地壳散射系数层析成像的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震层析成像是研究地球非均匀结构的一种非常有效的方法。在研究长波长非均匀结构方面,速度成像得到了广泛的研究和应用。而在研究小尺度非均匀结构方面,尾波具有独特的优越性。本论文在介绍散射系数层析成像前,首先介绍了尾波归一化方法的基本原理,并把此方法应用到云南地区P、S波的衰减研究上,结果显示,由尾波归一化方法得到的P、S波衰减值与其它方法得到的结果基本一致,说明了尾波归一化方法在云南地区衰减研究中的有效性。然后利用多次散射模型、多流逝时间窗方法进行散射系数与吸收系数的分离,得到了大姚强震区及邻近地区的散射系数与吸收系数,为大姚强震群散射系数空间分布的研究准备了初值。
     本论文以单次散射模型、球形辐射源、一维线性速度模型为基础计算理论包络线,通过尾波归一化方法把理论与观测包络线结合起来形成非线性方程组,用迭代最小二乘法反演研究区的散射系数空间分布。大姚强震区的研究范围为60km×40km,研究区内网格水平间隔和深度间隔均设置为5km,外围区域网格间隔为10km,研究区及外围区域的网格点总数为1680,块体总数为1224。研究结果显示,M_s6.2、M_s6.1级地震序列的余震大多发生在高散射系数区内,主震发生在高散射系数区的边缘。震源深度较浅的M_s6.1级地震序列向北西、南东方向的扩展终止于两端的低散射系数区,M_s6.2级地震序列震源深度在研究区中部向下弯曲绕过低散射系数区,在深度剖面上呈弧形分布。大姚强震区10km深度上的高散射系数条带沿震源断层分布,暗示了震区下方断层破碎带的存在。大姚地震震源断层可能是通海一牟定断裂向北西方向的延伸。选取伽师强震群区的研究范围为72km×60km,研究区及外围区域的网格点总数为2725,研究区内网格水平间隔6km,深度间隔5km,外围区域网格水平间隔12km,深度间隔10km。伽师强震群区的散射系数分布图像显示,伽师强震群区下方中上地壳中存在明显的非均匀结构。在研究区的中部10-25km深度上有一低散射系数区,这个低散射系数区与速度结构中的P波高速异常区有很好的空间相关性。1997年的7次M_s≥6.0级地震发生在研究区中部低散射系数区的边缘。
Seismic tomography is an effective method of studying heterogeneousstructure of the earth. Velocity tomography has got extensive applicationin studying long-wavelength inhomogeneous structure, however, instudying short-wavelength inhomogeneous structure, coda waves have theparticular advantage. In this thesis, Before introducing scatteringcoefficient tomography, we first introduced the basic theory of codanormalization and estimated attenuations of P and S waves in Yunnan region.The results show that our attenuation values are very close to thoseobtained by using other methods, Proving that coda normalization methodis effective in attenuation research of Yunnan region. And then, weestimated the scattering coefficient and intrinsic absorptionattenuation in Dayao strong earthquake area and nearby area by usingmultiple scattering theory and multiple lapse time window analysis method.Consequently, we prepared initial values for the research of spatialdistribution of scattering coefficient.
     Synthetic envelopes are calculated on the basis of the singlescattering theory, assuming spherical radiation sources and aone-dimensional depth-dependent velocity structure. An observationequation, which connects synthetic and observed energy densities, isobtained employing coda normalization method. Finally, we obtain thespatial distribution of scattering coefficient of research areas usinga standard ]east squares technique iteratively. The research region ofDayao strong earthquake area is 60km×40km. We set 1680 Grid points with5km spacing in the central part of research area and 10km spacing in thesurrounding area and there are total 1224 blocks. Obtained results showthat most aftershocks of M_S6.2 and M_S6.1 earthquake sequences occuredwithin large scattering coefficient zones and two main earthquakesoccured on the edge of large scattering coefficient zone. The extension of M_S6.1 earthquake sequence towards northwest and southeast ends at lowscattering coefficient zones. The aftershock focal depth of M_S6.1earthquake is relative shallow. M_S6.2 earthquake sequence bends downwardsto round a low scattering coefficient zone and forms an arc shape insection. The large scattering coefficient zone at depth of 10km isdistributed along the main shock faults, which implies that there arefault-damaged zones under Dayao strong earthquake area. The main shockfaults are supposed to be the extension of Tonghai-Mouding fault. Theresearch region of Jiashi strong earthquake swarm area is 72km×60km. Weset 2725 Grid points with 6km (horizontal) and 5km(vertical) spacing inthe central part of research area and 12km and 10km respectively in thesurrounding area, thus there are total 2106 blocks. The results show thatthere is obvious inhomogeneous structure in middle and upper crust, A lowscattering coefficient zone exists at depth of 10-25kmin the central partof research area and forms a good spatial correlation with high P-wavevelocity zone. Seven M≥6.0 earthquakes in 1997 occurred at the centeror edge of the low scattering coefficient zone.
