再生锁模激光系统的稳定性及噪声抑制的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将准孤子解代入描述再生锁模激光系统的非线性薛定谔方程(Nonlinear Schr?dinger Equation, NLSE),首次推导出了脉冲参量的三个自治微分方程以及无啁啾和有啁啾两种情况下再生锁模激光系统的定态解。然后通过线性稳定性分析和数值模拟,深入探讨了该系统的稳定性,获得了如下一些创新性的理论研究成果。
     研究显示,随调制深度、调制频率、群速色散和自相位调制等参量的变化,系统的定态输出随之出现一些很有意义的变化。
     数值模拟显示出一个有趣的现象,即当啁啾作为色散的函数并随自相位调制参量变化时,数值模拟曲线中出现两个临界点,在两个临界点之间,啁啾随自相位调制变化的规律与其在两个临界点之外的变化规律相反。这是因为,只有足够大的群速色散补偿,才能抑制自相位调制产生的啁啾;而在两个临界点之间,啁啾在零群速色散附近,此时自相位调制的效应已经远远大于群速色散的效应,所以啁啾就会随着自相位调制的增大而增大。
     通过比较调制效应和自相位调制对脉冲压缩和脉冲稳定性的影响发现,调制效应对脉宽的影响要比自相位调制效应对脉宽的影响大得多;调制效应对激光稳定性的影响要比自相位调制效应对激光稳定性的影响小的多。
     本文在将噪声参量引入描述再生锁模激光系统的非线性薛定谔方程的基础上,运用孤子微扰理论,推导出了噪声抑制的条件,讨论了孤子的稳定性,首次研究了增益色散效应对噪声抑制以及孤子稳定性的影响。研究结果表明,如果系统参量处于确定的范围内,或者说,如果系统的参量满足推导出的噪声抑制条件,噪声就会被抑制;如果增益色散效应大于调制效应,孤子就是稳定的;如果增益色散效应小于调制效应,孤子就是不稳定的;如果增益色散效应等于调制效应,孤子就是临界稳定的。
Since the first ruby laser was invented in 1960, lasers have been developing for over forty years. Lasers have been utilized to everywhere in our life because of their good monochromaticity, coherence, directivity and high brightness, and they have been influencing and changing our life continuously. With the rapid development of ultrashort and ultrafast laser technique, more and more attentions have been paid on ultrashort pulse width and ultrahigh energy of pulse peak in many research fields. Lots of research has been done on additive pulse mode locking lasers and Kerr lens mode locking lasers, regeneratively mode locking laser is the same as other lasers, it is one of the best ultrashort pulse sources. Although many papers have been published to report laser systemssteady state pulse output and their stability, the paper on the steady-state output and its stability of regeneratively mode locking system is very little. Besides, laser output tends to be more ultrashort and higher energy, this will lead the nonlinear effects inside of laser system to be stronger. How are these nonlinear effects going to affect the laser output parameters? What kind of condition that the pulse parameters and nonlinear effects have to be satisfied in order to keep the stability of the lasers, and how to suppress the noise in laser systems? In order to answer these questions, it is very meaningful to study the stability and noise suppression of regeneratively mode locking lasers.
     Three autonomous equations for pulse parameters and their analytical expressions were deduced by substituting quasi-solition solution to Nonliear Schr?dinger Equation (NLSE) of regeneratively mode locking lasers for the first time. The effects of nonlinearity and modulation on pulse parameters and the stability of the pulse are discussed by numerical simulations. The condition for noise suppression was deduced too. All these results provide theoretical basis for future experiments.
     The main and new results of this thesis are as following:
     1. Three autonomous equations for pulse parameters were deduced by introducing quasi-solition solution to NLSE of regeneratively mode locking lasers. The steady-state solutions without chirp and with chirp were derived and their stability was analyzed by the method of linear stability analysis. The results demonstrate that the steady-state output parameters of the system evolve with different values of modulation parameters, group velocity dispersion (GVD) and self phase modulation (SPM). Steady-state output can be controlled by modulating the parameters in the systems.
