复合粘结剂铁矿球团氧化焙烧与还原行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁矿球团具有铁品位高、粒度均匀等优点,被越来越多地用于钢铁生产。作为制备球团不可或缺的原料之一,粘结剂对球团质量和生产过程具有重要影响,新型粘结剂的开发与应用成为高效利用劣质铁矿资源、提高钢铁生产效益的重要课题。中南大学开发的新型高效有机-无机复合粘结剂已成功应用于直接还原球团的生产,但由于缺乏系统的研究,该粘结剂目前尚未用于氧化球团的生产。此外,关于该粘结剂对球团还原焙烧动力学以及体积膨胀行为的影响及其作用机制尚不完全清楚。
     1本论文以膨润土粘结剂作为对比,深入研究了复合粘结剂对铁矿球团氧化焙烧与还原行为的影响,为复合粘结剂在氧化球团生产中的应用提供理论和技术依据,并为完善和发展复合粘结剂球团直接还原工艺提供理论指导。本论文的主要结论和创新点如下:
     (1)深入研究了复合粘结剂物化特性及热态行为。研究发现,复合粘结剂中有机组分和无机组分的含量分别为75.72%和24.28%,有机组分是具有芳香结构、带有羟基、羧基官能团的高分子化合物,在加热过程中,有机组分发生系列化学反应,释放出CO、H2、CO2、CxHy气体。
     (2)系统研究了复合粘结剂磁铁精矿球团的氧化动力学行为。研究发现,复合粘结剂降低了磁铁精矿球团氧化反应的表观速率常数,增大了气体扩散阻力。在800℃~1000℃时,球团氧化过程受界面化学反应和内扩散混合控制,表观活化能为44.70kJ/mol;但是温度超过1000℃时,球团内部还原气氛增强,氧化速率下降。
     (3)查明了复合粘结剂氧化球团矿制备的工艺特征,获得了优化的球团工艺技术参数。与膨润土粘结剂相比,复合粘结剂用量小、适宜成球水分高;复合粘结剂生球干燥速率快,适宜的预热和焙烧温度低。以磁铁精矿为原料时,复合粘结剂球团的预热温度由920℃降低至900℃,焙烧温度由1250℃降至1220℃。以赤铁精矿为原料时,焙烧温度由1280℃下降至1250℃。
     (4)深入研究了两种粘结剂铁矿球团的还原动力学行为。研究发现,还原所用球团的种类和粘结剂类型对动力学行为有重要影响。与焙烧球团相比,预热球团的还原速率明显较高,而且动力学控制特性也显著不同;虽然复合粘结剂不改变球团还原过程的控制特性,但可降低还原后期浮氏体转化为金属铁的表观活化能,提高还原速率。
     采用预热球团还原,当还原度低于50%时,复合粘结剂和膨润土球团的表观活化能分别为44.02kJ/mol和38.24kJ/mol,表明球团还原过程受混合控制;当还原度大于50%时,两种粘结剂球团还原反应的表观活化能分别为16.43kJ/mol和28.40kJ/mol,还原过程受内扩散控制。
     采用焙烧球团还原,当还原度低于50%时,复合粘结剂和膨润土球团的还原均受界面化学反应控制,表观活化能为47.03kJ/mol和50.48kJ/mol;还原度大于50%时,还原过程受界面化学反应和内扩散混合控制,表观活化能为29.67kJ/mol和39.11kJ/mol。
     (5)查明了复合粘结剂球团的还原膨胀行为。研究结果表明,以焙烧球团为原料时,两种粘结剂球团的体积膨胀率均随着还原温度的升高逐渐增大,且最大体积膨胀率低于40%。采用预热球团还原时,两种粘结剂球团的体积膨胀率随温度的升高和气氛中CO浓度的增加显著下降,当还原温度低于1000℃时,球团发生异常膨胀。
     (6)揭示了还原过程中球团体积异常膨胀机理。研究表明,球团在还原过程中的膨胀行为主要由金属铁晶粒的长大模式所决定。
     预热球团具有赤铁矿颗粒结晶不完善、表面存在晶格缺陷的特点,当在较低的温度下还原时,在晶格缺陷处优先形成少量铁晶核,随还原过程的推进,金属铁在少量铁晶核上以线性的纤维状方式长大,导致球团发生异常膨胀;但在较高的温度下和较强的还原气氛中还原时,由于金属铁的形成速率加快,铁晶粒发生兼并、互连,金属铁主要以平面的片状方式长大,球团体积膨胀率降低。
     焙烧球团中的赤铁矿结晶完善,表面活性低,还原过程中金属铁以层状形式向球团内部逐渐推进,在还原过程中的体积膨胀主要是由于还原初期Fe203向Fe304的晶形转变应力导致的。在较低的还原温度下,晶形转变应力随还原过程的进行逐渐消失,球团不发生异常膨胀;但在较高的还原温度条件下,晶形转变应力来不及消失,导致球团体积膨胀增大。
The proportion of iron ore pellet in steelmaking production keeps growing because of its high iron grade and uniform size. As one of the most indispensable ingredients for iron ore pelletizing, binder is very important for the production process of pellets and the quality of final products. The development and application of new binder is an important subject to make comprehensively use of inferior iron ores and increase the economic benefit of iron-making and steel-making plants. One new type composite binder, developed by Central South University, has been successfully applied in the production of direct reduction iron (DRI). However, the binder has not been used in the production of oxidized pellets due to the shortage of systematic research. On the other hand, the effects of composite binder on the reduction behavior of pellets and its mechanisms have not been clearly expounded.
