光纤环形激光器及光子晶体光纤在有源器件中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的工作分为两个部分,前一部分研究了双泵浦主动锁模光纤激光器的研制,利用Sagnac干涉环对脉冲的压缩以及Sagnac干涉环多波长光纤激光器的研制。后一部分讨论了光子晶体光纤在有源器件中的应用。光子晶体光纤是二氧化硅-空气微结构光纤。由于它在色散与非线性诸多方面具有普通单模光纤没有的特性,它能在一个较宽的频带内保持单模特性,它的零色散点可以在800nm~1600nm之间变化,它的纤芯可以比较小而产生较大的非线性,γ值在850nm处可达到240W~(-1).km~(-1)。故从1996年第一根光子晶体光纤出现就引起人们广泛的兴趣。但由于其单价目前还比较昂贵,损耗也比单模光纤大,要在近期利用光子晶体光纤代替常规单模光纤进行长距离传输是不可能的。但利用它做成有源器件,在光通信中,特别是波分复用系统中使用是很有前途的,如宽带色散补偿、光脉冲压缩、波长变换、超连续谱产生和光放大等。本论文在深入研究光子晶体光纤特性基础上,对光子晶体光纤在脉冲压缩,超连续谱产生和光子晶体光纤中参量放大进行深入研究。本论文的主要工作如下(黑体部分为创新性工作):
     研制了双泵浦10GHz锁模掺铒光纤激光器,简要的回顾和总结了实现超短脉冲压缩方法,从实验上实现了利用Sagnac干涉环对脉冲的压缩。利用Sagnac干涉环的开关特性,环中低能量的噪声被Sagnac干涉环反射回去,有效消除噪声、改善脉冲质量。在多波长光纤环激光器中,通过控制偏振控制的器可以方便实现双波长和三波长激射。双波长激射时,激射波长分别为1558.78nm和1559.02nm,相应的3dB带宽分别为0.018nm和0.019nm。三波长激射时,中心波长分别为:1558.61nm、1558.76nm和1559.03nm,3dB带宽相应为0.02nm、0.016nm和0.026nm。实验中还发现,随着激射波长数的增加,激射波长的稳定性降低。
     详细介绍了光子晶体光纤的几个突出优点:单模传输特性、高非线性效应、可控色散特性和双折射特性。在此基础上,讨论了光子晶体光纤在有源器件中的应用,同时介绍了它在各应用领域中的优势。
     利用小纤芯光子晶体光纤构建的光纤激光器,在同等泵浦条件下,该光纤更容易产生非线性效应,在研制激光器时不仅可以节约光纤而且可以在很大程度上降低泵浦条件,这对于激光器的实用化和商业化是十分有利的。在我们的研究成果中,国内首次在光纤环激光器的环形腔中引入一段色散和非线性系数分别为164ps/(nm.km)和36W~(-1).km~(-1)的光子晶体光纤,利用孤子压缩得到窄脉宽、大谱宽的脉冲输出。同时,估算了相应的脉冲为基阶孤子输出。
     系统分析了自相位调制、四波混频和受激拉曼散射等因素对光子晶体光纤中超连续谱产生的影响。在国内首次利用50MHz被动锁模光纤环激光器为光源,正色散平坦光子晶体光纤为非线性介质,利用光纤的非线性效应进行超连续谱产生的实验。实验结果表明:对锁模激光器输出的1.6ps脉冲经掺饵光纤放大器放大后注入光子晶体光纤,得到20dB带宽超过237nm的超连续谱。同时对皮秒脉冲致超连续谱产生的因素进行了分析。
     采用被动锁模光纤环激光器做为光源,色散平坦光子晶体光纤为非线性介质,利用光纤的非线性效应进行超连续谱产生的实验。利用该激光器高功率输出端口产生的689fs,1550nm的锁模脉冲注入一段40m长的光子晶体光纤,获得20dB谱宽达439nm的超连续谱。利用该激光器波长可调谐的特性,从实验上获取不同泵浦波长下超连续谱的产生。
     从理论上分析了光子晶体光纤参量放大器的增益特性和带宽特性,找出光子晶体光纤的非线性系数和色散等参数对参量放大的增益和带宽的影响,其数学模型采用由非线性介质中光的传播方程导出的耦合波方程。然后,利用一段色散平坦光子晶体光纤构建了光纤参量放大器,实现了参量放大和3dB带宽范围内最大转换效率约为-26dB波长转换。
The research work in this dissertation covers both fiber ring laser and applications of photonic crystal fiber in active devices. For fiber ring laser, dual-pump mode-locked erbium-doped fiber ring laser, as well as compressing optical pulse by using Sagnca interferometer, is demenstrated. Also, a switchable multiwavelength fiber ring laser with Sagnac interferometer has been developed. As far as photonic crystal fiber is concerned, it is the fiber with a periodic microstrucure in air-glass. Compared with conventional single-mode fiber, PCF has some unique characteristics such as controllable dispersion and high nonlineatity. It can support endlessly single mode over a broad spectral range, as well as the zero-dispersion wavelength can vary from 800nm to 1600nm. PCF has high level of nonlinieatity due to the small core diameter, and values as high asγ=240W~(-1). km~(-1) at 850nm have been reported. Since the first PCF is invented in 1996, it has gained intense attention. For the expensive price and high loss compared with conventional single-mode fiber, it is impossible for long distance transmission in take place of conventional fiber. However, active devices based on PCF can expect a series of new applications in optical communication such as broadband dispersion compensation, optical pulse compression, wavelength conversion, supercontinuum generation and optical amplification. Based on the analysis of characteristics of PCF, applications of PCF in pulse compression, supercontinuum generation and parametric amplification are investigated in detail. The research works in the dissertation are summerized as follows:
     10GHz dual-pump mode-locked erbium-doped fiber ring laser is demonstrated. The schemes of ultrashort pulse compression are reviewed and summarized briefly. Pulse compression using Sagnac interferometer has been experimentally studied. According to the switching characteristics of Sagnac interferometer, the noise with low energy can be reflected by the Sagnac interferometer. Thus, it is helpful to eliminate the nosie and improve the qulity of pulse. For switchable multiwavelength fiber ring laser, the laser can be designed to operate in dual-wavelength or triple-wavelength mode and the lasing mode can be controlled by a polarization controller. Dual-wavelength operation at 1557.78nm and 1559.02nm can been obtained. The corresponding 3dB bandwidth is 0.018nm and 0.019nm. Also, triple-wavelength operation at 1558.61nm, 1558.76nm and 1559.03nm can be observed. And the corresponding 3dB bandwidth is 0.02nm, 0.016nm and 0.026nm. Moreover, it is found that the lasing is less stable when the numbers of lasing lines increase.
     Several prominent merits of PCF, such as property of single mode transmission, high nonlinearity, controllable dispersion and birefringence are systematically reviewed. Also, applications of PCF in active devices and potential advantages are introduced.
     For fiber ring laser based on PCF, it can largely improve the pump efficiency for same pump power compared with convential fiber and reduce the fiber length because PCF has high level of nonlinieatity due to the small core diameter. It is helpful to meet the practical and commertical demands. In our research work, PCF with dispersion parameter of 164ps/(nm. km) and nonlinear parameter of 36W~(-1). km~(-1) are introduced into the fiber laser and narrow pulse trains with broad spectrum can be obtained by soliton compression effects. Also, the output pulse is estimated as fundmental soliton.