引文
白志明,王椿镛.云南地区上部地壳结构和地震构造环境的层析成像研究.地震学报,2003,25(2):117-127
    陈培善,刘福田,李强,等.云南地区速度结构的横向不均匀性.中国科学(B辑),1990,20:431-438
    陈培善,刘福田,李强,等.云南地区速度结构的横向不均匀性.中国科学(B辑),1990,20(4):431-438
    陈杰,曲国胜,沈军,等.伽师强震群区及帕米尔东北侧地震构造环境的研究.“九五”国家科技公关计划-《新疆伽师强震群成因及帕米尔东北侧地震构造环境的研究》课题报告,2000
    崔效锋,谢富仁.利用震源机制解资料对中国西南及邻区进行应力分区的初步研究.地震学报,1999,21(5):513—522
    崔建文,任增云,赵永庆.大姚6.2级地震的强地震动观测研究.地震研究,2004,27:133-139
    邓起东,冯先岳,张培震,等.天山活动构造.北京地震出版社,2000,1-339
    邓起东,张培震,冉勇康,等.中国活动构造基本特征.中国科学D辑,2003,32:30-30
    邓起东,张培震,冉勇康,等.中国大陆活动构造基本特征.中国科学(D辑),2002,32(12):1020-1030
    付正新,非明伦,施伟华.大姚6.1级地震烈度与震害分析.地震研究,2005,28(2):197—201
    高国英,聂晓红,夏爱国.2003年伽师6.8级地震序列特征和震源机制解的初步研.中国地震,2004,20(2):179-186
    高国英,温和平,聂晓红.1991-2002年新疆中强震震源机制解分析.地震,2005,25(1):81-87
    高锐,肖序常,高弘,等.西昆仑-塔里木-天山岩石圈深地震探深综述.地质通报,2002,21(1):11-18
    郭飙,刘启元,陈九辉,等.新疆伽师强震区余震序列的地震台阵定位.地震地质,2002,24(2):199-207
    胡鸿翔,陆涵行,王椿镛,等.滇西地区地壳结构的爆破地震研究.地球物理学报,1986, 29(2):133-144
    华卫,刘杰,郑斯华,等.2003年云南大姚6.2、6.1级地震序列特征分析及触发研究.中国地震,2006,22(1):10-23
    胡家富,苏有锦,朱雄关.云南的地壳S波速度与泊松比结构及其意义.中国科学,D辑,2003,33:714-722
    金安蜀,刘福田,孙永智.北京地区地壳和上地幔三维P波速度结构.地球物理学报,1980,23:172-182
    阚荣举,张四昌,晏风桐,等.我国西南地区现代构造应力场与现代构造活动特征的探讨,地球物理学报,1977,20:96-108
    李强,刘瑞丰,杜安陆,等.新疆及其毗邻地区地震层析成像.地球物理学报,1994,37(3):311-320
    李强,刘瑞丰,杜安陆.新疆及毗邻地区深部孕震环境和地震成因研究.地震学报,1995,17(4):432-439
    李松林,张先康,Mooney W,等.伽师地震区地壳细结构及发震断层的初步研究.地球物理学报,2002,45(1):75-82
    刘志,张先康,周雪松,等.帕米尔东北侧地壳物性结构及其发震环境探讨.地震学报,2003,25(3):242-249
    李白基,秦嘉政,钱晓东,等.云南姚安地区的尾波衰减.地震学报,2004,26(1):47-52
    刘福田,李强,吴华,等.用于速度图象重建的层析成象法.地球物理学报,1989,32:46-61