     2. The analytical expressions of pulse parameters were derived for the first time, to the best of our knowledge. Chirp, pulse duration, bandwidth, and stability are set up as functions of self phase modulation and group velocity dispersion in addition to modulation parameter. The numerical simulations predict an interesting phenomenon which is new, namely, when chirp is a function of dispersion with SPM as a parameter, there are two crucial points in the figure, between these two crucial points, chirp changes with SPM totally reverse from the regularity that chirp obeys outside of these two crucial points. This is because SPM produces a chirp unless compensated by sufficient GVD. Between these two crucial points, GVD is approaching to zero, this means the effect of GVD is very small. Meanwhile, with the increasing of SPM, the effect of SPM is more dominant than that of GVD. That’s why chirp increases with the SPM increasing in the regime where it is between these two crucial points. The new phenomenon found by numerical simulations provides theoretical basis to help with controlling chirp in laser systems.
     3. The criterion for the stability of solitons was deduced. The effects of modulation and SPM on pulse shortening and stability are investigated and compared. The numerical simulations demonstrated that pulse duration decreases with the modulation parameter increasing in both negative and positive GVD regime. In positive GVD regime, pulse width increases with the increasing of SPM. In negative GVD regime, pulse width decreases with the increasing of SPM, but closed to zero GVD, the pulse duration increases with the increase of SPM. The effect of modulation on pulse shortening is much stronger than that of SPM on pulse shortening, and in comparison with SPM, the effect of modulation on laser stability is much weaker. So appreciable pulse shortening seems feasible with the introduction of additional SPM in negative GVD and the adjustment of the modulation parameters.
     4. The theoretical results showed short pulse durations can be optimized not only with a proper balance of SPM and GVD, but also with proper choice of modulation parameters. Whereas, the improperly balanced SPM and GVD and unsuitable modulation parameters result in pulse broadening or instability. Although our theory has been formulated to describe systems that achieve short duration pulse by using regeneratively mode locking, it can be applied to describe the operation of any laser that uses an actively mode locking. Our numerical studies provide a theoretical basis for using them to optimize system design. It should be possible to develop a versatile ultrashort-pulse generation technology with solid-state medium to achieve short pulse durations that utilize an appreciable fraction of their gain bandwidths. In general, the results are applicable to a wide range of solid-state actively mode locking laser systems.
     5. The condition for noise suppression and the stability of soliton were investigated by solving the modified NLSE with a noise term and using soliton perturbation method. The results show that the noise can be suppressed if the parameters are chosen properly, in other words, parameters have to lie within a certain range. Stable solitons can exist in the presence of the modulator and of gain dispersion if the gain dispersion and modulation meet a certain condition. The solitons are stable if the effect of gain dispersion is larger than the effect of modulation; The solitons are unstable if the effect of gain dispersion is smaller than the effect of modulation; the solitons are marginally stable if the effect of gain dispersion is equal to the effect of modulation. In conclusion, in real laser system, as long as the parameters of system are properly chosen, the noise can be contained, then the stability of laser will be improved.