     Several factors contributing to supercontinuum generation (SC), such as self-phase modulation (SPM), four-wave mixing (FWM) and stimulated Raman scattering (SRS), are analyzed in detail. By using 50MHz mode-locking fiber ring laser, SC can be obtained from dispersion-flattened PCF. The bandwidth of 237nm (at 20dB level) is achieved by launching 1.6ps pulses into a section of PCF. Moreover, the processes underlying spectral broadening are analyzed.
     By using passively mode-locking fiber ring laser, SC can be obtained from dispersion-flattened PCF. The results show that bandwidth of 439nm (at 20dB level) can be achieved by launching 689fs pulses into a section of PCFs. SC at different wavelength can be obtained by tuning the pump wavelength of the passively mode-locked fiber ring laser.
     The gain characteristics and bandwidth of optical parametric amplifiber (OPA) based on PCF are addressed theoretically. The relationship between the properties of PCF, such as nonlinearity and dispersion, and characteristics of OPA are analyzed. The modal is based on coupled equations derived from transmission equations of lightwave. Then, we propose an OPA based on PCF. The results show that maximum conversion efficiency is about -26dB.
引文
[1] 韩一石,现代光纤通信技术,科学出版社,2005
    [2] I. P. Alcock, A. I. Ferguson, D. C. Hanna et al., Mode-locking of a meodymium-doped monomode fiber laser, Electron. Lett., 1986, 22(5): 268-269
    [3] Shiquan Yang, Evgueni A. Ponomarev and Xiaoyi Bao, 80-GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser, IEEE Photon. Technol. Lett, 2005, 17(2): 300-302
    [4] Zhihong Li, Caiyun Lou, Kam Tai Chan et al., A novel actively and passively mode locked fiber laser with dispersion-imbalanced loop mirror, Opt. Commun., 2000, 186: 173-176
    [5] H. Chien, C. Yeh, K. Lai et al., Stable and wavelength-tunable erbium-doped fiber double-ring laser in S-band window operation, Opt. Commun., 2005, 249: 261-264
    [6] S. Li, C. Lou and K. T. Chan, Rational harmonic active and passive modelocking in a figure-of-eight fiber laser, Electron. Lett., 1998, 34(4): 375-376
    [7] S. Kawanishi, H. Takara, K. Uehiyama et al, 1.4Tbit/s (200Gbit×7 channel WDM) 50km optical transmission experiment, Electron. Lett., 1997, 33(20): 1716-1717
    [8] S. Kawanishi, H. Takara, K. Uchiyana, I. Shake, and K. Mori, 3 Tbit/s(160Gbit/s×19 ch) OTDM/WDM Transmission experiment, OFC'99, Paper PD1, 1999
    [9] Takara H, Masuda H, Mori K et al., 124 nm seamless bandwidth, 313×10Gbit/s DWDM transmission, IEEE Electron. Lett., 2003, 39(4): 382-383
    [10] Aedom K, Kubota F, Supercontinuum genenration with mode-spacing of 154 GHz in 1460~1680 nm region from optical fiber by using actively mode-locked fiber laser, OFC'03, paper TuL1, 2003
    [11] H. Takara, T. Ohara, K. Sato, Over 1000 km DWDM transmission with supercontinuum multi-carrier source, Electron. Lett., 2003, 39(14): 1078-1079
    [12] T. Kuri, T. Nakasyotani, H. Toda et al., Characterizations of supereontinuum light source for WDM millimeter-wave-band radio-on-fiber systems, IEEE Photon. Technol. Lett., 2005, 17(6): 1274-1276
    [13] I. Hartl, X. D. Li, C. Chudoba et al., Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica mierostructure optical fiber, Opt. Lett., 2001, 26(9): 608-610
    [14] K. Bizheva, B. Povazay, B. Hermann et al., Compact, broad-bandwidth fiber laser for sub-3-um axial resolution optical coherence tomography in the 1300-nm wavelength region, Opt. Lett., 2003, 28(9): 707-709
    [15] B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann et al., Submicrometer axial resolution optical coherence tomography, Opt. Lett., 2002, 27(20): 1800-1802
    [16] S. A. Diddams, D. J. Jones, J. Ye et al., Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb, Physical Review Letters, 2000, 84(22): 5102-5105
    [17] D. J. Jones, S. A. Diddams, J. K. Ranka et al., Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis, Science, 2000, 288(28): 635-639
    [18] H. Takara, Multiple optical carrier generation from a supercontinuum source, Opt. Photon. News, 2002, 13: 48-51
    [19] J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming et al., All-fiber, octave-spanning supercontinuum, Opt. Lett., 2003, 28(8): 643-645
    [20] A. B. Rulkov, M. Y. Vyatkin, S. V. Popov et al., High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping, Opt. Express, 2005, 13(2): 377-381
    [21] A. Mussot, T. Sylvestre, L. Provino, and H. Maillote, Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser, Opt. Lett., 2003, 28(19): 1820-1822
    [22] P. -A. Chmpert, V. Couderc, P. Leproux, et al., white-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system, Opt. Express, 2004, 12(19): 4366-4371
    [23] P. -L. Hsiung, Y. Chen, T. H. Ko, et al., Optical coherence tomography using a continous-wave, high-power, Raman continuum light source, Opt. Express, 2004, 12(22): 5287-5295
    [24] A. K. A beeluck, C. Headley, and C. G. Jorgensen, high-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuum-wave Raman fiber laser, Opt. Lett., 2004, 29(18): 2163-2165
    [25] Mori K, Takara H, Kawanishi S et al., Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fiber with convex dispersion profile. Electron. Lett., 1997, 33(21): 1806~1807
    [26] Futami F, Generation of wide band and flat supercontinuum over a 280-nm spectral range from a dispersion-flattened optical fiber with normal group-velocity dispersion, IEICE Trans Electron, 1999, E82-C(8): 1531~1538
    [27] A. K. Abeeluck, C. Headley, and C. G. Jφrgensen, High-power supercontinuum generation in highly nonlinear dispersion-shifted fibers by use of a continuous-wave Raman fiber laser, Opt. Lett., 2004, 29: 2163-2165
    [28] A. Mussot, T. Sylvestre, L. Provino, and H. Maillote, Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser, Opt. Lett., 2003, 28: 1820-1822
    [29] J. M. Harbold, F. O. Ilday, F. W. Wise, T. A. Birks, W. J. Wadsworth, and Z. Chen, Long-wavelength continuum generation about the second dispersion zero of a tapered fiber, Opt. Lett. 2002, 27: 1558-1560