     Aiming at providing theoretical guidance and technical support for its application in the production of oxidized pellets and reduced pellets, the effects of composite binder on the behaviors of oxidizing roasting and reduction roasting of pellets are investigated in contrast with bentontie in this research. The main conclusions and innovation points are as follows:
     (1) The physical-chemical properties show that composite binder is composed of organic component and inorganic component with mass fraction of75.72%and24.28%. Organic component is a kind of polymer compounds with aromatic structure and hydroxyl and carboxyl functional groups. There are a series of chemical reactions during the heating process of organic component. The pyrolysis gas products include CO, H2, CO2and CxHy.
     (2) The oxidizing kinetics demonstrates that composite binder can reduce the apparent rate constant of pellets and increase the gas diffusion resistance. Under the condition of the reaction temperature lower than1000℃, the oxidation process of pellets with composite binder is mixed controlled by chemical reaction and internal diffusion with apparent activation energy of44.70kJ/mol. The oxidation rate decreases due to the existence of reducing reaction of composite binder when the reaction temperature is higher than1000℃.
     (3) From the results of preparation technique for oxidized pellets, it can be concluded that the dosage of composite binder can be reduced. Meantime, the suitable moisture content in balling is increased by the addition of composite binder. By contrast with pellets prepared by bentonite, the drying of pellets with composite binder can be accelerated. Furthermore, the suitable preheating temperature and roasting temperature are decreased. For pellets prepared from magnetite concentrates, the suitable preheating temperature is decreased to900℃from920℃, and so does the roasting temperature to1220℃from1250℃. For pellets prepared from hematite concentrates, the roasting temperature is decreased to1250℃from1280℃.
     (4) The reduction dynamics of pellets is studied. The results show that the type of binders and pellets used for reducing has significant effect on reduction rate. For those pellets with different binder, the reduction rate of preheated pellets is higher and that of oxidized pellets, while the kinetic mechanism is different between those pellets with two different binders. The reduction rate of pellets with composite binder is higher than pellets with bentonite.
     Using preheated pellets for reduction, the reduction process of pellets with composite binder and bentonite are controlled by the combined effect of both chemical reaction andgas diffusion mechanisms when reduction degree is less than50%. And the apparent activation energy is44.02kJ/mol and38.24kJ/mol, respectively. When reduction degree is more than50%, the apparent activation energy respectively is16.43kJ/mol and28.4kJ/mol, which indicates reducing reactions are controlled bythe gas diffusion mechanism.
     Using oxidized pellets for reduction, the reducing process of pellets with composite binder or bentonite is both controlled by chemical reaction with apparent activation energy of47.03kJ/mol or50.48kJ/mol when reduction degree is less than50%. While the apparent activation energy of pellets with two different binders is decreased to29.67kJ/mol and39.11kJ/mol, which indicates that process is hybrid controlled when reduction degree is more than50%.
     (5) Study on reduction swelling behavior of pellets shows that the swelling index of oxidized pellets is increased with increasing the reaction temperature and CO content. And the maximum swelling indexes of oxidized pellets are all less than40%. For the reducing of preheated pellets, the swelling index is obviously decreased accompany with the increase in temperature and CO content, and abnormal swelling is obtained when temperature is lower than1000℃.
     (6) The reduction swelling mechanisms of pellets with composite binder are investigated. The results reveal that the swelling behavior is determined by propagation mode of metallic iron grains.
     For preheated pellets, the initial Fe2O3is not fully crystallized with a little crystal lattice disfigurement, which gives priority to the formation of ferrous nucleus once reduced at low temperature. With the advancement of reduction process, metallic iron will grow up in the form of fibors, leading to catastrophic swelling. With the increasing of reducing temperature and CO content, the formation rate of metallic iron is speed up and iron grains merge with one another, growing up in flat-sheet mode, further resulting into decreasing of the swelling index.
     For oxidized pellets, Fe2O3is well-crystallized and with low surfactivity. Layered metallic iron is formed from outside to inside and the swelling of pellets is mainly caused by the disruptive stresses set-up during the transformation of hematite to magnetite. When oxidized pellets are reduced at lower temperature, the disruptive stresses will disapperare during the reduction progress, resulting in the normal swelling of pellets. With the increasing of reducing temperature, abnormal swelling of pellets will be obtained before the the disruptive stresses disappeare.
引文
[1]杨金善.世界钢铁工业发展简介[J].冶金信息导刊,1999(1):20~22.
    [2]金钰嘉.钢铁冶金百科全书[M].北京:冶金工业出版社,2001:472-477,543,713
    [3]Kotobu Nagai. Science and technology of steel in the century [C]. ASIA STEEL1 2000. The Chinese Society for Metals. Sept.26-29, Beijing,1(A):21-35.
    [4]蒲海清.依靠科技进步调整结构,迎接中国钢铁工业新世纪挑战[J].钢铁,1999,34(Suppl.):5.
    [5]Worldsteel association:Crude steel 2011 [DB/OL].http://www.worldsteel.org/ statistics/statistics-archive/2011-steel-production, html.
    [6]李建.复合粘结剂磁铁矿球团直接还原工艺与机理研究[D].长沙:中南大学,2006.
    [7]周红.铁精矿冷固结球团直接还原的机理研究[D].长沙:中南工业大学,1998.
