆固醇。选取绿色,易降解,对人体皮肤无刺激作用的生物相容性两亲分子,在适当条件下研究其聚集体性质,应用于基础药物的缓释和靶向释放,为实际的药物生产应用提供一定的理论指导。
     本文以硬脂酸蔗糖酯和水溶性壳聚糖为主要研究对象,通过表面活性剂之间的复配以及表面活性剂与生物相容性油相复配,研究环境温度、表面活性剂浓度以及复配对溶致液晶构筑和性能的影响。
     1.水溶性壳聚糖有序聚集体作VC载体的研究
     在水溶性壳聚糖水溶液中,通过改变表面活性剂的浓度和环境温度,研究有序聚集体的构筑与流变性能,结果表明:(1)流变数据表明,在全部的频率扫描范围内,有序聚集体Ⅱ比有序聚集体Ⅰ具有更大的储能模量和损耗模量。两种水溶性壳聚糖构筑的聚集体,都具有较强的假塑性,而且是良好的线性粘弹体,适合做药物载体。(2)缓释实验表明,水溶性壳聚糖的有序聚集体能够起到对维生素C的缓释作用。而且有序聚集体Ⅱ的内部网络结构比有序聚集体Ⅰ更加稳定,粘度更大,维生素C溶解过程更慢,从而能起到更好的缓释效果。(3)稳定性实验表明,两种水溶性壳聚糖的有序聚集体都对维生素C的稳定性具有很好的保护作用,以S3为例3小时维生素C的损失仅为0.92%,可以用作维生素C的抗氧化保护载体。
     2. S1570/ Brij98复配体系溶致液晶的构筑及性能研究
     在S1570/ Brij98复配体系中,通过改变表面活性剂的浓度和环境温度以及复配表面活性剂,研究有序聚集体的构筑与流变性能,结果表明:(1)第二种表面活性剂Brij98的引入,降低了S1570/水体系形成溶致液晶所需的最低温度,增加形成溶致液晶的表面活性剂质量浓度范围,扩大了溶致液晶区域。(2)油相分子IPM的引入,丰富了Brij98/S1570/water体系的溶致液晶相行为,当IPM含量增加时,降低了表面活性剂分子极性头基面积,增加了堆积参数(vL/aSlc),诱导溶致液晶从层状结构向六角状液晶的转变。因此可以通过控制油相分子的浓度,可是实现对溶致液晶相行为的调控。(3)对于Bij98/S1570的质量比值为5/5的Brij98/S1570/IPM/水体系,油相IPM分子主要增溶在层状结构的栅栏层,随着IPM含量的增加,层状液晶的储能模量和临界应力值逐渐增加。对于Bij98/S1570的质量比值为3/7的Brij98/S1570/IPM/水体系,油相IPM分子主要增溶在层状结构的疏水内核,随着IPM含量的增加,导致层状液晶结构不断溶胀,体系中层状液晶样品宏观上的储能模量和临界应力值逐渐减小。
     3. S1570/Brij97复配体系溶致液晶的构筑及性能研究
     在S1570/Brij97复配体系中,通过改变表面活性剂的浓度和环境温度以及复配表面活性剂,研究有序聚集体的构筑与流变性能,结果表明:(1)通过DMF法合成的硬脂酸蔗糖酯在37oC时的CMC为1.902×10-4mol/L,γcmc=37.32 mN/m,并且未出现最低点。(2)在Brij98/S1570/水体系中,温度的升高和Brij97含量的增加有利于溶致液晶的构筑。BS1~BS4四个层状液晶的样品的稳态扫描都呈现剪切稀释行为,是假塑性流体。四个样品的频率扫描都表现为弹性体,符合层状液晶的典型特征。(3)在S1570和Brij97质量比分别为5/5和7/3的两个S1570/Brij97/油酸/水体系中,随着油相油酸含量的增加样品的偏光纹理由油纹变为十字花型纹理再到不完整的偏光纹理,频率扫描的储能模量和损耗模量逐渐减小,体系中的微观结构逐渐从层状液晶向胶束溶液转变。(4)由小角X射线的谱图,发现在S1570和Brij97质量比分别为7/3的S1570/Brij97/油酸/水体系中,油相油酸的影响更大。当油酸质量分数为20 %时,体系开始出现胶束相,溶致液晶结构开始破坏。而质量比分别为5/5的S1570/Brij97/油酸/水体系中,油相油酸的影响则较小,油酸含量为24 %时,体系的层状液晶结构仍然稳定存在。这说明当Brij97含量比较高时,体系的溶致液晶结构较为稳定,不容易破坏。
Biocompatibility refers to a kind of property that when any foreign substancesenter into the biology or biological organization and coexist with noumenon, thebiology allows such substances exist in the body organisms and interact with thebiology. The biocompatible amphiphilic molecules is the surfactant has goodcompatibility with the biology. Chitosan, alkyl polyglucoside, glucose amide, sucroseester and cyclodextrins or its derivatives such representative biocompatibilityamphiphilic molecules are known as a new generation of world-class greenamphiphilic molecules and have the security non-toxic and mild to human body andeasily biodegradable properties. The superiority of biocompatibility mainly performsin several ways: (1) Biocompatibility amphiphilic molecules are almost non-toxic,have no stimulation to the eyes and skin. (2) Biocompatibility amphiphilic moleculesare more biodegradable than the kind of polyoxyethylene surfactants. (3)Biocompatibility amphiphilic molecules have a good effcet when it blends with othersurfactants. (4) Part of the biocompatibility amphiphilic molecules have a goodmedicinal value. Choose the green, easily degradable, no stimulus effect to humanskin biocompatibility amphiphilic molecules and study the aggregate properties ofsuch surfactants, then use it in the targeting release and slow-release of fundamentaldrugs, provide certain theoretical guidance for the actual drug production andapplication.