    [30] J. Teipel, D. Turke, H. Giessen, A. Killi, U. Morgner, M. Lederer, D. Kopf, and M. Kolesik, Diode-pumped, ultrafast, multi-octave supercontinuum source at repetition rates between 500 kHz and 20 MHz using Yb: glass lasers and tapered fiber, Opt. Express, 2005, 13: 1477-1485
    [31] T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, Supercontinuum generation in tapered fibers, Opt. Lett. 2000, 25: 1415-1417
    [32] J. Teipel, K. Franke, D. Turke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses, Appl. Phys. B, 2003, 77, 245-250
    [33] J. K. Ranka, R. S. Windeler, and A. J. Stentz, Visible continuum generation in air silica microstructure optical fiber with anomalous dispersion at 800nm, Opt. Lett. 2000, 25: 25-27
    [34] S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber, Opt. Lett. 2001, 26: 1356-1358
    [35] S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers, J. Opt. Soc. Am. B 2002, 19: 753-764
    [36] W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres, Opt. Express 2004, 12, 299-309
    [37] J. A. Levenson, I. Abram, Th. Rivera, and P. Grangier, Reduction of quantum noise in optical parametric amplification, J. Opt. Soc. Amer. B, 1993, 10: 2233-2238
    [38] W. Imajuku and A. Takada, Theoretical analysis of system limitation for AM-DD/NRZ optical transmission systems using in-line phase-sensitive amplifiers, J. Lightwave Technol., 1998, 16: 1158-1170
    [39] W. Imajuku, A. Takada, and Y. Yamabayashi, Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit, Electron. Lett., 2000, 36: 63-64
    [40] F. S. Yang, M. E. Marhic, and L. G. Kazovsky, CW fiber optical parametric anaplifier with net gain and wavelength conversion efficiency>l, Electron. Lett., 1996, 32: 2336-2338
    [41] J. Hansryd and P. A. Andrekson, Wavelength tunable 40 GHz pulse source based on fiber optical parametric amplifier, Electron. Lett., 2001, 37: 584—585
    [42] P. O. Hedekvist, M. Karlsson, and P. A. Andrekson. Fiber four-wave mixing demultiplexing with inherent parametric amplification, J. Lightwave Technol., 1997, 15: 2051-2058
    [43] M. -C. Ho, K. Uesaka, M. E. Marhic, Y. Akasaka, and L. G. Kazovsky, 200-nm-bandwidth fiber optical amplifier combining parametric andraman gain, J. Lightwave Technol., 2001, 19: 977-981
    [44] M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, Transparent wavelength conversion in fiber with 24 nm pump tuning range, Electron. Lett., 2002, 38: 85-86
    [45] J. Li, J. Hansryd, P. -O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, 300 Gbit/s eye-diagram mesurement by optical sampling using fiber based parametric amplification, Optical Fiber Communication Conf. and Exhibit, Paper PD31, 2001
    [46] J. Hansryd and Peter A. Andrekson, Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency, IEEE Photon. Technol. Lett., 2001, 13(3): 194-196
    [47] P. J. Bennett, T. M. Monroe, and D. J. Richardson, Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization. Opt. Lett., 1999, 24: 1203~1205
    [48] D. J. Richardson, Emerging fiber components for lightwave communications, CLEO'99, Paper CWN3, 1999
    [49] J. C. Knight, T. A. Birks, P. St. Russel, and D. M. Atkin, Pure silica single-mode fiber with hexagonal photonic crystal cladding, OFC'96, Postdeadline Paper PD3, 1996
    [50] J. C. Knight, Photonic crystal fiber, Science, 2003, 299(5605): 358-362
    [51] E. M. Dianov and V. M. Mashinsky, Germania-based core optical fibers, J. Lightw. Technol., 2005, 23(11): 3500-3508
    [52] J. C. Knight, J. Arriaga, T. A. Birks et al., Anomalous dispersion in photonic crystal fiber, IEEE Photon. Technol. Lett., 2000, 12(7): 807-809
    [53] Rainer Hainberger, Shigeki Watanabe, Impact of the wavelength dependence of the mode field on the nonlinearity coefficient of PCFs, IEEE Photon. Technol. Lett., 2005, 17(1): 70-72
    [54] T. A. Birks, J. C. Knight, P. St. J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett., 1997, 22(13): 961-963
    [55] L. P. Shen, W. P. Huang, G. X. Chen et al., Design and optimization of photonic crystal fibers for broad-band dispersion compensation, IEEE Photon. Technol. Lett., 2003, 15(4)540-542
    [56] S. K. Varshney, K. Saitoh, M. Koshiba, A novel design for dispersion compensating photonic crystal fiber Raman amplifiber, 2005, 17(10): 2062-2064
    [57] Yi Ni, Lei Zhang, Liang An, Jiangde Peng, and Chongcheng Fan, Dual-core photonic crystal fiber for dispersion compensation, IEEE Photon. Technol. Lett., 2004, 16(6): 1516-1518
    [58] A. B. Rulkov, S. V. Popovj, R. Taylor, T. Hansen, J. Broeng, Ferntosecond pulse compression around 11m wavelengthin air-guiding PCF, CLEO'04, Vol 1, 2004
    [59] W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch et al., Soliton effects in photonic crystal fibers at 850nm, IEEE Electron. Lett., 2000, 36(1): 53-55
    [60] C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, Chinlon Lin, and A. Bjarklev, Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM, IEEE Photon. Technol. Lett., 2005, 17(12): 2655-2657
    [61] Peter A. Andersen, Torger Tokle, Yan Geng, Christophe Peucheret, and Palle Jeppesen, Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattenedHighly nonlinear photonic crystal fiber, IEEE Photon. Technol. Lett., 2005, 17(9): 1908-1910
    [62] Beata Zsigri, Christophe Peucheret, Martin Dybendal Nielsen, and Palle Jeppesen, Demonstration of broadcast, transmission, and wavelength conversion functionalities using photonic crystal Fibers, IEEE Photon. Technol. Lett., 2006, 18(21): 2290-2292
    [63] K. K. Chow, C. Shu, Chinlon Lin et al., Polariaztion-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber, IEEE Photon. Technol. Lett., 2005, 17(3): 624-626
    [64] Holger Hundertmark, Dieter Wandt, Carsten Fallnich, Octave-spanning supercontinuum generation in an extruded PCF with an Er-doped fiber laser-amplifier system, OFC'04, Paper ThA2, 2004
    [65] A. Andersen, C. Peueheret, K. Hilligsoe et al., in: Proc. 5th Intern. Conf. on Transparent Optical Networks: ICTON 2003, Warsaw(Poland) 2003, National Institute of Telecommunications, Warsaw 2003, pp.66.