    [8]杨天均,黄典冰,孔令坛.熔融还原[M].北京:冶金工业出版社,1998:2-4,150.
    [9]E.Kasai, T.Kitajima and T.Kawaguchi. Carbothermic reduction in the combustion bed packed with composite pellets of iron oxide and coal [J]. ISIJ International, 2000,40(9):842-849.
    [10]易可.国内外高炉球团矿使用比例[J].烧结球团,33(4):53.
    [11]徐匡迪,洪新.电炉短流程回顾和发展中的若干问题[J].中国冶金,2005,15(7):1-8.
    [12]刘国根,王淀佐,邱冠周.国内外直接还原现状及发展[J].矿产综合利用,2001,5:20~24.
    [13]史占彪.直接还原技术的新发展[J].中国冶金,2002,12(3):15~18.
    [14]陈永国,郭森魁,何祥义.铁直接还原技术的现状及发展[J].上海金属,1999,21(4):40~42.
    [15]冯燕波,曹维成,杨双平等.中国直接还原技术的发展现状及展望[J].中国冶金,2006,16(5):10~13.
    [16]段东平,万天骥,任大宁.利用普通品位铁矿的煤基直接还原新工艺研究[J].钢铁,2001,36(8):7~11.
    [17]张汉泉,朱德庆.直接还原的现状与发展[J].钢铁研究,2002,2:51-54.
    [18]魏国,赵庆杰,董文献,等.直接还原铁生产概况及发展[J].中国冶金,2004,14(9):16~20.
    [19]范晓慧,邱冠周,姜涛,等.我国直接还原铁生产的现状与发展前景[J].炼铁,2002,21(3):53~55.
    [20]秦民生.非高炉炼铁[M].北京:冶金工业出版社,1988.
    [21]叶匡吾.欧盟高炉炉料结构述评和我国球团生产的进展[J].烧结球团,2004,29(4):4~7.
    [22]徐矩良.我国高炉合理炉料结构探讨[J].炼铁,2004,23(4):25~26.
    [23]周曲波.我国铁矿业产品结构调整的方向[J].金属矿山,2001,(8):1-4.
    [24]K.梅耶尔.铁矿球团法[M].冶金工业出版社,1986,3.
    [25]工程机械信息中.2010年球团矿产量创新高[DB/OL]. http://www.cmsino. com/2011/0817/2000.html.
    [26]范晓慧,代林晴,王祎,等.我国球团矿生产技术进展[J].金属矿山,2006,Z8:73~78.
    [27]李晓芹.内配碳在赤铁矿氧化球团制备中的行为研究[D].长沙,中南大学,2009.
    [28]张一敏.球团理论与工艺[M].北京:冶金工业出版社,2002:3~11.
    [29]I.S.布林佐.北美的铁矿石和热压块市场[J].国外金属矿山,2000,(5):58~63.
    [30]王维兴.2010年我国钢铁技术装备水平持续提高[DB/OL]. http://www. chinasie. org. cn/news_info.aspx?lei=36&id=64051,2010.
    [31]叶匡吾.关于我国球团矿质量问题的探讨[J].烧结球团,2005,30(5):1-4.
    [32]叶匡吾.我国球团生产的现状和展望[J].烧结球团,2003,28(1):1~4.
    [33]叶匡吾.努力推进我国球团矿的生产[J].烧结球团,2007,(5):1-5.
    [34]张新兵,朱梦伟.膨润土对我国球团生产的影响[J].烧结球团,2003,128(6):3-7.
    [35]张克诚,田发超,潘建等.球团矿焙烧过程中铁品位的变化规律研究[J].湖南冶金,2003,31(4):11~14.
    [36]Huang Yanfang, Zhang Yuanbo, Han Guihong, etal. Sodium-modification of Ca-based bentonite via semidry process [J]. Journal of Central South University of Technology (English Edition),2010,17(6):1201-1206.
    [37]方觉,龚瑞娟,赵立树,等.球团矿氧化焙烧及还原过程中的强度变化[J].钢铁,2007,42(2):11~13.
    [38]傅菊英,姜涛,朱德庆.烧结球团[M].长沙:中南工业大学出版社,1995, 264~265.
    [39]姜桂兰,张培萍.膨润土加工与应用[M].北京:化学工业出版社,2005,13~15.
    [40]傅菊英,姜涛,朱德庆.烧结球团[M].长沙:中南工业大学出版社,1995,259.
    [41]K.Meyer. Pelletizing of iron ores [M]. Springer-Verlag, Berlin Heidelberg NewYork,1980.
    [42]F.Ball, J.Dartnell, J.Davison, et al, Agglomeration of iron ores [M]. American Elsevier Publishing Company, Inc., NewYork,1973.
    [43]Mondadori, A Guide to Rocks and Minerals [M], Simon&Schuster, entry 234.
    [44]T.C.Eisele, S.K.Kawatra, A review of binders in iron ore pelletization [J]. Mineral Processing and Extractive Metallurgy Review,2003,24:1-90.
    [45]叶匡吾.关于我国球团矿质量问题的探讨[J].烧结球团,2005,30(5):1~4.
    [46]杨永斌,黄桂香,姜涛,等.有机粘结剂替代膨润土制备氧化球团[J].中南大学学报(自然科学版),2007,38(5):850~856.
    [47]张新兵,朱梦伟.膨润土对我国球团生产的影响[J].烧结球团,2003,28(6):3-6.