     In this paper, the sucrose ester and water-soluble chitosans are the main researchobjects, through mixing surfactants and blending surfactants with biocompatible oilphase to explore the influences of environmental temperature, surfactantconcentrations and interaction on the construction and performance of the liquidcrystal.
     1. Assembly of water-soluble chitosan used for VC carrier
     Two kinds of ordered assemblies were found to be formed in the aqueoussolutions of a water-soluble chitosan, with changes in the concentration of the chitosan and temperature. (1) Steady rheological properties and dynamic rheologicalproperties of the two assemblies have been studied in different temperatures. Basedon this, choose two kinds of assemblies for release experiment of Vitamin C. (2)Steady rheological curves indicated that the two assemblies have strong fake plasticproperty. Dynamic measurements showed that the assemblyⅠmeets the Maxwellmodel in the low-frequencies, while it performs as an elastomer at the higherfrequencies. In the investigated frequency range, the loss modulus is always lowerthan the storage modulus for the assemblyⅡ. (3) Two kinds of assemblies have agood stability and release effect.
     2. Surfactant and oil effects on the liquid crystal formation ofS1570/Brij98 mixed systems
     Surfactant and oil effects on the formation and the rheological properties oflyotropic liquid crystals formed by sucrose stearate were investigated by means ofphase diagrams, rheological techniques. (1) It shows that sucrose stearate can formliquid crystal phase at much lower concentration and lower temperature by addingoleyl polyoxyethylene (20) surfactant. After Inducing isopropyl myristate, the liquidcrystal phase formed by Brij98/S1570 system transformed from hexagonal liquidcrystal to lamellar liquid crystal. (2) The rheological experiments indicate that all theliquid crystal samples have strong fake plastic property and follow a shear-thinningbehavior. Dynamic measurements show that the hexagonal liquid crystal meets thegeneral Maxwell model, exhibiting viscoelastic behavior. In the investigatedfrequency range, the loss modulus of lamellar liquid crystal is always lower than thestorage modulus, performing as an elastomer. (3) In addition, when the mass ratio ofBrij98/S1570 is 5/5, shear stress and platform modulus of the lamellar liquid crystalincrease as the IPM concentration increases. Whereas at the 3/7 mass ratio ofBrij98/S1570, these values of lamellar liquid crystal decrease with this changes.
     3. Surfactant and oil effects on the liquid crystal formation ofS1570/Brij97 mixed systems In the S1570/Brij97 mixed systems, through mixing surfactants and blendingsurfactant with biocompatible oil phase to study the influences of environmentaltemperature, surfactant concentrations and interaction on the construction andperformance of the liquid crystal. (1) The sucrose ester is synthesized through theDMF method, its CMC is 1.902×10~(-4)mol/L and theγcmcis 37.32 mN/m. (2) Raisingtemperature or increasing the concentration of Brij97 help to form liquid crystal in theS1570/Brij97/H_2O mixed system. Steady rheological curves indicated that fourlamellar liquid crystal samples BS1~BS4 have strong fake plastic property. (3) In theS1570/Brij97/Oleic Acid/water systems at 37℃with the mass ratio of S1570/ Brij97is 7/3 and 5/5 respectively, polarizing texture of samples changes from oil texture intothe cross pattern texture and then changes to incomplete texture along with theincrease of the content of oleic acid. The storage modulus and loss modulus ofsamples reduce gradually as the oleic acid content increases, explaining that the layerstructure changes into micelle solution. (4) From the small Angle X-ray spectrumdiagram, we can find that Oil phase of oleic acid has much more influence on thestructure in the S1570/Brij97/Oleic Acid/water systems at 37℃with the mass ratio ofS1570/ Brij97 is 7/3. However, Oil phase of oleic acid has weak influence on thestructure in the S1570/Brij97/Oleic Acid/water systems at 37℃with the mass ratio ofS1570/ Brij97 is 5/5. When the content of Brij97 is higher, liquid crystal structure ismore stable in the mixed systems.
引文
[1] Black J. Biological performance of materials:fundamentals of biocompatibility
    [M]. 3rd ed. New York: MarcellDekker, 1999.
    [2] Nagarajan R.* Theory of Surfactant Self-Assembly: A Predictive MolecularThermodynamic Approach[J]. Langmuir, 1991, 7, 2934-2969.
    [3] Vladimir P. Torchilin. Structure and design of polymeric surfactant-based drugdelivery systems[J]. Journal of Controlled Release, 2001,73, 137-172.
    [4] Amnon C Sintov. New microemulsion vehicle facilitates percutaneous penetrationin vitro and cutaneous drug bioavailability in vivo[J]. Journal of Controlled Release,2004, 95, 173-183.