    [66] R. Tang, J. Lasri, P. Devgan et al., Microstructure-fibre-based optical parametric amplifier with gain slope of~200 dB/W/km in the telecom range, Electron. Lett., 2003, 39(2): 195-196
    [67] Changzhi Li, Yidong Huang, Wei Zhang et al., Amplification properties of erbium-doped solid-core photonic bandgap fibers, IEEE Photon. Technol. Lett., 2005, 17(2): 324-326
    [68] P. Petropoulos, H. Ebendorff-Heidepiem, V. Finazzi, R. Moore, K. Frampton, D. Richardson, and T. Monro, Highly nonlinear and anomalously dispersive lead silicate glass holey fibers, Opt. Express, 2003, 11(26): 3568-3573
    [69] D. V. Skryabin, F. Luan, J. C. Knight, Soliton self-frequency shift cancellation in photonic crystal fibers, Science, 2003, 301(5640): 1705-1708
    [70] Y. Q. Yu, S. C. Ruan, C. L. Du et al., Spectral broadening in a polarization maintaining photonic crystal fibre by femtosecond pulses from an optical parametric amplifier, Chin. Phys. Lett., 2005, 22(2): 380-383
    [71] V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves et al., Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt. express, 2002, 10(25): 1520-1525
    [72] K. K. Chow, Y. Takushima, Chinlon Lin et al. Flat supercontinuum generation in a dispersion-flattened nonlinear photonic crystal fiber with normal dispersion, OFC 2006, paper OFH5, 2006
    [73] A. Andersen, C. Peucheret, K. Hilligsoe et al., Supercontinuum generation in a photonic crystal fiber using picosecond pulses at 1550 nm, In Proc. 5th Intern. Conf. on Transparent Optical Networks: ICTON 2003, Warsaw(Poland) 2003, National Institute of Telecommunications, Warsaw 2003, 66-69
    [74] W. J. Wadsworth, N. Y. Joly, F. Biancalana, J. C. Knight, et al., Compact supercontinuum generation and four-wave mixing in PCF with 10ns laser pulses, In Proceedings of CLEO, paper CThC3
    [75] G. Genty, T. Ritari, and H. Ludvigsen, Supercontinuum and gas cell in a single microstructured fiber. OFC 2006, paper OThQ6, 2006
    [76] R. Tang, P. Devgan, P. L. Voss, V. S. Grigoryan, and P. Kumar, In-line frequency-nondegenerate phase-sensitive fiber-optical parametric amplifier, IEEE Photon. Technol. Lett., 17(9): 1845-1847
    [77] W. H. Reeves, J. C. Knight, P. St. Russel, and P. J. Roberts, Demonstration of ultra-flattened dispersion in photonic crystal fibers, Opt. Express, 2002, 10(14): 609-613
    [78] A. Ferrando, E. Silvestre, P. Andres, J. J. Miret, and M. V. Andres, Designing the properties of dispersion-flattened photonic crystal fibers, Opt. Express, 2001, 9: 687-697
    [79] J. D. Harvey, R. Leonhardt, K. G. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. Russul, Scalar modulational instability in the normal dispersion regime using a PCF, Opt. Lett., 2003, 28(12): 2225-2227
    [80] J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, Optical parametric oscillator based on four-wave mixing in microstructure fiber, Opt. Lett., 2002, 27(19): 1675-1677
    [81] J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, A microstructure-fiber-based, 10-GHz synchronized, tunable optical parametric oscillator in the 1550-nm regime, IEEE Photon. Technol. Lett., 2003, 15(8): 1058-1060
    [82] Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, Broadly tunable ferntosecond parametric oscillator using a photonic crystal fiber, Opt. Lett., 2005, 30(10): 1234-1236
    [83] Jay E. Sharping, Marco Fiorentino, Ayodeji Coker et al., Four-wave mixing in microstructure fiber. Optics Letters, 2001, 26(14): 1048-1050
    [84] Ni Yi, Wang Qing, Zhang Lei et al., Entangled photon-pair source based on photonic crystal fiber, Optics communications, 2004, 238: 45-49
    [85] S. Wabnitz, Broadband parametric amplification in photonic crystal fibers with two zero-dispersion wavelengths, J. Lightw. Technol, 2006, 24(4): 1732-1738
    [1] G.P.Agrawal,贾东方,余震虹等,非线性光纤光学原理及应用,北京:电子工业出版社,2002
    [2] K. K. Gupta, N. Onodera, and M. Hyodo, Technique to generate equal amplitute, higher-order optical pulses in rational harmonically mode-locked fiber ring lasers, Electron. Lett., 2001, 37(15), 948-950
    [3] M. Nakazawa and E. Yashida, A 40 GHz 850 fs regeneratively FM mode-locked polarization maintaining erbium fiber ring laser, Photon. Technol. Lett., 2000, 12(12), 1613-1615
    [4] Xiupu Zhang, Magnus Karlsson, and Peter Andrekson, Design guidelines of actively mode-locked fiber ring laser, Photon. Technol. Lett., 1998, 10(8), 1103-1105
    [5] Zhihong Li, Caiyun Lou, Kam Tai Chan et al., Theoretical and experimental study of pulse-amplitude-equalization in a rational harmonic mode-locked fiber ring laser, IEEE J. Quantum Electron., 2001, 37(1): 33-37
    [6] Shiquan Yang, Evgueni A. Ponomarev, Xiaoyi Bao, 80-GHz pulse generation from a repetition-rate-double FM mode-locking fiber laser, IEEE Photon. Technol. Lett., 2005, 17(2): 300-302
    [7] Chiming Wu, Niloy K. Dutta, High repetition rate optical pulse generation using a rational harmonic mode-locked fiber ring laser, IEEE J. Quantum Electron., 2000, 36(2): 145-150
    [8] K. S. Abedin, F. Kubota, Wavelength tunable high-repetition-rate picosecond and femtosecond pulse sources based on highly nonlinear photonic crystal fiber, IEEE J. Sel. Topics Quantum Electron., 2004, 10(5): 1203-1210
    [9] Jian. Yao, Jianping Yao, Yong Wang et al., Active mode locking of tunable multi-wavelength fiber ring laser, Opt. Commun., 2001, 8: 341-345
    [10] Shenping Li, Kam Tai Chan, A novel configuration for multiwavelength actively mode-locked fiber lasers using cascaded fiber Bragg gratings, Photon. Technol. Lett., 1999, 11(2): 197-181
    [11] Nakazawa M, Yoshida E. A 40-GHz 850fs regeneratively FM mode-locked polarization maintaining erbium fiber ring laser, IEEE Photon Technol Lett, 2000, 12(12): 1613~1615
    [12] Yao J, Yao J P, Wang Y et al., Active mode locking of tunable multi-wavelength fiber ring laser, Opt Commun, 2001, 191(3-6): 341~345
    [13] S. P. Li, K. T. Chan, A novel configuration for multiwavelength actively mode-locked fiber lasers using cascaded fiber Bragg gratings, Photon. Technol. Lett., 1999, 11(2): 197~181
    [14] S. P. Li, C. Y. Lou, K. T. Chan, Rational harmonic active and passive modelocking in a figure-of-eight fiber laser, Electron. Lett., 1998, 34(4): 375~376
    [15] K. R. Tamura, M. Nakazawa, Spectral-smoothing and pedestal reduction of wavelength tunable quasi-adiabatically compressed femtosecond solitons using a dispersion-flattened dispersion-imbalanced loop mirror, IEEE Photon. Technol. Lett., 1999, 11(2): 230-232