    [48]李朝晖.论提高球团矿铁品位与经济效益[J].烧结球团,1998,23(6):10~13.
    [49]刘国防.济(南)钢提高球团矿品位的实践[J].烧结球团,2001,26(6):37~38.
    [50]张永祥,田发超,张克诚,等.添加复合粘结剂的球团试验[J].烧结球团,2004,29(5):9-11.
    [51]S.K.Kawatra, S.J.Ripke. Developing and understanding the bentonite fiber bonding mechanism [J]. Minerals Engineering,2001,14(6):647-659.
    [52]S.K.Kawatra, S.J. Ripke. Laboratory studies for improving green-ball strength in bentonite-bonded magnetite concentrate pellets [J]. International Journal of Mineral Processing,2003,72(1/4):429-441.
    [53]杨大兵,张一敏,吴卫国,等.武钢金山店高品位球团矿制备研究[J].烧结球团,2003,28(3):12~15.
    [54]李宏煦,王淀佐,胡岳华,等.羧甲基淀粉钠提高球团强度的机理[J].中南工业大学学报:自然科学版,2001,32(4):351~354.
    [55]阴继翔.粘结剂对球团性能的影响分析[J].太原理工大学学报,2000,31(5):556~558.
    [56]薛正良,周国凡,阳洪.粘结剂在生球抗爆方面的作用机理[J].烧结球团,1995,20(5):7-13.
    [57]苏曦,潘宝巨,葛铸高.通过降低膨润土配比获得优质球团矿[J].钢铁研究学报,1997,9(增刊):1-6.
    [58]曹朝真.铁矿球团用膨润土改性技术及工艺的研究[D].石家庄,河北理工大学.
    [59]周佳荣,易发成,侯莉.钙基膨润土的钠化改型方法研究[J].中国矿业,2007,16(3):84~87.
    [60]易发成,戴淑霞,侯兰杰,等.钙基膨润土钠化改型工艺及其产品应用现状[J].中国矿业,1997(6):65~68.
    [61]H ONAL M, SARIKAYA Y. Preparation and characterization of acid-activated bentonite powders [J]. Powder Technology,2007,172:14-18.
    [62]Yan Jinghui, Li Jingmei, Hui Buoran. Study on the technics of preparing high-efficient active white clay by the method of half-dry [J]. Journal of Changchun University of Science and Technology,2003,26(4):37-39.
    [63]姜涛,李宏煦,黄柱成.铁矿球团粘结剂分子结构设计的初步研究[J].烧结球团,1998,23(1):30~35.
    [64]S. K. Kawatra, S. J. Ripke. Effects of bentonite fiber formation in iron ore pelletization [J]. International Journal of Mineral Processing,2002,65(3/4): 141-149.
    [65]黄天正.竖炉球团加有机粘结剂的经济效益[J].烧结球团,2000,25(2):4~7.
    [66]R.P.deSouza, C.F.deMendonca, T.Kater. Production of acid iron ore pellet for direct reduction using an organic binder [J]. Mining Engineering Magazine,1984, 1437-1441.
    [67]T.Kater, R.G.Steeghs. Organic binders for iron ore pelletization [C]. Mining Symposium At Duluth-MN, USA,1984.
    [68]范晓慧,姜涛,李光辉,等.应用有机粘结剂完全替代膨润土生产氧化球团矿的方法[P].CNIO1423892A.
    [69]O.Sivrikaya, A.I.Arol. Pelletization of magnetite ore with colemanite added organic binders [J]. Powder Technology,2011,210:23-28.
    [70]黄天正.球团添加物的研究现状与发展[J].烧结球团,1997,22(3):1~7.
    [71]张振慧.一种铁矿球团有机粘结剂及其使用方法[P].CN 1962898A
    [73]陈瑛,汤宝贤.粘结剂种类和用量对球团矿质量的影响[J].本钢技术,1994,(6):8-15.
    [74]李海普,钟宏.磁铁精矿粉造块中合成有机高分子粘结剂的研究[J].金属矿 山,2011,305(11):27~30.
    [75]李宏煦,姜涛,邱冠周,等.铁矿球团有机粘结剂的分子构型及选择判据[J].中南工业大学学报,2000,31(1):17~20.
    [76]王毅,冯辉霞,张婷,等.膨润土复合改性研究[J].中国非金属矿工业导刊,2007,61(3):25~28.
    [77]刘新兵,杜烨.含有机粘结剂人工钠化膨润土在球团生产中的应用[J].烧结球团,2003,28(6):47~50.
    [78]潘金海.一种冶金有机粘结剂[P].94111064.8.
    [79]姜涛,李光辉,张元波,等.一种复聚物型铁矿球团有机粘结剂及其使用方法[P].CN 101693950A.
    [80]刘国根.直接还原冷固球团HA型粘结剂及其原料特征的研究[D].长沙:中南工业大学,1997.
    [81]Jiang Tao, HanGui-hong, Zhang Yuan-bo, et al. A further study on the interaction between one of organic active fractions of the MHA binder and iron ore surface [J]. International Journal of Mineral Processing,2011,100(3-4):172-178.
    [82]Jiang Tao, HanGui-hong, Zhang Yuan-bo, et al. Improving the extraction yield of humic substances (HS) from lignite with anthraquinone (AQ) in alkaline solution [J]. Journal of Central South University of Technology (English Edition), 2011,18(1):68-72.