    刘福田,曲克信,吴华,等.华北地区的地震层面成像.地球物理学报,1986,29:442-449
    刘建华,刘福田,吴华,等.中国南北带地壳和上地幔的三维速度图象.地球物理学报,1989,32(2):143-151
    刘祖荫,皇甫岗,金志林,等.一九七0年通海地震.地震出版社,1999,pp115
    刘启元,陈九辉,李顺成,等.新疆伽师强震群区三维地壳上地幔S波速度结构极其地震成因的探讨.地球物理学报,2000,43:356-365
    卢德源,李秋生,高锐,等.横跨天山的人工爆炸地震剖面.科学通报,2000,45(9):982-987
    马杏垣.中国岩石圈动力学图集.北京:地图出版社,1989
    梅世蓉.地震前兆场物理模式与前兆时空分布机制研究(Ⅰ)-坚固体孕震模式的由来与证据.地震学报,1995,17:273-282
    梅世蓉.新疆及邻区强震发生的深部条件与坚固体孕震模式的新证据.内陆地震,1997,11(2):97-102
    毛玉平,万登堡.2000年云南姚安6.5级地震,云南科技出版社,2001
    宁杰远,臧绍先.帕米尔-兴都库什地区地震空间分布特征及应力场特征.地球物理学报,1990,33(6):657-669
    潘素珍,张先康,杨素珍,等.利用反演方法确定新疆伽师地震的定位.地震地质,2004,26(1):153-160
    浅野阳一.2000年鸟取西部地震震源区短波长非均匀构造.平成14年.博士论文
    乔学军,王琪,杜瑞林.川滇地区活动地块现今地壳形变特征.地球物理学报,2004,47(5):805-811
    秦嘉政,阚荣举.龙陵地震前后区域Q值和平均剪应力的分布特征.地震学报,1986,8(1):57-72
    秦嘉政,阚荣举.滇西地区应力场和Q值的时空变化与地震前兆分析.地震,1992,(5):44-53
    秦嘉政,刘祖荫.滇西实验场两次中强地震前后尾波衰减的区域特征分析.中国地震,1995,11(3):212-221
    单新建,何玉梅,朱燕,等.伽师强震群震源破裂特征的初步分析.地球物理学报,2002,45:416-425
    尚铁樑,高龙生.多次散射的传输理论及其在脉冲源的地震尾波问题上的应用.中国科学B辑,1988,No1,85—94
    沈军,汪一鹏,赵瑞斌.帕米尔东北缘及塔里木盆地西北部弧形构造的扩展特征.2001,23:381-389
    苏有锦.2003年7月21日、10月16日云南大姚6.2级和6.1级地震预测预报回顾与讨论,国际地震动态,2004,(1),18-21
    王椿镛,Mooney W D,王溪莉,等.川滇地区地壳上地幔三维速度结构研究.地震学报,2002,24(1):1-16
    王勤彩,刘杰,郑斯华.云南地区与频率相关的P、S波衰减研究.地震学报,2006,27(6),588-597
    王琪,张培震,Freymueller J T,等.中国大陆现今地壳运动和构造变形.中国科学,D辑,2001,31(7):529-536
    王琪,张培震,马宗晋,等.中国大陆现今构造变形GPS观测数据和速度场.地学前缘, 2002,9(2):415-428
    王琪,丁国瑜,乔学军,等.天山现今地壳快速缩短与南北地块的相对运动.科学通报,2000,45(14):1538-1542
    王新岭,刘杰,张国民等.姚安地震序列与永胜地震序列的高精度定位,中国地震,2005,Z1(3),386-397
    王兴辉.年2月1日云南大姚5.3级地震序列。四川地震,1994,N02.