    [5] Araki Masuyama,* Chikara Endo, Shin-ya Takeda and Masatomo Nojima.Ozone-cleavable gemini surfactants, a new candidate for an environmentally friendlysurfactant[J]. Chemical Communications, 1998, 2023-2024.
    [6] Freiberg S and Zhu X X. Polymer microspheres for controlled drug release[J].International Journal of Pharmaceutics, 2004, 282, 1-18.
    [7]白岚,杜继煜,白宝璋.表面活性剂蔗糖酯,农业与技术. 2003, 23, 56-57.
    [8] Vlahov I R, Vlahova P I, Linhardt R J. Regioseleetive Synthesis of SucroseMonoesters as Surfactants[J]. J.Carbohydr.Chem., 1997, 16, 1-10.
    [9] Severson R F, Arrendale R F, Chortyk O T. Quantitation of the majoy cuticularcomposnents from green leaf of different tobaecoo types[J]. J.Agric.Food chem., 1984,32, 566-570.
    [10] Severson R F, Jaekson A W, Johnson D M. Faetors affecting their productionand their role in nscet and disease resistance and smoke quality[J]. RecentAdy.Tob.Sci., 1985, 11, 105-174.
    [11] King R R, Calhoun L A, Singh R P, etal. Characterization of 2, 3, 4,3’-tetra-O-acylated suerose esters associated with the glandular trichomes oflycopersicon typicum[J]. J.Agrie .Food Chem., 1993, 41, 469-473.
    [12] Neal J J, Tingey W M, Steffens J C. Suerose esters of carboxylie acids inglandular trieomes of Solanum Berthaultii deter settling and Probing by green Peachaphid[J]. J.Chem.Ecol., 1990, 16, 487-497.
    [13] Holley J D, King R R, Singh R P. Glandular trichomes and the resistance ifSolanum berthaultti to Infection from Phytophthorn infeetans[J]. Can.J.Plant.Path.,1987, 9, 291-294.
    [14] Severson R F, Chortyk O T, Stephenson M G, et al. Characterization of naturalpestieide from nieotiana gossei[J]. ACS Symp.Ser., 1994, 38, 109-121.
    [15] Buta G J, Lusby W R, Neal J W,et al,Suerose esters from Nicotiana Gossiactive agains theGreenhouse whitefly Trialeuroides vaPorarorium[J]. Phytoehemistry,1993, 32, 859-864.
    [16] Qinghui Wang, Shufen Zhang, Jinzong Yang. Regioselective formation of6-O-acylsueroses and 6,3’-di-O-acylsucroses via the stannylene acetal method[J].Carbohydrate Research, 2007, 342, 2657-2663.
    [17] Helga Furedi-Milhofer,* Alexey Kamishny, Junko Yano, Abraham Aserin, andNissim Garti. Crystallization of Organic Compounds in Reversed Micelles. III.Solubilization of Aspartame[J]. Langmuir, 2003, 19, 5984-5990.
    [18]金方,吴志明.布洛芬缓释混悬剂的研究Ⅰ.缓释微球的制备[J].中国医药工业杂志, 2003, 34, 223-225.
    [19] Victoria Klanga, Nadejda Matskob, Anna-Maria Zimmermanna, EminaVojnikovica, Claudia Valentaa. Enhancement of stability and skin permeation bysucrose stearate and cyclodextrins in progesterone nanoemulsions[J]. InternationalJournal of Pharmaceutics, 2010, 393, 152–160.
    [20] Konoo S, Ogawa H, Mizuno H and lso N. The emulsificating ability of oxidizedtapioca starches with sodium hypochlorite[J]. Journal of the Japanese Society forFood Science and Technology, 1996, 43, 880-886.
    [21] Casimir C. Akoh, Carolyn Cooper and Chigozie V. Nwosu. Lipase G-Catalyzedsynthesis of monoglycerides in organic solvent and analysis by HPLC[J]. Journal ofthe American Oil Chemists Society, 1992, 69, 257-260.
    [22] Jarvis B and Holmes AW. Biotechnology in relation to the food industry[J].Journal of Chemical Technology and Biotechnology, 1982, 32, 224-232.
    [23] Olesen T. Antistaling process and agent[J]. PCT-Intemational Patent Application,WO Patent 9104669. 1991.
    [24] Niiya I, Maruyama T, Imamura M, Okada M and Matsumoto T. Effect ofemulsifiers on the crystal growth of edible solid fats. Part III. Effect of saturated fattyacid monoglyceride[J]. Journal of the Japanese Society for Food Science andTechnology, 1973, 20, 199-201.
    [25] Farooq K and Haque ZU. Effect of Sugar Esters on the Textural Properties ofNonfat Low Calorie Yogurt[J]. Journal of Dairy Science, 1992, 75, 2676-2680.
    [26] Maruyama T, Kinoshita Y, Niiya I and Imamura M. General properties and sterolcomposition of margarine[J]. Journal of the Japanese Society of Food and Nutrition,1976, 1, 39-43.
    [27] Cappel J W and Cronemiller R N. Mixing process for cookies with storage-stabletexture variability [J]. United States Patent, 4668522. 1987.