引文
[1]张国威.《可调谐激光技术》.国防工业出版社,2002 年
    [2]蓝信钜等.《激光技术》.科学出版社,2000 年
    [3]D.E.Spence, P.N.Kean and W.Sibbett. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt.Lett.,1991,Vol.16, P 42-44
    [4]M.T.Asaki, C.P.Huang, D.Garvey, J.Zhou, H.C.Kapteyn, and M.M.Murnane.Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser. Opt.Lett.,1993, Vol.18, P 977-979
    [5]A.Stingl, M.Lenzner, Ch.Spielmann, F.Krausz, and A.J.Schmidt. Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser. Opt.Lett., 1995, Vol.20, P 602-604
    [6]I.D.Jung, F.X.Kartner, N.Matuschek, D.Sutter, F.Morier-Genoud, G.Zhang,U.Keller, V.Scheuer, M.Tilsch, And T.Tschudi. Self-starting 6.5fs from a KLM Ti:sapphire laser.Opt.Lett,1997,Vol.22, P1009-1011
    [7]A.Cheng, G.Tempea,T.Brabec, K.Ferencz and F.krausz, in Ultrafast phenomena XI,(Springer-Verlag,Berlin,1998)P 8
    [8]A.Baltuka, M.S.Pshenichnikov and D.A.Weiersman.Second-harmonic generation frequency-resolved optical gating in the single-cycle regime. IEEE.J.Quantum Electron. 1999, Vol.35, P 459-478
    [9]N.Karasawa, A.Suguro, H.Shigekawa, R.Morita and M.Yamashita. Optical pulse compression to 5.0 fs by use of only a spatial lightmodulator for phase compensation. J.Opt.Soc.Am B., 2001, Vol. 18, P 1742-1746
    [10]A.Baltuka, T.Fuji, andT.Kobayashi, Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control. Opt.Lett., 2002, Vol.27, P 306-308
    [11]张志刚,山根启作,森田隆二,山下干雄,胜吕彰.3.4 飞秒激光脉冲的产生和测量.中国科技论文在线,2003 年 10 月 26 日
    [12]林位株,赖天树.由自锁模钛定石激光器产生 19fs 脉冲.光学学报,1995 年, 15 卷 8 期,P 1151-1152
    [13]王屹山,陈国夫.宽带扩展腔产生 15 飞秒光脉冲实验研究.光学学报,1997 年, 17 卷 9 期,P 1185-1188
    [14]王屹山 陈国夫 赵尚弘 于连君 王贤华.宽带自锁模钛宝石飞秒激光脉冲的实验研究.光子学报,2000 年,29 卷 3 期,P 203-208
    [15]廖睿,文锦辉,邓莉,钟伟彬,林位株.自锁模钛宝石激光器突破10飞秒.中山大学学报(自然科学版),2001年,40卷1期,P 123-124
    [16]王志琦.飞秒激光技术的最新进展.应用光学,1999 年,20 卷 1 期P 17-22
    [17]M. Nisoli, S. De. Silvestri and O. Svelto. Compression of high energy laser pulses below 5 fs. Opt. Lett. 1997, Vol. 22, P 522-524
    [18]N. A. Papadogiannis, B. Witzel, C. Kalpouzos and D. Charalambidis. Observation of attosecond light localization in higher order harmonic generation. Phys. Rev. Lett. 1999, Vol. 83, P 4289
    [19]M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher andF. Krausz. Attosecond metrology, Nature, 2001, Vol. 414, P 509-513
    [20]M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, F. Krausz. Time-resolved atomic inner-shell spectroscopy. Nature, 2002, Vol 419, P 803-807
    [21]A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Ha¨nsch and F. Krausz. Attosecond control of electronic processes by intense light fields. Nature, 2003, Vol.421, P 611-615
    [22]Fuji Takao, Jens Rauschenberger, Alexander Apolonski, Vladislav S. Yakovlev, and Gabriel Tempea, Ferenc Krausz. Monolithic carrier-envelope phase-stabilization scheme Opt. Lett., 2005, Vol. 30, P 332-334
    [23]王清月.飞秒激光技术及其新兴相关学科.量子电子学,1994 年,11 卷 4 期,P 211-218