    吴建平,明跃红,等.2001.云南数字地震台站下方的S波速度结构研究.地球物理学报.44(2):228—237
    吴建平,明跃红,王椿镛.云南数字地震台站下方的S波速度结构研究.地球物理学报,2001,44(2):228—237
    吴如山,安艺敬一.地震波的散射与衰减.地震出版社,1993
    谢富仁,崔效锋,赵建涛,等.中国大陆及邻区现代构造应力场分区.地球物理学报,2004,47(4):654-662
    徐锡伟,张先康,冉勇康,等.南天山地区巴楚-伽师地震(M_s6.8)发震构造初步研究.2006,28(2):161-178
    徐锡伟,闻学泽,郑荣章,等.川滇地区活动块体最新构造变动样式及其动力来源.中国科学,2003,33(增刊):151—162
    徐朝繁,张先康,段永红,等.新疆伽师强震群区上部地壳细结构的高分辨折射地震探测研究,2006,28(1):60-69
    胥颐,刘福田,刘建华,等.天山地震带的地壳结构与强震构造环境.地球物理学报,2000,43(2):184-193
    胥颐,刘建华,刘福田,等.天山一帕米尔结合带的地壳速度结构及地震活动研究.地球物理学报,2006,49(2):469-476
    杨晓平,沈军.天山内部博罗可努断裂精河-阿拉山口段晚更新世以来的活动特征.地震地质,2000,22(3):305-315
    杨晓平,冉勇康,宋方敏,等.西南天山柯坪逆冲推覆构造带的地壳缩短分析.地震地质,2006,28(2):194-212
    杨卓欣,赵金仁,张先康.伽师强震群区上地壳三维速度层析成像.地震学报,2002,24(2):153-161
    杨卓欣,张先康,嘉世旭,等.伽师强震群区震源细结构的深地震反射探测研究.地球物理学报,2006,49(6):1701—1708
    张培震,邓起东,杨小平,等.天山的晚新生代变形及其地球动力学问题.中国地震,1996, 12:27-140
    张培震.天山及其前陆盆地的晚新生代构造变形.科学通报,2003,48(24),2499-2500
    张培震.GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约,地学前缘,2003,10特刊,81-92
    张培震,甘卫军,沈正康.中国大陆现今构造作用的地块运动和连续变形耦合模型.地质学报,2005,197(6):748-756
    张天中,高龙生,张卫平.滇西实验场区的Q值及其随时间窗的变化.地震学报,1990,12(1):12-21
    张先康,赵金仁,张成科,等.帕米尔东北侧地壳结构研究.地球物理学报,2002,45(5):665-671
    赵俊猛,李植纯,程宏岗,等.天山造山带岩石圈密度与磁性结构研究及其动力学分析.地球物理学报,2004,47(6):1061-1067
    赵翠萍.1997-2003年伽师震源区特征的地震学方法研究.博士论文,2006
    周仕勇,许忠淮,韩京,等.主地震定位法分析以及1997年新疆伽师强震群高精度定位.地震学报,999,21(3):258-265
    周仕勇,许忠淮.由震源谱推断1997年新疆伽师强震群破裂特性.地震学报,2000,22(2):113-124
    周仕勇,许忠淮,陈晓非.伽师强震群震源特征及震源机制力学成因分析.地球物理学报,2001,44(5):654-662
    周仕勇,姜明明,Robinson R.1997年新疆伽师强震群发展过程中发震断层问相互作用的影响.地球物理学报,2006,49(4):1102-1109
    周龙泉,刘杰,张晓东.2003年大姚6.2和6.1级地震前三维波速结构的演化.地震学报,2007.29:20-30
    Abdrakhmatov K Y, Aldazhanov S A, Hager B H, et al. Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates. Nature, 1996, 384:450-453
    Abubakirov I R, Gusev A A. Estimation of scattering properties of lithosphere of Kamchatka based on Monte-Carlo simulation of record envelope of a near earthquake, Phys. Earth Planet. Inter., 1990, 64:52-67
    Aki K. Correlogram analyses of seismograms by means of a simple automatic computer. J. phys. Earth, 1956, 4:71-79
    Aki K, Tsujiura M. Correlation study of near earthquake waves. Bull. Earthq. Res. Inst. Univ. of Tokyo, 1959, 37:207-232
    Aki K. Analysis of seismic coda of local earthquakes as scattered waves. J. Geophys. Res., 1969, 74:615-631
    Aki K. Scattering of P wave under the Montana Lasa. J. geophys. Res., 1973, 78: 1334-1346
    Aki K, Chouet B. Origin of coda waves: Source,attenuation and scattering effects. J. geophys. Res., 1975, 80:3322-3342
    Aki K, Richards G. Quantitative seismology: Theory and methods. W. H. Freeman, New York, 1980
    Aki K. Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys. Earth Planet. Inter., 1980, 21:50-60
    Aki K. Scattering and attenuation. Bull. Seism. Soc. Am., 1982, 72:5319-5330
    Aki K, Lee W H K. Determination of three dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes. Part Ⅰ.A homogeneous initial earthquake model. J. Geophys. Res. 1976, 81:4381-4399
    Aki K, Christoffersson A, Husebye E S. Determination of three dimensional seismic structure of the lithosphere. J. Geophys. Res., 1977, 82:277-296
    Akinci A, Eyidogan H. Scattering and anelastic attenuation of seismic energy in the vicinity of north Anatolian fault zone, Eastern Turkey. Phys. Earth Planet. Inter., 2000, 122:229-239