    [28] Seibel W, Menger A, Ludewig HG and Bretschneider F. Standardization of abaking test for shortbread[J]. Getreide Mehl und Brot, 1976, 30, 325-330.
    [29] Brabbs W J and Hong C A. Doughs and cookies providing storage-stable texturevariability [J]. United States Patent, 4503080, 1984.
    [30] Gallegos C, Calahorro C, Munoz J, Berjano M and Guerrero A. Sucrose esters: Apeculiar viscous behaviour[J]. Comun. Jorn. Com. Esp. Deterg, 1991, 22, 283.
    [31] Thevenin M A, Grossiord J L and Poelman M C. Sucrose esters/cosurfactantmicroemulsion systems for transdermal delivery: assessment of bicontinuousstructures[J]. International Journal of Pharmaceutics, 1996, 137, 177-186.
    [32] Keipert S and Schulz G. Microemulsions with sucrose fatty ester surfactantsPart1: In vitro characterization[J]. Pharmazie, 1994, 49, 195-197.
    [33] Yoshiki Hayashi, Sumie Yoshioka, Yukio Aso, Alain Li Wan Po and Tadao Terao.Entrapment of Proteins in Poly(L-Lactide) Microspheres Using Reversed MicelleSolvent Evaporation[J]. Pharmaceutical Research, 1994, 11, 337-340.
    [34] John T H. Ong and Elizabeth Manoukian. Micellar Solubilization of TimobesoneAcetate in Aqueous and Aqueous Propylene Glycol Solutions of NonionicSurfactants[J]. Pharmaceutical Research, 1988, 5, 704-708.
    [35] Wlnterowd J G. Chitin and ehitosan Research[J]. Food polysaccharides and theirapplications, 1995, 1, 175-182.
    [36]夏文水.壳聚糖的生理活性及其在保健食品中的应用[J].中国食品学报,2003, 3, 77-80.
    [37]赵玉清,郑兆艳,王冰等.壳聚糖/壳寡糖系列功能食品的安全性评价[J].食品科学, 2003, 8, 248-250.
    [38] Kim K W,R L Thomas. Antioxidative activity of chitosans with varyingmolecular weights[J]. Food Chemistry, 2007, 101, 308-313.
    [39] Chung Y C, Wang H L, Chen Y M, Li S L. Effeet of abiotic factors on theantibacterial activity of chitosan against waterborne pathogens[J]. BioresoureeTechnology, 2003, 88, 179-184.
    [40] Knorr D. Functional ProPerties of chitin and ehitosan[J]. Joumal of Food Seience,1982, 47, 593-595.
    [41]李艳欢.壳聚糖的生物活性及其在保健食品中的研究进展[J].食品研究与开发, 2009, 30, 186-189.
    [42]黄丽莎,李加新,周宁怀.壳聚糖在废水处理中的应用[J].环境污染与防治,2001, 23, 245-248.
    [43] Huang Ronghua, Du Yumin, Zheng Lianshuang. A new approach to chemicallymodified chitosan sulfates and study of their influences on the inhibition ofEscherichia coli and Staphylococcus aureus growth[J]. Reactive and FunctionalPolymers, 2004, 59, 41-51.
    [44] Liu XiaoFeng, Guang YunLin, Yang DongZhi. Antibacterial action of chitosanand carboxymethylated chitosan[J]. Journal of Applied polymer Science, 2001, 79,1324-1335.
    [45]徐魏,戴雪伶,姜招峰.改性壳聚糖吸附Cu(Ⅱ)及其生物活性研究[J].生命的化学, 2008, 28, 500-503.
    [46] Jozsef szejtli. Cyclodextrins and Their Inclusion Complexes[M]. KluwerAcademic, 1988.
    [47] James W J, French D and Rundle R E. Studies on the Schardinger dextrins. IX.Structure of the cyclohexaamylose-iodine complex[J]. Acta Cryst, 1959, 12,385-389.
    [48] Makoto Komiyama, Myron L. Bender. Nucleophilic acceleration of the cleavageofβ-cyclodextrin trans-cinnamate by amines[J]. Bioorganic Chemistry, 1979, 8,249-254.
    [49] Szejtli J. Medicinal Applications of Cyclodextrins[J]. Medicinal ResearchReviews, 1994, 14, 353-386.
    [50] Duchene D. Cyclodextrins and their industrial uses[M]. Editions de Sante, 1987.
    [51] Szejtli J. The cyclodextrins and their applications in biotechnology[J].Carbohydrate Polymers, 1990, 12, 375-392.
    [52] Duchene D and Wouessidjewe D. Pharmaceutical Uses of Cyclodextrins andDerivatives[J]. Drug Development and Industrial Pharmacy, 1990, 16, 2487-2499.
    [53] Szejtli J. The properties and potential uses of cyclodextrin derivatives[J]. Journalof Inclusion Phenomena and Macrocyclic Chemistry, 1992, 14, 25-36.
    [54] Fromming K H, Szejtli J. Cyclodextrins in Pharmacy [M]. Klumer AcademicPublishers, 1993.
    [55] Panagiotis Lianos, Jacques Lang, Claude Strazielle, Raoul Zana. Fluorescenceprobe study of oil-in-water microemulsions. 1. Effect of pentanol and dodecane ortoluene on some properties of sodium dodecyl sulfate micelles[J]. Journal of Physicalchemistry, 1982, 86, 1019-1025.