    [24]赵珂,王佩琳.飞秒激光在超快过程中的应用研究.量子电子学报,2001 年,18 卷 2 期, P 97-102
    [25]张正泉.从飞秒化学到阿秒物理学.激光与光电子学进展,2002 年 39 卷 8 期, P 5-11
    [26]韩海年,魏志义,苍宇,张杰.阿秒激光脉冲的新进展.物理, 2003,32卷 11 期,P 762-765
    [27]Q Xing, W Zhang Yoo K M.Self-Q switched self-mode-locked Ti:Sapphire laser. Opt. Comm., 1995, Vol.119, P 113-116
    [28]Marcelo G.Kovalsky, Alejandro A.Hnilo, and Carlota M.F.GonzalezInchauspe. Hidden instabilities in the Ti:sapphire Kerr lens mode-locked laser. Opt. Lett.,1999, Vol.24, P1638-1640
    [29]M.G.Kovalsky and A.A.Hnilo. Stability and bifurcations in Kerr-lens mode-locked Ti;sapphire lasers.Opt. Comm., 2000, Vol.186, P155-166
    [30]Ming-Dar Wei, Wen-Feng Hsieh. Bifurcation of fundamental Gaussian modes in Kerr-lens mode-locked lasers. Opt. Comm., 1999,Vol.168, P161-166
    [31]V.L.Kalashnikov, I.G.Poloyko, and V.P.Mikhailov. Regular, quasi-periodic, and chaotic behavior in continuous-wave solid-state Kerr-lens mode-locked lasers. J.Opt.Soc.Am.B., 1997,Vol.14(10), P 2691-2695
    [32]Daniel Cote and Henry M.van Driel. Period doubling of a femtosecond Ti:sapphire laser by total mode locking. Opt. Lett., 1998, Vol. 23, P 715-717
    [33]N.Da Dalt, C. De Angelis, G.F.Nalesso, M.Santaghustina. Dynamics of induced modulational instability in waveguides with saturable nonlinearity.Opt.Comm., 1995, Vol.15, P 69-72
    [34]F.Kh.Abdullaev, S.A.Darmanyan, A.Kobyakov, F.Lederer. Modulational instability in optical fibers with variable dispersion. Physics Letters A. 1996, Vol. 220, P 213-218
    [35]赵尚弘,王屹山,陈国夫,王贤华,候洵.飞秒钛宝石激光器 Kerr 透镜锁模动态特性研究.中国激光,1999 年,26 卷 4 期,P 294- 298
    [36]D. Von. der. Linde. Characterization of the noise in continuously operating mode-locked lasers. Appl. phys. B, 1986, Vol. 39, P 201-217
    [37]H. A. Haus and A. Mecozzi. Noise of mode-locked lasers. IEEE J.Quantum Electron, 1993,Vol. 29, P 983–996
    [38]Shu Namiki and H. A. Haus. Noise of the stretched pulse fiber laser: part1-Theory. IEEE J. Quantum Electron, 1997, Vol. 33, P 649-659
    [39]曾志男,李儒新,徐至展.激光脉冲绝对相位对产生阿秒脉冲的影响.光学学报, 2003 年 23 卷 3 期 P 317-320
    [40]王中阳,龚尚庆,徐至展.强驱动二能级原子中阿秒相干光脉冲的产生。物理学报,1999 年,48 卷,P 961-965
    [41]曾志男,李儒新,谢新华,徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲.物理学报,2004年,53卷,P 2316-2319
    [42]曹伟,兰鹏飞,陆培祥.紧聚焦激光束作用于电子实现单个阿秒脉冲输出.物理学报,2006年,55卷,P 2115-2121
    [43]曹伟,兰鹏飞,陆培祥.利用43飞秒的强激光脉冲实现单个阿秒 脉冲输出的新机理. 物理学报,2007 年,56 卷,P 1608-1612
    [44]Hermamm A.Haus. Theory of mode locking with a fast saturable, Journal of Applied Physics. 1975, Vol. 46(7), P 3049-3058
    [45]F.X.K?rtner, I.D.Jung and U.Keller. Soliton Mode-Locking with Saturable Absorbers. IEEE Journal of Selected Topics in Quantum Electronics. 1996, Vol. 2(3), P 540-556
    [46]N. Akhmediev, J. M. Soto-Crespo, and G. Town. Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence inmode-locked lasers:Complex Ginzburg-Landau equation approach. Physical Review E, 2001, Vol. 63, P 056602(1-13)