    [83]Jiang Tao, Han Gui-hong, Zhang Yuan-bo, et al. Structure characetristics and agglomeration behaviors with iron concentrates of humic substances (HS) extracted with different methods [J]. Journal of Central South University of Technology (English Edition),2011,18(4):1041-1046.
    [84]Han Guihong, Zhang Yuanbo, Jiang Tao, et al. Characteristics of humin fractions associated with inorganic minerals obtained by NaOH, and NaOH assisted with AQ extraction procedures [J]. Journal of Central South University of Technology,2012,19(1):1-5。
    [85]赵波.腐植酸分子中与多环芳烃作用的核心官能团研究[D].西安:西安建筑科技大学,2009,5.
    [86]邱冠周,姜涛,徐经沧,等.冷固结球团直接还原[M].长沙:中南大学出版社,2001.
    [87]Qiu Guanzhou, Jiang Tao, Fan Xiaohui, et al. Effects of binders on balling behaviors of iron ore concentrates [J]. Scandinavian Journal of Metallurgy 2004; 33:39-46.
    [88]P.A.Ilmoni, J.Uggla. Kulsintringsforsok med Malmbergets A-10 slig, Jernkontoretstekniskarad [J]. Meddelande Nr,1955,217(18):803-866 (In Swedish).
    [89]S.P. E.Forsmo. Oxidation of magnetite concentrate powders during storage and drying [J]. International Journal of Mineral Processing,2005,75:135-144.
    [90]肖琪.团矿理论与实践[M].长沙:中南工业大学出版社,1991.
    [91]丁子上.硅酸盐物理化学[M].北京:中国建筑工业出版社,1987.
    [92]肖兴国,马志,吕建华.磁铁矿球团干燥过程动力学[J].东北工学院学报,1990,11(4):334~339.
    [93]黄典冰,孔令坛,林宗彩.生球干燥过程及其数学模型[J].金属学报,1992,28(12):B533~B539.
    [94]S.R.B.Cooke, T.E.Ban. Microstructures in iron ore pellets [J]. Trans. AIME,1952, 193:1053-1058.
    [95]S. R. B.Cooke, W. F. Stowasser, The effect of heat treatment and certain additives on the strength of fired magnetite pellets [J]. Trans. AIME,193(1952): 1223-1230.
    [96]W.Callender. Heat fasting of artificial magnetite pellets [M]. Agglomeration (ed.W.Knepper), New York:Interscience 1962,641-667.
    [97]黄柱成,张元波,朱尚朴,等.以赤铁矿为主配加磁铁矿制备氧化球团的研究[J].钢铁,2004,39(4):9-13
    [98]黄柱成,张元波,陈耀铭,等.以赤铁矿为主配加磁铁矿制备的氧化球团显微结构[J].中南大学学报(自然科学版),2003,34(6):606~610.
    [99]姜昌伟,傅菊英,李思导,等.凹山磁铁精矿球团焙烧特性研究[J].长沙,中南工业大学学报(自然科学版),1998,29(5):435~437.
    [100]周福山,乔荣报.马钢凹磁精粉配加巴西赤铁精粉的球团生产及综合经济效益浅析[J].马钢职工大学学报,2002,12(3):2830.
    [101]H. Lepp. Stages in the oxidation of magnetite [J]. American. Mineralogist,1957, 42:679-681.
    [102]D.F.Ball, F.G.Butler, and H.Ratter:Constitution ofiron ore pelletsin relation to time and temperature of firing Iron and Steel [J].1966,42:150-152.
    [103]E.R.Schmidt and F.H.S.Vermaas. Differential thermal analysis and cell dimensions of some natural magnetites [J]. American Mineralogist,1955,40: 422-431.
    [104]郑红霞,汪琦,潘喜峰.磁铁矿球团氧化机理的研究[J].烧结球团,2003, 28(5):13~16.
    [105]L.A. Haas, J.C. Nigro, R.Moe. Magnetite oxidation of acid and fluxed taconite pellets [J]. Ironmaking Conference Proceedings,1992,51:533-549.
    [106]J.O.Edstrom. Study of the mechanism and kinetics of oxidation of green magnetite pellets [J].1957, Jernkontorets Ann.141:457-478.
    [107]J.D.Zetterstrom. Oxidation of magnetite concentrates [R]. Report of investigations, United States Department of the Interior, Bureau of Mines,1950, 4728:1-8.
    [108]D.Papanastassiou and G.Bitsianes. Mechanism and kinetics underlying the oxidation of magnetite in the induration of iron ore pellets [J]. Metall.Trans. 1973,4:487-496.
    [109]P.O.Pape, R.D.Frans and G.H.Geiger. Magnetite oxidation kinetics and thermal profiles in a magnetite pellet plant cooler [J]. Ironmaking and Steelmaking, 1976,3:138-145.
    [110]S.E.Olsen and T.Malvik. Mineralogy of iron ore and structure of the pellets [C]. 5th Symposium on Agglomeration,1989:25-27:299-309.
    [111]J.C.RuizSierra, J.M.Badie and F.ChejneJanna. Non-isothermal conditions inside magnetite pellet due to its oxidation by air [J]. Ironmaking and Steelmaking, 1994,21:114-117.
    [112]A. R. Firth. Interactions between magnetite oxidation, calcinations of carbonate minerals and melt formation in iron ore pellets [C]. Iron Ore Conference, Fremantle WA,2005,19-21:335-341.
    [113]戴云朵,郭兴敏,张家芸.镁(Ⅱ)对浮氏体还原过程的影响[J].中国稀土学报,2006,24(专辑):140~143.