    [56] Jack H. Schulman, Walter Stoeckenius, Leon M. Prince. Mechanism ofFormation and Structure of Micro Emulsions by Electron Microscopy[J]. Journal ofPhysical chemistry, 1959, 63, 1677-1680.
    [57]李干佐.表面活性剂复配对胶束和微乳液形成的影响[J].日用化学工业.1989, 5, 1-6.
    [58] Zana R. Microemulsions[J]. Heterogeneous Chemistry Reviews. 1994, 1,145–157.
    [59] Clausse M, Zradba A, Morgantini L N. Microemulsion systems [J]. Dekker, NewYork, 1987, 387-425.
    [60] Bumajdad A, Eastoe J, Conductivity of water-in-oil microemulsions stabilized bymixed surfactants[J]. J. Colloid Interface Sci., 2004, 274, 268-276.
    [61] Zhang X G, Dong J F, Zhang G Y, et al., The effect of additives on the watersolubilization capacity and conductivity in n-pentanol microemulsions[J]. J. ColloidInterface Sci., 2005, 285, 336-341.
    [62] Kasuba M, Mcknight D, Connah M T, et al., Measuring sub nanometre sizesusing dynamic light scattering[J]. J. Nanopart. res., 2008, 10, 823-829.
    [63] Behera K, Pandey S, Interaction between ionic liquid and zwitterionic surfactant:A comparative study of two ionic liquids with different anions [J]. J. Colloid InterfaceSci. , 2009, 331, 196-205.
    [64] Roberto R, Pedro L O, L-Tryptophan transport through a hydrophobic liquidmembrane using AOT micelles: Dynamics of the process as revealed by small angleX-ray scattering [J]. J. Colloid Interface Sci., 2008, 318, 59-67.
    [65] Note C, Koetz J, Kosmella S, Structural changes in poly (ethyleneimine)modified microemulsion [J]. J. Colloid Interface Sci, 2006, 302, 662-668.
    [66] Baier J, Koetz J, Kosmella S, et al., Olyelectrolyte-Modified InverseMicroemulsions and Their Use as Templates for the Formation of MagnetiteNanoparticles[J]. J. Phys. Chem. B, 2007, 111, 8612-8618.
    [67] Olsson U, Shinoda K, Lindman B, Change of the structure of microemulsionswith the hydrophile lipophile balance of nonionic surfactant as revealed by NMRself-diffusion studies[J]. J Phys Chem 1986, 90, 4083-4088.
    [68] Lindman B, Stilbs P, Mosely M E , Fourier-transform NMR self-diffusion andmicroem- ulsion structure[J]. J. Colloid Interface Sci., 1981, 83, 569-582.
    [69] Calandra P, Giordano C, Ruggirello A, et al., Physicochemical investigation ofacrylamide solubilization in sodium bis (2-ethylhexyl) sulfosuccinate and lecithinreversed micelles[J] , J. Colloid Interface Sci., 2004, 277, 206-214.
    [70] Sripriya R, Raj K M, Santhosh G, et al., The effect of structure of oil phase,surfactant and co-surfactant on the physicochemical and electrochemical properties ofbicontinuous mic- roemulsion [J]. J.Colloid Interface Sci., 2007, 314, 712-717.
    [71]王良御,廖松生.液晶化学[M].北京,科学出版社, 1988, 2842.
    [72]李干佐, Friberg S E.三组分非水体系的溶致液晶的研究[J].化学学报, 1985,43, 806-812.
    [73]李干佐,郝京诚,郑立强等. CPDB/正丁醇/正辛烷/水体系溶致液晶的2H-NMR和DSC法研究[ J].高等化学学报, 1995, 16, 595-598.
    [74]李英,李干佐,陆用海等.胶束、液晶的Raman光谱研究[J].科学通报, 1996,41, 800-804.
    [75] LIGANZUO, LIYING, LU YONGHAI, etal. Raman scattering studiesofsurfactant association[ J]. J Disp Sci Tech, 1996, 17,379 -389.
    [76]张春艳. Gemini表面活性剂诱导的卵磷脂囊泡结构的转变与破裂-联接基长度的影响[D].厦门,厦门大学出版社,2005.
    [77]翟利民,李干佐,郑立强.囊泡研究进展[J].日用化学品科学, 1999(增刊),21-23.
    [78] Pilar Calvo, Jose Luis Vila-Jato.Chitosan and chitosan/ethylene oxide-propyleneoxide block copolymer nanoparticles as novel carriers for protein and vaccines[J].Phamaceutical research, 1997, 10, 1431-1442.
    [79] Kay, Mao H Q, Lin K Y etal. Oral immunization with DNA-chitosannanoparticles[J]. Proc.Intern.Symp Control.Release[J]. Bioact Mater, 1999, 26,348-357.
    [80] Mischnick P. Determination of the patterns of substitution of hydroxyethyl andhydroxypropyl-cyclomaltoheptaoses [J]. Carbohydrate Research, 1989, 192, 233-241.
    [81]程建明,刘汉清,张兴德.黄芩苷-羟丙基-β-环糊精包合物制备工艺研究[J].南京中医药大学学报, 2003, 19, 358.