    Akinci A, Del Pezzo E, Ibanez M J. Separation of scattering and intrinsic attenuation in southern Spain and western Anatolia (Turkey). Geophys.,I. Int., 1995, 121:337-353
    Asano Y, Hasegawa A. Imaging the fault zones of the 2000 western Tottori earthquake by a new inversion method to estimate three-dimensional distribution of the scattering coefficient. J. Geophys. Res. 2004, 109: B06306, doi: 10.1029/2003 JB002761
    Asano Y, Obara K, Nakajima J. Inhomogeneous crustal structure beneath northern Miyagi prefecture, northeastern Japan, imaged by coda envelope inversion: Implication for fluid distribution. 2004, 31:L24615,doi: 10. 1029/2004GL021261
    Avouac J P, Tapponnier P, Bai M, et al. Active Thrusting and folding along the northern Tianshan and Late Cenozoic rotation of the Tarim relative to Dzhungaria and Kazakhstan. J. Geophys. Res., 1993, 98:6755-6804
    Bianco F, Del Pezzo E, Castellano M. Separation of intrinsic and scattering seismic attenuation in the southern Apennine zone Italy. Geophys. J. Int., 2002, 150:10-22
    Bianco F, Del Pezzo E, Malagnini L. Separation of depth-dependent intrinsic and scattering seismic attenuation in the northeastern sector of the Italian Peninsula. Geophys. J. Int.,2005, 161, doi: 10.1111/j.1365-246X.2005.02555.x.
    Bullen M E, Burbank D W, Garver J I. Building the northern Tien Shah:Integrated thermal structural and topographic constraints. J. Geology, 2003, 111:149-165
    Bullen M E, Burbank D W, Abdrakhmatov K Y, et al. Late Cenozoic tectonic evolution of the northwestern Tien Shah:Constrains from magnetostra- tigraphy,detrital fission track,and basin analysis. Geol. Soc. Am. BulL, 2001, 113:1544-1559
    Burtman V S, Molnar P. Geological and geophysical evidence for deep subduetion of continental crust beneath Pamir. Geological Society of America, Boulder, Colorado, 1993.
    Capon J. High-resolution frequency-wavenumber spectrum analysis, Proc. IEEE, 1969. 57: 1408-1418
    Capon J. Characterization of crust and upper mantle structure under Lasa as a random medium. Bull. Seism. Soc. Am., 1974, 64: 235-266.
    Chen X, Long L T. Spatial distribution of relative scattering coefficients determined from microearthquake coda. Bull. Seismol. Soc. Am., 2000, 90, 512-524
    Chung Tae-Woong, Sato H. Attenuation of high-frequency P and S waves in the crust of Southeastern Korea. Bull Seism Soc Amer, 2000, 91: 1867—1874
    Dainty A, Toksoz M, Anderson P J, et al. Seismic scattering and shallow structure of the moon in Oceanus Procellarum. Moon, 1974, 9:11-29
    Dainty A, Toksoz M. Seismic coda on the earth and the moon: A comparison. Phys. Earth Planet. Inter., 1981, 26:250-260
    Fehler M, Hoshiba M, Sato H, et al. Separation of scattering and intrinsic attenuation for the Kanto-Tokai region, using measurements of S-wave energy versus hypocentral distance. Geophys. J. Int., 1992, 108:787-800
    Gao L S, Lee L C, Biswas N N, Aki K. Comparison of the Effects between Single and Multiple Scattering on Coda Waves for Local Earthquakes. Bull. Seismol. Soc. Am., 1983, 73: 377-389
    Giampiccolo E, Tuve T, Gresta S. S-waves attenuation and separation of scattering and intrinsic absorption of seismic energy in southeastern Sicily (Italy). Geophys. J. Int. 2006, 165:211- 222.