    [16] M. Matsumoto and T. Ohishi, Dispersion-imbalaced nonlinear optical loop mirror with lumped dispersive elements, Electron. Lett., 1998, 34(11): 1140-1142
    [17] Wen-hua Cao, P. K. Wai, Comparision of fiber-based Sagnac interferometers for self-switching of optical pulsesk, Opt. Commun., 2005, 245: 178-185
    [18] Y. D. Gong, P. Shum, D. Y. Tang, C. Lu, X. Guo, V. Paulose, W. S. Man, H. Y. Tam, Regimes of operation states in passively mode-locked fiber soliton ring laser, Optics & Laser Technology, 2004, 36: 299-307
    [19] Y. D. Gong, P. Shum, D. Y. Tang, C. Lu, Z. W. Qi, W. J. Lai, W. S. Man, H. Y. Tam, Close spaced ultra-short bound solitons from DI-NOLM Figure-8 fiber laser, Opt. Commun., 2003, 220: 297-302
    [20] K. S. Abedin and F. Kubota, Wavelength tunable high-repetition-rate picosecond and femtosecond pulse sources based on highly nonlinear photonic crystal fiber, IEEE Photon. Technol. Lett., 2004, 10(5): 1203-1209
    [21] I. N. Duting, Ⅲ, C. -J. Chen, P. K. A. Wai, and C. R. Menyuk, Operation of a nonlinear loop mirror in a laser cavity, IEEE J. Quantum Electron., 1994, 30(1): 194-199
    [22] W. S. Man, H. Y. Tam, M. S. Demokan, Optimal loop length of a nonlinear optical loop mirror in switching solitons, J. Lightwave Technol., 1998, 16(1): 100-105
    [23] H. Y. Rhy, B. Y. Kim, and H. W. Lee, Self-switching with a nonlinear birefringent loop mirror, IEEE J. Quantum Electron., 2000, 36(1): 89-93
    [24] A. Bogoni, M. Seaffardi, P. Ghelfi, and L. Poti, Nonlinear optical loop mirrors: Investigation solution and experimental validation for undesirable counterpropergating effects in all-optical signal processing, IEEE J. Sel. Topics Quantum Electron., 2004, 10(5): 1115-1123
    [25] K. Cvecek, G. Onishchukov, K. Sponsel, A. G. Striegler, B. Schmauss, Member, IEEE, and G. Leuchs, Experimental Investigation of a Modified NOLM for Phase-Encoded Signal regeneration, IEEE Photon. Technol. Lett, 2006, 18(17): 1801-1803
    [26] 何慧茹,元秀华,基于非线性放大镜的全光开关特性研究,中国激光,2005,32(3):418-422
    [27] Y. Z. Xu, H. Y. Tam, W. C. Du et al., Tunable dual-wavelength-switching fiber grating laser, IEEE Photon. Technol. Lett., 1998, 10(3): 334-336
    [28] Q. H. Mao and J. W. Y. Lit, Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities, IEEE Photon. Technol. Lett., 2002, 14(5): 612-614
    [29] L. Talaverano, S. Abad, S. Jarabo et al., Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability, J. Lightwave Technol., 2001, 19(4): 553-558
    [30] D. H. Zhao, K. T. Chan, Y. Liu et al., Wavelength-switched optical pulse generatin in a fiber ring laser with Fabry-Perot semiconductor modulator and sampled fiber Bragg grating, IEEE Photon. Technol. Lett., 2001, 13(3): 191-193
    [31] J. Q. Sun, J. L. Qiu, D. X. Huang, Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning, Opt. Commun., 2000, 182(8): 193-197
    [32] S. Yamashita and K. Hotate, Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen, Electron. Lett., 1996, 32: 1298-1299
    [33] K. R. Sohn and K. Taek, Multiwavelength all-fiber ring laser using side-polished fiber comb filter and mechanically formed long-period fiber gratings, IEEE Photon. Technol, Lett., 2005, 17(2): 309-311
    [34] H. L. Liu, H. Tam, W. Chung, P. Wai, and N. Sugimoto, Wavelength-switchabel la-codoped bismuth-based erbium-doped fiber ring lser, IEEE Photon. Technol. Lett., 2005, 17(5): 986-988
    [35] B. A. Yu, J. Kwon, S. Chung, S. W. Seo, and B. Lee, Multiwavelength-switchable SOA-fibre ring laser using sampled Hi-Bi fiber grating, Electron. Lett., 2003, 39(8), 649-650
    [36] J. Hemandez-Cordero, V. A. Kozlov, A. U G. Carter, and T. F. Morse, Fiber laser polarization tuning using a Bragg grating in a Hi-Bi fiber, IEEE Photon. Technol. Lett., 1998, 10(7), 941-943
    [37] Y. W. Lee and B. Lee, Wavelength-switchable erbium-doped fiber ring laser using spectral polarization-dependent loss element, IEEE Photon. Technol. Lett., 2003, 15(6): 795-797
    [38] T. Miyazaki, N. Edagawa, S. Yamamoto, and S. Akiba, A multiwavelength fiber ring laser employing a pair of silica-based arrayed-waveguide-gratings, IEEE Photon. Technol. Lett., 1997, 9(7): 910-912
    [39] Y. G. Liu, X. Feng, and S. Yuan, Simultanneous four-wavelength lasing ossilations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings, Opt. Express, 2004, 12(10): 2056-2061
    [40] I. Yoon, Y. W. Lee, J. Jung, and B. Lee, Tunable Multiwavelength Fiber Laser Employing a Comb Filter Based on a Polarization-Diversity Loop Configuration, J. Lightwave Technol., 2006, 24(4): 1805-1811
    [41] O. Graydon, W. H. Lob, R. I. Laming, and L. Dong, Triple-frequency operation of an Er-doped twincore fiber loop laser, IEEE Photon. Technol. Lett., 1996, 8: 63-65
    [42] G. Das and J. Lit, Wavelength switching of a fiber laser with a Sagnac loop reflector, IEEE Photon. Technol. Lett., 2004, 16: 60-62
    [43] C. -S. Kim, R. Sova, and J. U. Kang, Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter, Opt. Commun., 2003, 218(4): 291-295
    [44] Y. W. Lee, J. Jung, and B. Lee, Multiwavelength-switchable SOAfiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter, IEEE Photon. Technol. Lett., 2004, 16(1): 54-56
    [45] R. Slavik, S. LaRochelle and M. Karasek, High performance adjustable room temperature multiwavelength erbium doped fiber ring laser in the C-band, Opt. Commun., 2002, 206: 365-371
    [46] A. Bellmare, M. Karasek, M. Rochette, and S. LaRochelle, Room temperature multifrequency erbium-doped fiber lasers anchored on the itufrequency grid, J. Lightwave Technol., 2000, 18(6): 825-831
    [47] F. Ahmed, N. Kishi, and T. Miki, Multiwavelength Erbium-doped fiber Fabry-Perot laser and its uniform spectral lines power operation, IEEE Photon. Technol. Lett., 2005, 17: 753-755
    [48] D. N. Wang, F. W. Tong, X. Fang, W. Jin, P. K. A. Wai, and M. Gong, Multi-wavelength erbium-doped fiber ring laser source with a hybrid gain medium, Opt. Commun., 2003, 228: 295-301
    [49] Ailing Zhang, Heliang Liu, M. S. Demokan, and H. Y. Tam, Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber, IEEE Photon. Technol. Lett., 2005, 17: 2535-2537
    [50] Xueming Liu, Xiaoqun Zhou, Xiufeng Tang, Junhong Ng, Jianzhong Hao, Teck Yoong Chai, Edward Leong, and Chao Lu, Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber, IEEE Photon. Technol. Lett., 2005, 17: 1626-1628