    [82]李剑明,杨和平.羟丙基-β-环糊精对姜黄素-3的增溶作用[J].中国新医药,2004, 3, 11.
    [83]谷福根,吴春芝,李汉蕴.阿魏酸-羟丙基-β-环糊精包合物的研制[J].中国药房, 2003, 14, 599.
    [84]陈勤,郭鹏.薄荷脑-羟丙基-β-环糊精包合物的研究[J].中华医学丛刊, 2004,4, 31.
    [85]金小平,唐伟,陈力,等.阿昔洛韦的羟丙基-β-环糊精包合物的研究[J].医药导报, 2005, 24, 57.
    [86]施洁明,何仲贵,刘晓红,等. 2-羟丙基-β-CD对桂利嗪的增溶作用[J].中国新药杂志, 2004, 13, 233.
    [87]孙英华,施洁明,仲晖,等. 2-羟丙基-β-环糊精对美洛昔康的包合作用[J].沈阳药科大学学报, 2004, 21, 81.
    [88] Reinitzer F. Monatsh[J]. Chemistry, 1888, 9, 421.
    [89] Charles Tanford. Micelle shape and size[J]. The Journal of Physical Chemistry,1972, 76, 3020-3024.
    [90] Németh Zs, Halász L, Pálinkás J, Bóta A, Horányi T. Rheological behaviour of alamellar liquid crystalline surfactant-water system[J]. Colloids and surfaces A:Physicochemical and Engineering Aspects, 1998, 145, 107-119.
    [91] Hoffmann H, Yhunig C, Schmiedel P, Munkert U. Surfactant systems withcharged multilamellar vesicles and their rheological properties[J]. Langmuir, 1994, 10,3972-3981.
    [92] Shui L L, Guo P Z, Chen F, Xu G Y, Zheng L Q. The effect of iopamidol onrheological properties of momoglyceride/water system[J]. Colloids Surf. A, 2005, 256,85-90.
    [93] Shrestha L K, Sato T, Aramaki K. Shape, size, and structural control of reversemicelles in diglycerol monomyristate nonionic surfactant system[J]. Phys. Chem. B,2007, 111, 1664-1671.
    [94] Goswami R, Lok S, Shrestha K, Sharma S C, Aramaki K. Phase behavior andmicrostructures of nonionic fluorocarbon surfactant in aqueous systems[J]. Phys.Chem. B, 2008, 112, 10520-10527.
    [95]王志宁,郑利强,李干佐.蔗糖对MO/水立方液晶体系流变性质的影响[J].化学学报, 2005, 63, 274-278.
    [96] Sidding M A, Radiman S, Muniandy S V, Jan L S. Structure of cubic phases internary systemsglucopone/water/hydrocarbon[J]. Colloids Sur A. Physicochem. Eng.Aspects, 2004, 236, 57-67.
    [97] Alam M M, Aramaki K. Effect of molecular weight of triglycerides on theformation and rheologicalbehavior of cubic and hexagonal phase based gelemulsions[J]. Journal of Colloid and Interface Science, 2009, 336, 329–334.
    [98] Wang H, Zhang G, Du Z, Li Q, Wang W, Liu D, Zhang X. Effect of temperatureon dynamic rheological behavior of discontinuous cubic liquid crystal[J]. ColloidInterface Sci, 2006, 300, 348-353.
    [1] SHAHIDI F, ARACHCHI J K V, JEON Y J. Food applications of chitin andchitosans[J]. Trends in Food Science & Technology, 1999, 10, 37-51.
    [2] SAKURAI K, SHIBANO T, KIMURA K et al. Cyrstal sturcutre ofchitosan.II.molecular packing in nitcellofcyrstal[J]. Sen-I Gakkaishi, 1988, 93,147-151.
    [3] ROUT D K, PULAPURA S K, GROSS R A. Liquid cyrstalline characteristics ofsite-selectively-modified chitosan[J]. Macromolecules, 1993, 26, 5999-6006.
    [4] TERBOJEVICH M, COSANI A, FOCHER B et al. Chitosans from euphusiasupebra. I: solution properties[J]. Cabrohydrate Polymers, 1992, 18, 35-42.
    [5] RATTO J A, HATAKEYAMA T, BLUMSTEIN R B. Differential scanningcalorimetry investigation of phase transitions in water/chitosan systems[J].Polymer.1995, 15(36): 2915-2919.
    [6] FREIBERG S and ZHU X X. Polymer microspheres for controlled drug release[J].International Journal of Pharmaceutics, 2004, 282: 1-18.
    [7]黎观红,翟明任,晏向华等. VC的营养和应用研究进展[J].粮食与饲料工业,2001, 4, 28-32.
    [8]闻芝梅,陈君石,现代营养学[M].北京,人民卫生出版社, 1988: 140-153.
    [9] ZHAO J, WANG Z N, WEI X L, et al. Phase behavior and rheological propertiesof the lamellar liquid crystals formed in dodecyl polyoxyethylene polyoxypropyleneether/water system[J]. Indian Journal of Chemistry, 2011, 50A, 641-649.
    [10]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社, 1990,261-278.
    [11] LU R, GAO X. Study of rheological properties of soy bean lipoid[J]. FoodScience, 2006, 27, 51-54.