    Gret A, Sineder R, Aster R, et al. Monitoring rapid temporal changes in a volcano with coda wave interferometry. Geophys. Res. Lett. 2005, 32, L06304, 10.1029/2004 GL02114.
    Gret A, Sineder R, Scales J, et al. Time-lapse monitoring of rock properties with coda wave interferometry, submitted to J. Geophys. Res. 2006, 2004JB003354
    Gupta I, Lynnes C, Wagner R, et al. Broadband F-K analysis of array data to identify sources of local scattering. Geophys. Res. Lett., 1990, 17:183-186
    Gusev A A, Abubakirov I R. Monte-Carlo simulation of record envelope of a near earthquake. Phys. Earth Planet. Inter., 1987, 49:30-36
    Gusev A A, Abubakirov I R. Simulated envelopes of non-isotropically scattered body waves as compared to observed ones: another manifestation of fractal heterogeneity. Geophys. J. Int., 1996, 127:49-60
    Hoshiba M. Simulation of multiple-scattered coda wave excitation based on the energy conservation law. Phys. Earth Planet. Inter. 1991a, 67:123-136
    Hoshiba M, Sato H, Fehler M. Numerical basis of the separation of scattering and intrinsic absorption from full seismogram envelope: A Monte Carlo simulation of multiple isotropic scattering, Pap. Meteorol. Geophys., 1991b, 42: 65-91
    Hoshiba M. Separation of scattering attenuation and intrinsic absorption in Japan using the multiple lapse time window analysis of full seismogram envelope. J. Geophys. Res., 1993, 98: 158O9-15,824
    Hoshiba M. Estimation of nonisotropic scattering in western Japan using coda wave envelopes: App.,lication of a multiple nonisotropic scattering model. J. Geophys. Res., 1995, 100: 645-657
    Hoshiba M. Seismic coda wave envelope in depth dependent S wave velocity structure, Phys. Earth planet, Int., 1997, 104:15-22
    Hoshiba M, Rietbrock A, Scherbaum F. Scattering attenuation and intrinsic absorption using uniform and depth dependent model-application to full seismogram envelope recorded in northern Chile. 2001, J. Seismol., 5:157-179
    Huang J, Zhao D. Crustal heterogeneity and seismotectonics of the region around Beijing China. Tectonophysics, 2004, 385:159-180
    Inamori T, Horiueh S,Hasegawa A, et al. Location of mid-crustal reflector by a reflection method using aftershock waveform data in the focal area of the 1984 Weatem Nagano prefecture earthquake. 1992, J. Phys. Earth, 40:379-393
    Ishimaru A. Wave propagation and scattering in random media. Academic press, New York, 1978
    Jemberie A, Langston A. Site Amplification, Scattering, and Intrinsic Attenuation in the Mississippi Embayment from Coda Waves. Bull. Seism. Soc. Am., 2005, 95:1716-1730
    Jin A, Aki K. Temporal change in coda Q before the Tangshan earthquake of 1976 and the Haicheng earthquake of 1975. J. Geophys. Res., 1986, 91,665-673
    Jin A, Aki K. Spatial and temporal correlation between coda Q and seismicity in China. Bull. Seimol. Soc. Am. 1988, 78:741-769
    Jin A, Mayeda K, Adams D, Aki K. Separation of intrinsic and scattering attenuation in southern California using TERRAscope data. J. geophys. Res., 1994, 99:17 835-17 848
    Jin A, Aki A, Liu Z. Seismological evidence for the brittle-ductile interaction hypothesis on earthquake loading. Earth planets space, 2004, 56:823-830
    Kito T, Shibutani T, Hirahara K. Scattering objects in the lower mantle beneath northeastern China observed with a short-period seismic array. Phys. Earth Planet. lnt., 2003, 138:55-69
    Kopnichev Y F. The role of multiple scattering in the formation of seismogram's tail. Izv Akad Nauk SSSR Fiz Zelmi, 1977, 13:394-398