    [51] X. F. Yang, X. Y. Dong, S. M. Zhang, F. Y. Lu, X. Q. Zhou, and C. Lu, Multiwavelength erbium-doped fiber laser with 0.8-nm spacing using sampled Bragg grating and photonic crystal fiber, 2005, 17(12): 2538-2540
    [52] K. Zhou, D. Zhou, F. Dong, and N. Q. Ngo, Room-temperature multiwavelength erbium-doped fiber ring laser employing sinusoidal phase modulating feedback, Opt. Lett., 2003, 893-895
    [1] E. Yalonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev Lett., 1987, 58: 2059-2062
    [2] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev Lett., 1987, 58: 2486-2489
    [3] Mortensen N. A, Effective area of photonic crystal fibers, Opt. Express, 2002, 10: 341-348
    [4] W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres, Opt. Express, 2004, 12(2): 299-309
    [5] St. J. Russell et al., Recent progress in photonic crystal fibers, OFC'00, Paper ThD1, 2000
    [6] T. A. Birks et al., Endlessly single-mode photonic crystal fiber, opt. Lett., 1997, 22: 961-963
    [7] A. Ferrando, E. Silvestre, P. Andres et al., Designing the properties of dispersion flattened photonic crystal fiber, Opt. Express, 2001, 9: 687-697
    [8] P. Petropoulos, H. Evendorff-Heidepriem, V. Finazzi, R. Moore, K. Frampton, D. Richardson, and T. Monro, Highly nonlinear and anomalously dispersive lead silicate glass holey fibers, Opt. Express, 2003, 11(26): 3568-3573
    [9] A. Ortigosa-blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, P. St. J. Russell, Highly birefringent photonic crystal fibers, Opt. Lett., 2000, 25: 1325-1327
    [10] K. Suzuki, H. Kubota, S. Kawanishi, Optical properties of a low-loss polarization maintaining photonic crystal fiber, Opt. Express, 2001, 9: 676-680
    [11] 娄淑琴等,类矩形芯光子晶体光纤的色散与偏振特性,物理学报,2005,54(3):1229-1234
    [12] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriage, B. J. Mangan, T. A. Birks and P. St. J. Russell, Highly birefringent photonic crystal fibers, Opt. Lett., 2000, 25: 1325
    [13] X. Chen, M. J. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. Carberry, L. A. Zenteno and K. W. Koch, Highly birefringent hollow-core photonic bandgap fiber, Opt. Express, 2004, 12: 3888
    [14] Y. C. Liu and Y. Lai, Optical birefringence and polarization dependent loss of square and rectangular-lattice holey fibers with elliptical air holes: numerical analysis, Opt. Express, 2004, 13(1): 225-235
    [15] W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch et al., Soliton effects in photonic crystal fibers at 850nm[J], IEEE Electronics Letters, 2000, 36(1): 53-55
    [16] Kazi S. Abedin, Fumito Kubota. Wavelength tunable high ropotition rate picosecond and femtosecond pulse sources based on highly nonlinear photonic crystal fiber[J], IEEE Journal of Selected Topic in Quantum Electronics, 2004, 10(5): 1203-121
    [17] W. H. Reeves, J. C. Knight, P. St. J. Russell, and P. J. Roberts, Demonstration of ultra-flattened dispersion in photonic crystal fibers, Opt. Express, 2002, 10(14): 609-613
    [18] W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibers, Nature, 2003, 424(6948): 511-515
    [19] J. D. Harvey, R. Leonhardt, K. G. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Scalar modulational instability in the normal dispersion regime using a PCF, Opt. Lett., 2003, 28(22): 2225-2227
    [20] J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, Optical parametric oscillator based on four-wave mixing in microstructure fiber, 2002, 27(19): 1675-1677
    [21] J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, A microstructure fiber-based, 10-GHz synchronized, tunable optical parametric oscillator in the 1550-nm regime, IEEE Photon. Technol. Lett., 2003, 15(8): 1058-1060
    [22] Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, andW. H. Knox, Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber, Opt. Lett., 2005, 30(10): 1234-1236
    [23] P. Dainese, G. S. Wiederhecker, A. A. Rieznik, H. L. Fragnito, and H. E. Hernandez-Figueroa, Designing fiber dispersion for broadband parametric amplifiers, International Microwave and Optoelectronics Conference(IMOC'05), 2005
    [24] J. Y. Wang, M. Y. Gao, C. Jiang, W. S. Hu, Design and parametric amplification analysis of dispersion-flatted photonic crystal fibers, Chin. Opt. Lett., 2005, 3(7): 380-382
    [25] A. Y. H. Chen, G. K. L. Wong, S. G. Murdoeh, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Widely tunable optical parametric generation in a photonie crystal fiber, Opt. Lett., 2005, 30(7): 762-764
    [26] W. Wadsworth, J. Knight, A. Ortigosa-Blaneh et al, Soliton effects in photonic crystal fibers at 850nm[J], Electronics Letters, 2000, 36(1): 53-55
    [27] B. R. Washburn, S. E. Ralph, and R. S. Windeler, Ultrashor pulse propagation in air-silica microstructure fiber, Opt. Express, 2002, 10(13): 575
    [28] K. M. Hilligse, H, N. Paulsen, J. Thgersen, S. R. Keiding, and J. J. Larsen, Initial steps of supercontinuum generation in photonic crystal fibers, J. Opt. Soc. Amer., B, 2003, 20(9): 1887-1893
    [29] S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. Russel, Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers, J. Opt. Soc. Amer., B, 2002, 19(4): 753-764
    [30] A. L. Gaeta, Nonlinear propergation and continuum generation in microstructured optical fibers, Opt. Lett., 27(11): 924-926
    [31] F. G. Omenetto, A. Efimov, and A. J. Taylor, Ultrafast pulse shape driven dynamics in optical waveguides, in Proc. SPIE, 2004, 5340: 24-36
    [32] H. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, Dispersive wave generation by solitons in microstructured optical fibers, Opt. Express, 2004, 12(1): 124]
    [33] A. Andersen, C. Peucheret, K. Hilligsoe et al, in: Proc. 5th Intern. Conf. on Transparent Optical Networks: ICTON 2003, Warsaw(Poland) 2003, National Institute of Telecommunications, Warsaw 2003, p.66
    [34] P. J. Bennett, T. M. Monro, and D. J. Richardson, Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization, Opt. Lett., 1999, 24(17): 1203-1205]
    [35] J. T. Lizier, and G. E. Town, Splice loss in holey optical fibers, OECC/IOOC'01, Paper TUG, 2001
    [36] Bruno Bourliaguet, Claude Pare, Frederic Emond et al., Microstructured fiber splicingm, Opt. Express, 2003, 11(25): 3412-3417
    [1] M. Nakazawa, E. Yoshida, and Y. Kimura, Ultrastable harmonic and regeneratively mode-locked polarization-maintaining erbium fiber ring laser, Electron. Lett., 1994, 30: 1603-1605