    [12] SIDDING M A, RADIMAN S, MUNIANDY S V, et al. Structure of cubic phasesin ternary systems glucopone/water/hydrocarbon [J]. Colloid Sur A Physicochem EngAspects, 2004, 236, 57-67.
    [13] PORTER R S, JOHNSON J F. The entanglement concept in polymer systems[J].Chem.Rev., 1966, 66, 1-27.
    [14]段炼,薛宇,李国英.天然胶原的稳态流变性能和数学模拟[J].功能材料,2010, 12, 2068-2071.
    [15]魏娟,王仲妮,赵静,吴同浩.非离子表面活性剂溶致液晶的流变性质[J].食品与药品, 2010, 12, 210-212.
    [16]冯尚华,王红霞.温度对两种不同立方相液晶流变性的影响[J].精细化工,2006, 23, 863-866.
    [17]王仲妮,赵静,周武等.层状液晶的流变性质和释药行为研究[J].食品与药品,2011, 13, 157-161.
    [1] Garti N, Clement V, Leser M, Aserin A, Fanun M. Sucrose estermicroemulsions[J]. Journal of Molecular Liquid. 1999, 80, 253-296.
    [2] Szuts A, Budai-Szucs M, Eros I, Otomo N, Szabo-Revesz P. Study of gel-formingproperties of sucrose esters for thermosensitive drug delivery systems[J]. InternationalJournal of Pharmaceutics. 2010, 383, 132-137.
    [3] Fanun M. Propylene glycol and ethoxylated surfactant effects on the phasebehavior of water/sucrose stearate/oil system[J]. Journal of Dispersion Science andTechnology. 2007, 28, 1244-1253.
    [4] Kunieda H, Kabir H, Aramaki K, Shigeta K. Phase behavior of mixedpolyoxyethylene–type nonionic surfactants in water[J]. Journal of Molecular Liquids.2001, 90, 157-166.
    [5] Wang Z N, Zhou W. Lamellar liquid crystals of brij 97 aqueous solutionscontaining different additives[J]. Journal of Solution Chemistry. 2009, 38, 659-668.
    [6] Brooks B W, Richmond H N. The application of a mixed nonionic surfactanttheory to transitional emulsion phase inversion: 2. The relationship between surfactantpartitioning and transitional inversion-a thermodynamic treatment[J]. Journal ofColloid Interface Science. 1994, 162, 59-66.
    [7] Ghoulam M B, Moatadid N, Gracia A, Lachaise J. Quantitative effect of nonionicsurfactant partitioning on the hydrophile-lipophile balance temperature[J]. Langmuir.2004, 20, 2584-2589.
    [8] Oh K H, Baran J R, Wade W H, Weerasooriya V. Temperature insensitivemicroemulsion phase behavior with nonionic surfactants[J]. Journal of DispersionScience and Technology. 1995, 16, 165-188.
    [9] Fanun M and Al-Diyn W S. Temperature effect on the phase behavior of thesystems water/sucrose laurate/ethoxylated-mono-di-glyceride/oil[J]. Journal ofDispersion Science and Technology. 2006, 27, 1119-1127.
    [10] Alam M M, Varade D, Aramaki K. Solubilization of triglycerides in liquidcrystals of nonionic surfactant[J]. Journal of Colloid and Interface Science. 2008, 325,243-249.
    [11] Wang Z N, Diao Z Y, Liu F, Li G Z, Zhang G Y. Microstructure and rheologicalproperties of liquid crystallines formed in Brij97/water/IPM system[J]. Journal ofColloid and Interface Science. 2006, 297, 813-818.
    [12] Zhao J, Wang Z N, Wei X L, Liu F, Zhou W, Tang X L, Wu T H. Phasebehaviour and rheological properties of the lamellar liquid crystals formed in dodecylpolyoxyethylene polyoxypropylene ether/water system[J]. Indian Journal ofChemistry. 2011, 50A, 641-649.
    [13] Israelachvili J N, Mitchell D J, Ninham B W. Theory of self-assembly ofhydrocarbon amphiphiles into micelles and bilayers[J]. Journal of the ChemicalSociety, Faraday Transactions 2. 1976, 72, 1525-1568.
    [14] Véronique M S, Michèle G, Philippe M, Lionel C. Shear-induced phasetransitions in sucrose ester surfactant[J]. Journal of Colloid and Interface Science.2004, 270, 270-275.
    [15] Cordobes F, Munoz J, Gallegos C. Linear viscoelasticity of the direct hexagonalliquid crystalline fhase for a heptane/nonionic surfactant/water system[J]. Journal ofColloid Interface Science. 1997, 187, 401-417.
    [16] Durreschmidt T, Hoffmann H. Organogels from ABA triblock copolymers[J].Colloid and Polymer Science. 2001, 279, 1005-1012.
    [17] Wang Z N, Liu F, Gao Y A, Zhuang W C, Xu L M, Han B X, Li G Z, Zhang G Y.Hexagonal liquid crystalline phases formed in ternary systems of Brij 97-Water-Ionicliquids[J]. Langmuir. 2005, 21, 4931-4937.
    [18] Miyoshi E, Nishinari K. Non-Newtonian flow behaviour of gellan gum aqueoussolutions[J]. Colloid and Polymer Science. 1999, 277, 727-734.