    [47] H.M.Guido, Van Tartwijk, Govind P Agrawal. Laser instabilities:a modern perspective. Progress in Quanrum Electronics, 1998, Vol.22, P122
    [48]张宁等.自锁模固体激光器自启动理论研究.中国激光,2001 年, 第 4 卷,P 293-297
    [49]邢岐荣等.自调 Q 自锁模固体激光器.光学学报,2001 年,21 卷 P 1353-1359
    [50]J.Jasapara, W.Rudolph, V.L.Kalashnikov, D.O.Kremer, I.G.Poloyko and M.Lenzner. Automodulations in Kerr-lens mode-locked solid-state lasers. J.Opt.Soc.Am.B. 2000, Vol. 17(2), P 319-326
    [51]Marcelo.G..Kovalsky, Alejandro A.Hnilo, Ariel Libertun, Mario C.Marconi. Bistability in Kerr lens mode-locked Ti:sapphire lasers. Opt. Comm., 2001, Vol.192, P 333-338
    [52]陈海燕,刘永智,官周国, 黄小莉,张少先.掺铒光波导放大器的速率方程分析.光学学报, 2002 年,22 卷 2 期,P 174-177
    [53]任承,张行愚,王青圃,赵圣之.调 Q 激光器速率方程的普适表达式.光电子.激光,2002 年,03 期,P 76-78
    [54]A. M. Sergeev, E. V. Vanin, and F. W. Wise. Stability of passively modelocked lasers with fast saturable absorbers. Opt. Commun., 1997, Vol 140, P 61–64
    [55]Franz X. K¨artner, Juerg Aus der Au, and Ursula Keller. Mode-Locking with Slow and Fast Saturable Absorbers—What’s theDifference. IEEE Journal of selected topics in quantum electronics, 1998, Vol. 4, P159-168
    [56]Hermann A. Haus .Theory of Mode Locking with a Slow Saturable Absorber .IEEE Journal of quantum electronics, 1975, Vol.QE-11, P 736-746
    [57]F.X.Kartner, and U.Keller. Stabilization of solitonlike pulses with a slow saturable absorber. Opt. Lett. 1995, Vol. 20, P 16-18
    [58]D.Y. Tang, P.D. Drummond, W.S. Man, H.Y. Tam. Observation of modulation instability in a fiber soliton ring laser. Opt. Commun. 1999, Vol. 167(15), P 125-128
    [59]Wen-cheng Xu, Shu-min Zhang, Wei-cheng Chen, Ai-ping Luo Song-hao Liu. Modulation instability of femtosecond pulses in dispersion-decreasing fibers. Opt. Commun., 2001, Vol. 199, P 355-360
    [60]D.E.Spence, J.M.Evans, W.E.Sleat, and W.Sibbett. Regenerative Initiated Self-mode-locked Ti:Sapphire Laser. Opt. Lett., 1991, Vol. 16(22), P 1762-7164
    [61]James D.Kafka, Michael L.Watts, and Jan-Willem J.Pieterse. Picosecond and Femtosecond Pulse Generation in a Regeneratively Mode-Locked Ti:Sapphire Laser. IEEE Journal of Quantum Electronics. 1992,Vol. 28(10), P 2151-2162
    [62]D.Kopf, F.X.Kartner, K.J.Weingarten, and U.Keller. Pulse shortening in a Nd:glass laser by gain reshaping and soliton formation. Opt. Lett. 1994, Vol. 19(24), P 2146-2148
    [63]F.X.K?rtner, D.Kopf, and U.Keller. Solitary-pulse stabilization and shortening in actively mode-locked lasers. J.Opt.Soc.Am.B.1995, Vol. 12(3), P 486-496
    [64]刘秉正.《非线性动力学与混沌基础》.东北师范大学出版社,1994年
    [65]M. Ramaswamy and J. G. Fujimoto. Compact dispersion compensating geometry for Kerr-lens mode-locked femtosecond lasers. Opt. Lett., 1994, Vol 19, P 1756-1758
    [66]G. Cerullo, S. De Silvestri, V. Magni, and L. Pallaro. Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers. Opt. Lett., 1994, Vol 19, P 807-809