    [114]S.P.E.Forsmo, A.Hagglund. Influence of the olivine additive fineness on the oxidation of magnetite pellets [J]. International Journal of Mineral Processing. 2003,70(1-4):109-122.
    [115]K.Natesan, W.O.Philbrook. Mathematical model for reaction rate and temperature profile during oxidation of magnetite pellets [C]. Ironmaking Conference, Toronto, Canada, April 14-16,1969, TSM/AIME, New York, 411-426.
    [116]庄剑鸣.用化学分析法对球团氧化动力学的研究[J].烧结球团,1993,18(3):7-11.
    [117]丁超.磁铁矿低温氧化及动力学研究[D].合肥工业大学,2008,54..
    [118]别尔曼.磁铁精矿球团的氧化动力学[J].国外链篦机—回转窑氧化球团译文集2:12~15.
    [119]P.O.Pape. Oxidation kinetics of magnetite pellets [J]. Ironmaking and Steelmaking,1976,2:138-145.
    [120]K.Sun. Oxidation kinetics of cement-bonded nature hematite pellets metal [J]. ISIJ International,1992,32(4):489-495.
    [121]D.Papanastasiou, G.Bitsianes. Metall.Trans,1973,4:477-486.
    [122]梁儒全,赫翼成.磁铁精矿球团氧化反应动力学的研究[C].第五届全国冶金物理化学论文集,48~54.
    [123]姜昌伟.凹山磁铁精矿球团氧化机理与工艺制度的研究[D].长沙:中南工业大学,2000.
    [124]傅菊英,李云涛,姜昌伟,等.磁铁精矿球团氧化动力学[J].中南大学学报(自然科学版),2004,35(6):950~954.
    [125]葛英勇,季荣,袁武谱,等.新型有机粘结剂GPS用于铁矿球团的研究[J].烧结球团,2008,33(5):10~14.
    [126]黄桂香.应用新型有机粘结剂制备氧化球团的研究[D].中南大学,长沙,2007.
    [127]陈许玲,甘敏,范晓慧,等.有机粘结剂氧化球团固结特性及强化措施[J].中南大学学报(自然科学版),2009,40(3):550~555.
    [128]范晓慧,王祎,甘敏,等.提高有机粘结剂氧化球团矿强度的措施[J].钢铁研究学报,2008,20(5):5~8.
    [129]别特鲁索夫CH.,范广权.在生产铁矿球团时采用膨润土代用品的效果[J].国外钢铁,1996(4):1-3.
    [130]贺建峰,黄学英.济钢球团配加碱性复合粘结剂试验[J].山东冶金,2005,27(5):31~33.
    [131]刘新兵,杜烨.含有机粘结剂人工钠化膨润土在球团生产中的应用[J].烧结球团,2003,28(6):47~50.
    [132]曹立刚,王洪波,王杰.复合粘结剂(QNP)在包钢球团中的应用[J].烧结球团,2007,32(2):49~53.
    [133]张道远.MHA粘结剂在镜铁矿氧化球团制备中的应用研究[D].中南大学,长沙,2011.
    [134]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,2002:289,291~295,306~307.
    [135]李秋菊.微-纳米级铁矿粉气相还原动力学研究[D].上海,上海大学,2009: 7.
    [136]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987:193-207.
    [137]Q.Tasy, T.Ray, The model of hematite reduction with hydrogen plus carbon monoxide mixture [J]. AIChE.1976,22:1064-1079.
    [138]J.Szekely, J.W.Evans, and H.Y.Sohn. Gas-solid reactions [M]. London: Academic Press,1976:66-89.
    [139]梁连科,车荫昌,杨怀,等.冶金热力学及动力学[M].沈阳:东北工学院出版社,1990:256~266.
    [140]王筱留.钢铁冶金学[M].北京:冶金工业出版社,2000:90-95.
    [141]R.Spitzer. Generalized model for the gaseous, topochemical reduction of porous hematite spheres [J]. Trans. Met. Soc. AIME.1966,236:1715-1724.
    [142]S.Homma, S.Ogata, J.Koga, et al. Gas-solid reaction model for a shrinking spherical particle with unreacted shrinking core [J]. Chemical Engineering Science,2005,60:4971-4980.
    [143]B.V.Babu, A.S.Chaurasia. Heat transfer and kinetics in the pyrolysis of shrinking biomass particle [J]. Chemical Engineering Science,2004,59:1999-2012.
    [144]孙康.宏观反应动力学及其解析方法[M].北京:冶金工业出版社,1998:78~124.
    [145]J.Szekley, J.W.Evans. Structure model for gas-solid reaction with a moving boundary [J]. Chemical Engineering Science.1970,25:1091-1107.
    [146]J.Szekley. General structure model for non-catalytic gas solid reaction [J]. American Chemical Society,1974,9B:143-151.
    [147]H.Y.Sohn, J.Szekely. A general dimensionless representation of the irreversible reaction between a porous solid and a reactant gas [J]. Chemical Engineering Science.1972,27:763-778.
    [148]J.Zhang, O.Ostrovski. Iron ore reduction/cementation:Experimental results and kinetic modeling [J]. Ironmaking and Steelmaking,2002,29; 15-21.
    [149]B.S.Sampath. Modeling of non-catalytic gas-solid reaction-I.transient analysis of the paraticle pellet model [J]. Chemical Engineering Science.1975,30: 125-134.