    [19] Diat O, Roux D, Nallet F. Effect of shear on a lyotropic lamellar phase[J].Journal de Physique II 3. 1993, 9, 1427-1452.
    [20] Nemeth Z, Halasz L, Palinkas J, Bota A, Horanyi T. Rheological behaviour of alamellar liquid crystalline surfactant-water system[J]. Colloids and Surfaces A. 1998,13, 107-119.
    [21] Alfaro M C, Guerrero A F, Munoz J. Dynamic viscoelasticity and flow behaviorof a polyoxyethylene glycol nonylphenyl ether/toluene/water system[J]. Langmuir.2001, 16, 4711-4719.
    [22] Wang Z N, Shi M L. China Surfactant Detergent and Cosmetics[J]. 1994, 4,169-171.
    [1]白岚,杜继煜,白宝璋.表面活性剂蔗糖酯[J].农业与技术, 2003, 23, 56-57.
    [2] Vlahov I R, Vlahova P I, Linhardt R J. Regioseleetive Synthesis of SucroseMonoesters as Surfactants[J]. J.Carbohydr.Chem., 1997, 16, 1-10.
    [3] Severson R F, Arrendale R F, Chortyk O T. Quantitation of the majoy cuticularcomposnents from green leaf of different tobaecoo types[J]. J.Agric.Food chem., 1984,32, 566-570.
    [4] Severson R F, Jaekson A W, Johnson D M. Faetors affecting their production andtheir role in nscet and disease resistance and smoke quality[J]. Recent Ady.Tob.Sci.,1985, 11, 105-174.
    [5] King R R, Calhoun L A, Singh R P, et al. Characterization of 2, 3, 4,3’-tetra-O-acylated suerose esters associated with the glandular trichomes oflycopersicon typicum[J]. J.Agrie .Food Chem., 1993, 41, 469-473.
    [6] Neal J J, Tingey W M, Steffens J C. Suerose esters of carboxylie acids inglandular trieomes of Solanum Berthaultii deter settling and Probing by green Peachaphid[J]. J.Chem.Ecol., 1990, 16, 487-497.
    [7] Holley J D, King R R, Singh R P. Glandular trichomes and the resistance ifSolanum berthaultti to Infection from Phytophthorn infeetans[J]. Can.J.Plant.Path.,1987, 9, 291-294.
    [8] Severson R F, Chortyk O T, Stephenson M G, et al. Characterization of naturalpestieide from nieotiana gossei[J]. ACS Symp.Ser., 1994, 38, 109-121.
    [9] Buta G J, Lusby W R, Neal J W, et al. Suerose esters from Nicotiana Gossi activeagains the Greenhouse whitefly Trialeuroides vaPorarorium[J]. Phytoehemistry, 1993,32, 859-864.
    [10] Qinghui Wang, Shufen Zhang, Jinzong Yang. Regioselective formation of6-O-acylsueroses and 6, 3’-di-O-acylsucroses via the stannylene acetal method[J].Carbohydrate Research, 2007, 342, 2657-2663.
    [11] Vladimir P, Torchilin. Structure and design of polymeric surfactant-based drugdelivery systems[J]. Journal of Controlled Release, 2001, 73, 137-172.
    [12] Amnon C Sintov. New microemulsion vehicle facilitates percutaneouspenetration in vitro and cutaneous drug bioavailability in vivo[J]. Journal ofControlled Release, 2004, 95, 173-183.
    [13] Araki Masuyama,* Chikara Endo, Shin-ya Takeda and Masatomo Nojima.Ozone-cleavable gemini surfactants, a new candidate for an environmentally friendlysurfactant[J]. Chemical Communications, 1998, 2023-2024.
    [14] Freiberg S and Zhu X X. Polymer microspheres for controlled drug release[J].International Journal of Pharmaceutics, 2004, 282, 1-18.
    [15] Dietrich D, Lothar R. Textures of liquid crystal[M]. Verlag Chemie, WeinheimNew York, 1978.
    [16] Wang Z N, Liu F, Gao Y A, Zhuang W C, Xu L M, Han B X, Li G Z, Zhang G Y.Hexagonal liquid crystalline phases formed in ternary systems of Brij97-Water-Ionicliquids[J]. Langmuir, 2005, 21, 4931-4937.
    [17] Diat O, Roux D, Nallet F. Effect of shear on a lyotropic lamellar phase[J].Journal de Physique II 3, 1993, 9, 1427-1452.
    [18] Nemeth Z, Halasz L, Palinkas J, Bota A, Horanyi T. Rheological behaviour of alamellar liquid crystalline surfactant-water system[J]. Colloids and Surfaces A. 1998,13, 107-119.
    [19] Alfaro M C, Guerrero A F, Munoz J. Dynamic viscoelasticity and flow behaviorof a polyoxyethylene glycol nonylphenyl ether/toluene/water system[J]. Langmuir,2001, 16, 4711-4719.
    [20]沈强,牟建海,李干佐.阴离子表面活性剂溶致液晶的流变性质[J].物理化学学报, 2001, 12, 69-76.
    [21]王红霞,张高勇.非离子表面活性剂液晶的线性粘弹性研究[J].化学学报,2001, 59, 1888-1893.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700