    [2] J. D. Kafka, T. Baer, and D. W. Hall, Mode-locked erbium-doped fiber laser with soliton pulse shaping, Opt. Lett., 1989, 14: 1269-1271
    [3] B. Bakhshi and P. A. Andrekkson, 40 GHz actively mode-locked, polarization maintaining erbium fiber ring laser, Electron. Lett., 2000, 36: 411-413
    [4] T. F. Carruthers and I. N. Duling Ⅲ, 10-GHz, 1.3-ps erbium fiber laser employing soliton pulse shortening, Opt. Lett., 1996, 21: 1927-1929
    [5] D. Ellis, R. J. Manning, I. D. Phillips, and D. Nesset, 1.6 ps pulse generation at 40 GHz in phase locked ring laser incorporatin highly nonlinear fiber for application to 160 Gb/s OTDM networks, Electron. Lett., 1999, 35: 645-646
    [6] K. S. Abedin, M. Hyodo, and N. Onodera, Active stabilization of a higher-order mode-locked fiber laser operating at a pulse repetition-rate of 154 GHz, Opt. Lett., 2001, 26: 151-153
    [7] E. Yoshida, N. Shimizu, and M. Nakazawa, A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm, IEEE Photon. Technol. Lett., 1999, 11: 1587-1589
    [8] M. E. Grein, L. A. Jing, H. A. Haus, E. P. Ippen, C. Mcneilage, J. H. Searls, and R. S. Windeler, Observation of quantum-limited timing jitter in an active harmonically mode-locked fiber lasrer, Opt. Lett., 2002, 27: 957-959
    [9] T. R. Clark, T. F. Carruthers, P. J. Mattews, and I. N. Duling Ⅲ, Phase noise measurement of ultrastable 10 GHz harmonically mode-locked fiber laser, Electron. Lett., 1999, 35: 720-721
    [10] D. J. Kuizenga and A. E. Siegrnan, FM and AM mode locking of the homogeneous laser—Part Ⅰ: Theory, IEEE J. Quantum Electron., 1970, 6: 694-708
    [11] H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, Stretched pulse additive pulse mode-locking in fiber lasers: Theory and experiment, IEEE J. Quantum Electron., 1995, 31: 591-598
    [12] K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser, Opt. Lett., 1993, 18: 1080-1082
    [13] T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, Nearly penalty-free, <4 ps supercontinuum Gb/s pulse generation over 1535-1560 nm, Electron. Lett., 1994, 30: 790-791
    [14] J. C. Knight, T. A. Birks, P. St. Russell, and D. M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett., 1996, 21: 1547-1549
    [15] J. K. Ranka, R. S. Windeler, and A. J. Stentz, Visabel continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm, Opt. Lett., 2000, 25, 25-27
    [16] P. Petropoulous, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, 2R-regeneration all-optical switch based on a highly nonlinear holey fiber, Opt. Lett., 2001, 26, 1233-1235
    [17] J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, All-optical switching based on cross-phase modulation in microstructure fiber, IEEE Photon. Technol. Lett., 2002, 14, 77-79
    [18] K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, and B. J. Eggleton, Highly nondegenerate femtosecond four-wave-mixing in tapered microstructure fiber, Appl. Phys. Lett., 2002, 81: 1384-1386
    [19] J. H. Lee, Z. Yusoff, W. Bealrdi, M. Ibsen, T. M. Monte, and D. J. Richardson, A tunable WDM wavelength converter based on corss-phase modulation effects in normal dispersion fiber, IEEE Photon. Technol. Lett., 2003, 15, 437-439
    [20] X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, Soliton self-frequency shift in a short tapered air-silica microstructure fiber, Opt. Lett., 2001, 26: 358-360
    [21] R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, Tunable near-infrared femtosecond soliton generation in photonic crystal fibers, Electron. Lett., 2001, 37: 1510-1512
    [22] K. S. Abedin, Widely-tunable femtosecond soliton pulse generation at 10-GHz repetition-rate by utilizing the soliton self-frequency shift in photonic crystal fiber, Opt. Lett., 2003, 28: 1760-1762
    [23] P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Frampton, R. C. Moore, H. N. Rutt, and D. J. Richardson, Soliton self-frequency shift effects and pulse compression in an anomalously dispersive highly nonlinear lead silicate holey fiber, OFC'03, Paper PD3, 2003
    [24] K. S. Abedin and F. Kubota, Sub-300 fs soliton pulse generation at a 10-GHz repetition rate with a tunability over 1560-1677 nm by using a photonic crystal fiber, CLEO'03, Paper CThPDA7, 2003
    [25] G. P. Agrawal, Nonlinear fiber optics, Acsdemic Press, New York, 2001
    [1] H. Sotobabyshi, K. Kitayama, 325 nm bandwidth supercontinuum generation/at 10 Gb/s using dispersion-flatted and non-decreasing normal dispersion fibre with pulse compression technique, Electron. Lett., 1998, 34(13): 1336-1337
    [2] J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, Fiber-based optical parametric amplifiers and their applications, J. Sel. Top. Quantum Electron. 2002, 8(3): 506-520
    [3] P. O. Hedekvist, M. Karlsson and P. A. Andrekson, Fiber four-wave mixing demultiplexing with inherent parametric amplification, J. Lightwave Technol., 1997, 15(11): 2051-2058
    [4] J. E. Sharping, M. Fiorentino, A. Coker and P. Kumar, Four-wave mixing in microstructure fier, Opt. Lett., 2001, 26(14): 1048-1050
    [5] F. Biancalana, D. V. Skryabin, and P. St. J. Russell, Four-wave mixing instabilities in photonic-crystal and tapered fibers, Phys. Rev. E., 2003, 68: 046603
    [6] S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, Enhanced four-wave mixing in a hollow-core photonic-crystal fiber, Opt. Lett., 2003, 28(16): 1448-1450
    [7] M. Euochi, F. Poli, S. Selleri, A. Cucinotta and L. Vincetti, Study of Raman amplification properties in triangular photonic crystal fibers, J. Lightwave Technol., 2003, 21(10): 2247-2254
    [8] F. Benabid, J. C. Knight, G. Antonopoulos and P. S. J. Russell, Raman scattering in hydrogen-filled hollow-core photonic crystal fiber, Science, 2002. 298: 399
    [9] J. P. Gordon, Theory of the soliton self-frequency shift, Opt. Lett., 1986, 11(10): 662-664
    [10] M. N. Islam, G. Sucha, I. Barjoseph et al., Broad bandwidths from frequency-shift solitons in fibers, Opt. Lett., 1989, 14(7): 370-372
    [11] J. Herrmann and A. Nazarkin, Coherent Raman response and spectral characteristics of ultrashort solitons in fibers, 1996, 53(6): 6492-6495
    [12] D. H. Kim, J. U. Kang, J. B. Khurgin, Cascaded Raman self-frequency shifted soliton generation in an Er/Yb-doped fiber amplifier, Appl. Phys. Lett., 2002, 81(15): 2695-2697
    [13] H. Hatami-Hanza, J. Hong, A. Atieh, P. Mylinski, and J. Chrotowski, Demonstration of all-optical demultiplexing of a multilevel soliton signal employing soliton decomposition and self-frequency shift, IEEE Photon. Technol. Lett., 1997, 9(6): 833-835