    [67]V. Z. Kolev, M. J. Lederer, B. Luther-Davies, and A. V. Rode. Passive mode locking of a Nd:YVO4 laser with an extra-long optical resonator. Opt. Lett. 2003, Vol. 28(14), P 1275-1277
    [68]A. Schlatter, L. Krainer, M. Golling, etal. Passively mode-locked 914-nm Nd:YVO4 laser. Opt.Lett. 2005, Vol. 30(1), P 44-46
    [69]戴建明, 章若冰, 王清月. 用于产生飞秒压缩态的染料激光器稳定性分析与实验研究. 物理学报, 1994 年,43 期,P 20-25
    [70]张光寅,张潮波,丁欣,宋峰,郭曙光,孟凡臻. 固体激光腔动力学稳定性的调控. 物理学报, 2002年,51卷,P253-258
    [71]王鹏, 赵环, 赵研英, 王兆华, 田金荣, 李德华, 魏志义. 用SPIDER法测量超宽带钛宝石振荡器的激光脉宽研究. 物理学报, 2007年, 56卷,P 224-228
    [72]V. Magni, G. Cerullo, S. De Silvestri, and A. Monguzzi. Astigmatism in Gaussian-beam self-focusing and in resonators for Kerr-lens mode locking. J. Opt. Soc. Am. B., 1995, Vol.12, P 476-485
    [73]J. Herrmann. Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain. J. Opt. Soc. Am. B, 1994, Vol. 11, P 498-512
    [74]J.B. Geddes, W.J. Firth, and K. Black. Pulse dynamics in an actively mode-locked laser. SIAM J. Appl. Dynam. Systems, 2003, 2, P 647-671
    [75]Tang Zheng-Hua, Yan Jia-Ren and Liu Ling-Hong. Stability of dark soliton solutions of the quintic complex Ginzburg--Landau equation in the case of normal dispersion. Chinese Physics, 2006, Vol.15, P 2638-2643
    [76]J. M?rk, B. Tromborg, and J. Mark. Chaos in semiconductor lasers with optical feedback: Theory and experiment. IEEE J. Quantum Electron., 1992, Vol. 28, P 93–108
    [77]J. M?rk, B. Tromborg, and J. Mark. Chaos in semiconductor lasers with optical feedback: Theory and experiment. IEEE J. Quantum Electron., 1992, Vol. 28, P 93–108
    [78]N. Kikuchi, Y. Liu, and J. Ohtsubo. Chaos control and noise suppression in external cavity semiconductor lasers. IEEE J. Quantum Electron., 1997, Vol. 33, P 56–65
    [79]V. L. Kalashnikov, I. G. Poloyko, and V. P. Mikhailov. Regular,quasi-periodic, and chaotic behavior in continuous-wave solid-state Kerr-lens mode-locked lasers. J. Opt. Soc. Am. B., 1997, Vol. 14, P 2691-2695
    [80]B. Tromborg, J. H. Osmundsen, and H. Olesen. Stability analysis for a semiconductor laser in an external cavity. IEEE J. Quantum Electron., 1984, Vol. QE-20, P 1023–1031
    [81]Atsushi Murakami, Junji Ohtsubo, and Yun Liu. Stability Analysis of Semiconductor Laser with Phase-Conjugate Feedback. IEEE J. Quantum Electron., 1997, Vol. 33, P1825-1831
    [82]H. Li, J. Ye, and J. G. McInerney. Detailed analysis of coherence collapse in semiconductor lasers. IEEE J. Quantum Electron., 1993, Vol. 29, P 2421–2432
    [83]Y. Liu, N. Kikuchi, and J. Ohtsubo. Controlling dynamical behavior of a semiconductor laser in with external optical feedback. Phys. Rev. E, 1995, Vol. 51, P 2697–2700
    [84]D. J. Kuizenga and A. E. Siegman. FM and AM mode locking of the homogeneous laser-Part I-Theory. IEEE J. Quantum Electron. 1970, Vol. QE-6, P 694-708
    [85]Q. H. Lam and N. B. Le. Implementation and characterization of active harmonic mode-locked fiber lasers. Monash university, Technical report 2004.