    [150]华一新.冶金过程动力学[M].北京:冶金工业出版社,2004:162-165.
    [151]M.Ettabirou, B.Dupre and C.Gleitzer. Hematite ore reduction to magnetite with CO/CO2 kinetics and microstructure [J]. Steel research,1986,57(7):306-311.
    [152]J.M.Ausman, C.C.Watson. Mass transfer in a catalyst pellet during regeneration [J]. Chemical Engineering Science,1962,17:323-329.
    [153]HeungWon KANG, Won Sub CHUNG, and Takeaki MURAYAM. Effect of iron ore size on kinetics of gaseous reduction [J]. ISIJ International,1998,38(2): 109-115.
    [154]HeungWon KANG, Won Sub CHUNG, and Takeaki MURAYAM. Effect of iron ore shape on gaseous reduction rate [J]. ISIJ International,1998,38(11): 1194-1200.
    [155]A.Bonalde, A.Henriquez and M.Manrique. Kinectic analysis of the iron oxide reduction using hydrogen-carbon monoxide mixtures as reducing agent [J]. ISIJ International,2005,45(9):1255-1260.
    [156]E.T.Turkdogan, J.V.Vinters. Gaseous reduction of iron oxides:Part I. reduction of hematite in hydrogen [J]. Metallurgical Transactions,1971,2:3174-3187.
    [157]陈宇飞,张宗诚.多孔铁矿石球团还原动力学[J].化工冶金,1987,8(2):9~10.
    [158]齐渊洪,周渝生,蔡爱平.球团矿的还原膨胀行为及其机理的研究[J].钢铁,1996,31(2):1-5,86.
    [159]T.Turkdogan, J.V.Vinters. Catalytic Effect of iron on decomposition of carbon monoxide:I. carbon deposition in H2-CO mixtures [J]. METALLURGICAL AND MATERIALS TRANSACTIONS B,1974,5:10-18.
    [160]R.Mutso. Diss. Abslr. Ini.,1980,40 (10):278.
    [161]T.Sharma, R.C.Gupta and B.Parakash. Effect of firing condition and ingredients on the swelling behaviour of iron ore pellets [J]. ISIJ Int.,1993,33 (4):446-453.
    [162]Mei.Chang, L.C.De Jonghe. Whisker growth in reduction of iron oxides [J]. Metallurgical and Materials Transactions B,1984,15(4):685-694.
    [163]S.Sayama, Y.Suzuki, Y.Ueda, et al. Trans. ISIJ.,1979,19:521-528.
    [164]J.K.Wright, A.L.Morrison. Australia/Japan Extractive Metallurgy Symp. Sydney, Australia,16-18 July, (1980),167.
    [165]P.C.Hayes, P.Grieveson. The effects of nucleation and growth on the reduction of Fe2O3 to Fe3O4[J]. Metallurgical and Materials Transactions B,1981,12(2): 319-326.
    [166]T.Sharma, R.C.Gupta and B.Parakash. Effect of gangue content on swelling behaviour of iron ore pellets [J]. Mineral Engineering,1990,3(5):509-516.
    [167]A.A.E1-Geassy. M.F.Mekawy and A.A.Omar. Behaviour of sodium chloride during firing and reduction of iron oxide [J]. TIZ Int.,1989,113(2):98-102.
    [168]T.Sharma, R.C.Gupta and B.Prakashp. Effect of reduction rate on the swelling behaviour of iron ore pellets [J]. ISIJ International,1992,7(32):812-818.
    [169]J.T.Moon, R.D.Walker. Swelling of iron oxide compacts during reduction [J]. Ironmaking Steelmaking,1975,2:30-35.
    [170]S.Taniguchi, M.Ohmi and H.Fukuhara. Influence of structural changes and swelling during reduction upon crushing strength of a metallized pellet [J]. Trans. Iron Steel Inst,1978,10(18):633-640.
    [171]J.K. Wright. Volume changes of high-grade iron ore pellets reduced in a fixed bed under isothermal and non-isothermal conditions [J]. Trans. Iron Steel Inst. Jpn,1977,17:726-731.
    [172]G.Thaning. Reduction strength of superfluxed pellets made from rich magnetite concentrate [J]. Ironmaking andSteelmaking,1976,2:57-63.
    [173]T.Sharma, R.C.Gupta and B.Prakash. Swelling behaviour of iron ore pellets[C]. 36th Annual Tech. Meeting of Ind. Inst. Met., Rourkela, Nov.1982.
    [174]T.Sharma, R.C.Gupta and B.Prakash. Degradation of pellets in blast furnace [J]. All India Seminar on Extractive Metallurgy of Iron, Ind. Inst. Met., Bhilai, (1984),111-121.
    [175]S.Sayama.Y.Suzuki, Y.Ueda and S.Tokoyama. Trans. Iron Steel Inst. Jpn.,1979, 19:521-528.
    [176]H.Itaya, H.W.Gudenau and K.S.Goto. Effects of sodium chloride vapor on reducibility of iron ores and on the sintering rate of metallic iron [J]. Trans. ISIJ, 1974,15:429.
    [177]T.S.Sharma, R.C.Gupta, B.Prakash. Effect of Pore on the swelling behaviour of iron ore pellets and briquettes [J]. ISIJ International,1991,3(31):312-314.
    [178]M.1.Nasr, A.A.Omar, M.M.Hessiten, et al. Carbon oxide monoxide reduction and compacts accompanying swelling of iron oxide compacts [J]. ISIJ International,1996,2(36):164-171.