    [14] N. Nishizawa and T. Goto, Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers, IEEE J. Sel. Top. Quantum Electron., 2001, 7(4), 518-524
    [15] M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, and K. Okamoto, High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF, Electron. Lett. 2002, 38(4), 164-166
    [16] C. Xu and X. Liu, Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters, Opt. Lett., 2003, 28(12): 986-988
    [17] M. Kato, K. Fujiura and T. Kurihara, Error-free programmable multi-wavelength pulse oscillator based on self-frequency shift of Raman soliton, 2004, 40(6): 382-384
    [18] X. Liu, C. Xu, W. H. Knox, et al., Soliton self-frequency shift in a short tapered air-silica microstructure fiber, Opt. Lett., 2001, 26(6): 358-360
    [19] B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, Tunable near-infrared femtosecond soliton generation in photonic crystal fibres, Electron. Lett., 2001, 37(25), 1510-1512
    [20] I. G. Cormack, D. T. Reid, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, Observation of soliton self-frequency shift in photonic crystal fibre, Electron. Lett., 2002, 38(4): 167-169
    [21] P. Petropoulos, T. M. MonrO, H. Ebendorff-Heidepriem, K. Frampton, R. C. Moore, H. N. Rutt, D. J. Richardson, Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber, OFC'03, PD3, 2003
    [22] K. J. Blow, D. Wood, Theoretical description of transient stimulated Raman scattering in optical fibers, IEEE J. Quantum Electron., 1989, 25: 2665-2673
    [23] S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, White light supercontinuum generation with 60-ps pulses in a photonic crystal fiber, Opt. Lett., 2001, 26: 1356-1358
    [24] K. Mori, H. Takara, S. Kawanishi, M. Saruwatail, and T. Morioka, Flatly broadened supercontinum spectrum generation in a dispersion decreasing fiber with convex dispersion profile, Electron. Lett., 1997, 33(21): 1806-1807
    [25] J. K. Ranka, R. S. Windeler, S. J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm, Opt. Lett., 2003, 25(1): 25-27
    [26] J. Herrmann, U. Griebner, N. Zhavoronkov et al., Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers, Phys. Rev. Lett., 2002, 88(17): 173901-173904
    [27] W. J. Wadsworth, A. O. Blanch, J. C. Knight et al., Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source, J. Opt. Soc.. Am. B, 2002, 19: 2148-2155
    [28] A. B. Fedotov, A. N. Naumov, A. M. Zheltikov, Frequency-tunable supercontinuum generation in photonic crystal fibers by femtosecond pulses of an optical parametric amplifier, Opt. Soc. Am. B, 2002, 19(9): 2156-2164
    [29] A. Apolonski, B. Povazay, A. Unterhuber, et al., Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses, J. Opt. Soc. Am. B, 2002, 19(9): 2165-2170
    [30] A. N. Naumov, A. B. Fedotov, A. M. Zhelticov et al., Enhanced χ~(3) interactions of unamplified femtosecond Cr: frsterite laser pulses in photonic-crystal fibers, J. Opt. Soc. Am. B, 2002, 19(9): 2183-2190
    [31] 阎培光,阮双琛,杜晨林等,飞秒脉冲作用下光子晶体光纤超连续谱的产生,光子学报,2003,32(11):1299-1301
    [32] 李曙光,冀玉领,周桂耀等,多孔微结构光纤中飞秒激光脉冲超连续谱的产生,物理学报,2004,53(2):478-483
    [33] 阮双琛,于永芹,程超等,OPA泵谱保偏光子晶体光纤产生超连续谱和非纤性特性的研究,光子学报,2004,33(7):789-791
    [34] 胡明列,王清月,栗岩锋等,非均匀微结构光纤中超连续光的产生和传输,中国激光,2004,31(5):567~569
    [1] J. P. R. Lacey, G. J. Pendock, R. S. Tucker, All-optical 1300-nm to 1500-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier, IEEE Photon. Technol. Lett., 1996, 8(7): 885-887
    [2] T. Duihuus, B. Mikkelsen, C. Joergensen, et al., All-optical wavelength conversion by semiconductor optical amplifiers, J. Lightwave Technol., 1996, 14(6): 942-954
    [3] A. Tzanakaki, M. J. O'Mahony, A. Yu et al., Penalty-free wavelength conversion using cross-gain modulation in semiconductor laser amplifiers with no output filter, Electron. Lett., 1997, 33(18): 1554-1556
    [4] K. Inoue, H. Toba, Wavelength conversion experiment using fiber four-wave mixing, IEEE Photon. Technol. Lett., 1992, 4(1): 69-72
    [5] J. P. R. Lacey, M. A. Summerfield, S. J. Madden, Tunability of polarization-insensitive wavelength converters based on four-wave mixing in semiconductor optical amplifiers, J. Lightwave Technol., 1998, 16(12): 2419-2427
    [6] O. Aso, Shin-Ichi Arai, T. Yagi, M. Tadakuma, Y. Suzuki, S. Namiki, Broadband four-wave mixing generation in short optical fibres, Electron. Lett., 2000, 36(8): 709-711
    [7] J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, D. J. Richardson, A tuneable WDM wavelength converter based on cross phase modulation effects in normal dispersion holey fiber, IEEE Photon. Technol. Lett., 2003, 15(3): 437-439
    [8] J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, Four-wave mixing based 10 Gb/s tuneable wavelength conversion using a holey fiber with a high SBS threshold, IEEE Photon. Technol. Lett., 2003, 15(3): 440-442
    [9] C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, Chinlon Lin, and A. Bjarklev, Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM, IEEE Photon. Technol. Lett., 2005, 17(12): 2655-2657
    [10] R. Tang, P. Devgan, J. Sharping, P. Voss, J. Lasri, P. Kumar, Microstructure-fiber based optical parametric amplifier in the 1550nm telecom band, OFC'03, Paper ThT2, 2003
    [11] B. Zsigri, C. Peucheret, M. D. Nielsen, and P. Jeppesen, Demonstration of broadcast, transmission, and wavelength conversion functionalities us-ing photonic crystal fibers, IEEE Photon. Technol. Lett., 18(21): 2290-2292
    [12] K. S. Abedin, T. Miyazaki, and F. Kubota, Wavelength-conversion of pseudorandom pulses at 10 Gb/s by using soliton self-Frequency shift in a photonic crystal fiber, IEEE Photon. Technol. Lett., 2004, 16(4): 1119-1121
    [13] S. Wabnitz, Broadband parametric amplification in photonic crystal fibers with two zero-dispersion wavelengths J. Lightwave Technol., 2006, 24(4): 1732-1738
    [14] C. J. Mckinstrie and S. Radic, Phase-sensitive amplification in a fiber, Optics Express, 2004, 12(20): 4973-4979
    [15] J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, P. Hedekvist, Fiber-based optical parametric amplifiers and their applications, IEEE J. Sel. Topics Quantum Electron., 2002, 8(3): 506-520
    [16] R. H. Stolen, J. E. Bjorkholm, Prametric amplication and frequency conversion in optical fibers, IEEE J. Quantum Electron., 1982, QE-18, 1062-1072

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700