    [86]H.A.Haus, J.G.Fujimoto, and E.P.Ippen. Structure for additive pulse mode locking. J. Opt. Soc. Am. B, 1991, Vol. 8, P 2068-2075
    [87]C. P. Yakymyshyn, J. F. Pinto, and C. R. Pollock. Additive-pulsemode-locked NaCl:OH- laser. Opt. Lett., 1989, Vol. 14, P 621-623
    [88]J. Goodberlet, J. Wang, J. G. Fujimoto, and P. A. Schulz. Starting dynamics of additive pulse mode locking in the Ti:A12O3 laser. Opt.Lett. 1990, Vol.15, P1300-1302
    [89]J. Goodberlet, J. Jacobson, J. G. Fujimoto, P. A. Schulz, and T. Y. Fan. Self-starting additive-pulse mode-locked diode pumped Nd:YAG laser. Opt. Lett., 1990, Vol.15, P 504-506
    [90]L. Y. Liu, J. M. Huxley, E. P. Ippen, and H. A. Haus. Self starting additive-pulse mode locking of a Nd:YAG laser. Opt.Lett., 1990, Vol. 15, P 553-555
    [91]Luo xiaoqin, Zhu shiqun, Gao weijian. Effects of coupled noise in a two-mode laser system. Chinese physics, 2001,Vol 10, P 1011-1016
    [92]李孝峰,潘炜,马冬,罗斌,张伟利,熊悦. 激光器自发辐射噪声对混沌光通信系统的影响. 物理学报,2006年,55卷,P 5094-5104
    [93]Wang Jun, Ma Xiao-Yu, Bai Yi-Ming, Cao Li, and Wu Da-Jin. Influences of quantum noises on direct-modulated properties of 1.3-μm InGaAsP/InP laser diodes. Chinese physics, 2006, Vol.15, P 2125-2129
    [94]H. A. Haus, A. Mecozzi. Long-term storage of a bit stream of solitons. Optics letters, 1992, Vol. 17(21), P 1500-1502
    [95]H. A. Haus, Ping-tong Ho. Effect of noise on active mode locking of a diode laser. IEEE Journal of quantum electronics, 1979, Vol. QE-15(11), P 1258-1265
    [96]A. Mecozzi, J. D. Moores, H. A. Haus. Soliton transmission control. Opt. lett., 1991, Vol. 16(23), P 1841-1843
    [97]J. P. Gordon. Dispersive perturbations of solitons of the nonlinear Schrodinger equation. J. Opt. Soc. Am. B, 1992, Vol. 9(1), P 91-97
    [98]J. N. Elgin, S. M. J. Kelly. Spectral modulation and the growth of resonant modes associated with periodically amplified solitons. Opt. lett., 1993, Vol. 18(10), P 787-789
    [99]D. J. Kaup. Perturbation theory for solutions in optical fibers. Physical Review. A, 1990, Vol. 42(9), P 5689-5694
    [100]S. M. J. Kelly. Characteristic sideband instability of periodically amplified average soliton. Electronics Letters, 1992, Vol. 28(8), P 806-808
    [101]D. Kopf, F. X. Kartner, K. J. Weingarten. Pulse shortening in a Nd:glass laser by gain reshaping and soliton formation . Opt. lett., 1994, Vol. 19(24), P 2146-2148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700