    [179]吕志义,沈茂森,康文革.配加膨润土抑制球团矿还原膨胀的试验研究[J].包钢科技,2011,37(4):32~35.
    [180]李艳茹,李金莲,张立国,等.添加熔剂对球团矿还原膨胀率的影响[J].钢铁,2009,44(10):14~16.
    [181]W.K.Lu. Whisker growth during iron ore reduction [J]. Scandinavian Journal of Metallurgy,1973,2(6),273-276.
    [182]杨兆祥,杨胜义.马钢铁精矿生产球团矿的可行性研究(之二)制取MgO质酸性球团矿[J].烧结球团,1999,24(3):1.
    [183]Shoji HAYASHI, Yoshiaki IGUCHI. Abnormal swelling during reduction of binder bonded iron ore pellets with CO-CO2 gas mixtures [J]. ISIJ International, 2003,43(9):1370-1375.
    [184]N.B.Carter, et al. Major variables influencing hematite pellet properties [J]. Ironmaking Steelmaking,10(6):243-253.
    [185]周李丽,冉勇,盛国英,等.泥炭土连续碱抽提腐植酸的分子结构特征[J].分析化学,2002,30(11):1303~1307.
    [186]周志玲.低煤阶煤及不同化学组分热解甲烷和氢气的生成特征与机理[D].太原理工大学,2010,29.
    [187]M.C.Terkhi, F.Taleb, P.Gossart, et al. Fourier transform infrared study of mercury interaction with carboxyl groups in humic acids [J]. Journal of Photochemistry and Photobiology A:Chemistry,2008,198(2-3):205-214.
    [188]张维海,赵建社,孙庆津,等.砂岩型铀矿成矿过程中腐植酸的化学作用[J].地球科学与环境学报,2006,28(4):38~42.
    [189]刘先建,范肖南,武建军,等.溶胀煤的红外光谱及热重分析研究[J].安徽理工大学学报(自然科学版),2005,25(1):48~52.
    [190]吴国光,王祖讷.低阶煤的热重-傅里叶变换红外光谱的研究[J].中国矿业大学学报,1998,27(2):181~184.
    [191]何平笙.高聚物的结构与性能[M].北京:科学出版社,2011,431.
    [192]刘振海,徐国华,张洪林,等热分析与量热仪及其应用[M].北京,化学工业出版社,1.
    [193]吴平霄.蒙脱石活化及其与微观结构变化研究[D].中国科学院广州地球化学研究所,1998.50.
    [194]虞继舜.煤化学[M].北京:冶金工业出版社,2006,134.
    [195]刘振海,徐国华,张洪林,等.热分析及量热仪及其应用[M].北京:化学工业出版社,2010,353.
    [196]M.P.Skhonde, A.A.Herod, T.J.van der Walt. The effect of thermal treatment on the compositional structure of humic acids extracted from South African bituminous coal [J]. International Journal of Mineral Processing,2006,81(1).
    [197]余守志,朱琰,陈荣峰.八种腐植酸热重分析及其热分解动力学的研究[J].燃料化学学报,1990,18(1):8-15.
    [198]丁卫华,胡国新.Ca(OH)2对腐植酸粉末热解气化的影响研究[J].试验室研究与探索,2008,27(7):34~37.
    [199]曾凡桂,周志玲,王传格等.应用煤热解及氢气生成动力学分析煤热解氢气的反应类型—以屯兰2号煤镜煤为例[OL].中国科技论文在线,http://www.paper.edu.cn.
    [200]周晓青.润磨强化硫酸渣制备氧化球团的技术及机理[D].长沙,中南大学,2009,63.
    [201]傅菊英,朱德庆.铁矿氧化球团基本原理工艺及设备[M].长沙:中南大学出版社,2005:78-85,110-119,174~175,320.
    [202]杜白雨.聚合氯化铁(PFC)一腐植酸(HA)絮体的分形特征研究[D].北京,北京林业大学,2007.
    [203]J.c.Ruiz Sierra.磁铁矿球团高温氧化时其内部的非等温状况[J].Ironmaking& Steelmaking,1994.121(9):114-117.
    [204]张志雄.矿石学[M].北京:冶金工业出版社,1981,95~102.
    [205]Robert L.Stephenson, Ralph M. Smailer. Direct reduction iron technology and economics of production and use [M]. USA Library of Congress Card Cat,1980, 32.
    [206]F.哈伯斯(著),昆明工学院有色金属冶炼教研组(译).提取冶金院里(第一卷)冶金原理[M].北京,冶金工业出版社,1978,159.
    [207]M.Et-Tabirou, B.Dupre, C.Gleitzer. Hematite single crystal reduction into magnetite with CO - CO2 [J]. Metallurgical Transations B,1988,19B: 311-317.
    [208]J.Rodeerer, B.Dupre and C.Gleitzer. Influence and role of potassium in the reduction of hematite with CO/CO2. Partl:The hematite-magnetite step [J]. Steel Research,1987, (6):247-251.
    [209]Maneesh Singh, Bo Biorkman. Effect of processing parameters on the swelling behaiour of cement-bonded briquettes [J]. ISIJ International,2004,44(1): 59-68.
    [210]石光章利(著),朱兆民,薛培增(译).铁矿球团[M].鞍山黑色冶金矿山实际研究院,1980,227.
    [211]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京,冶金工业出版社,1993,235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700