    Lee W, Sato H, Lee K, et al. Scattering coefficients in the mantle revealed from the seismogram envelope analysis based on the multiple isotropic scattering model. Earth and Planetary Science Letters, 2006, 241:888-900
    Liu H L, Helmberger D V. The 23:19 aflershock of the 15 October 1979 Imperial valley earthquake: More evidence for an asperity, Bull. Seism. Soc. Am., 1985, 75:689-708
    Margerin L, Campillo M, Tiggelen B V. Radiative transfer and diffusion of waves in a layered medium: new insight into coda Q. Geophys. J. Int., 1998, 134:596-612
    Margerin L, Campillo M, Shapiro N M, et al. Residence time of deffuse waves in the crust as a physical interpretation of coda Q: application to seismograms recorded in Mexico. Geophys. J. Int., 1999,138:343-352
    Matsumoto S, Obara K, Hasegawa A. Imaging P-wave scatterer distribution in the focal area of the 1995 M7.2 Hyogo-ken Nanbu (Kobe) Earthquakes. Geophys. Res. Lett., 1998, 25: 1439-1442
    Matsumoto S, Hasegawa A. Distinct S-wave reflector in the mid-crustal beneath Nikko-Shirane volcano in the northeastern Japan arc. J. Geophys. Res., 1996, 101:3067-3083
    Mayeda K, Su F, Aki K. Seismic albedo from the total seismic energy dependence on hypocentral distance in southern California. Phys. Earth Planet Inter., 1991, 67:104-114
    Mayeda K, Koyanagi S, Hoshiba M, et al. A comparative study of scattering, intrinsic, and coda Q~(-1) for Hawaii, Long Valley and central Califomia between 1.5 and 15 Hz. J. Geophys. Res. 1992,97:6643-6659
    Mcsweenwy T J, Biawas N N, Mayada K, et al. Scattering and anelastic attenuation of seismic energy in south-central Alaska. Phys. Earth Planet Inter., 1991, 67: 115-122.
    Menke W. Geophysical Data Analysis: Discrete Inverse Theory. Academic, San Diego, Calif., 1984
    Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 1975, 189: 419-426
    Nakamura H, Latham V, Ewing M, et al. Lunar seismic energy transmission, Eos Trans AGU, 1970, 51,776
    Nakamura H. Estimation of scatterer distribution in the earth's erust using threecomponent small-aperture array observation. M.S. thesis, Kyoto University, Kyoto, Japan, 1993
    Neidell N, Taner M. Semblance and other coherency measures for multichannel data. Geophysics, 1971, 36:482-497
    Nikolev A, Troitskiy E Lithospheric studies based on array analysis of P-coda and microseisms, Tectonophysics, 1987, 140:103-113
    Nikolayev V, Tregub S. A statistical model of the earth's crust: Method and results. Tectoniphysics, 1970, 10, 573-578
    Nishigami K. A new inversion method of coda waveforms to determine spatial distribution of coda scatterers in the crust and uppermost mantle. Geophys. Res. Lett., 1991, 18:2225-2228
    Nishigami K. Spatial distribution of coda scatterers in the crust around two active volcanoes and one active fault system in central Japan: Inversion analysis of coda envelope. Phys. Earth Planet. Inter. 1997, 104:75-89.
    Nishigami K. Deep structure heterogeneity along and around the San Andreas fault system in central California and its relation to the segmentation. J. Geophys. Res., 2000, 105: 7983-7998
    Nishigami K. Crustal heterogeneity in the source region of the 2004 mid niigata prefecture earthquake: inversion analysis of coda envelopes. Pure Appl. Geophys., 2006,163: 601 - 616
    Niu F, Silver P, Nadeau R, et al. Migration of seismic scatterers associated with the 1993 Parkfield aseismic transient event. Nature, 2003, 426: 544-548
    Obara K, Sato H. Regional differences of random inhomogeneities around the volcanic front in the Kanto-Tokai area, Japan, revealed from the broadening of S wave seismogram envelopes. J. Geophys. Res. 1995,100: 2103-2121
    Obara K. Simulations of anomalous seismogram envelopes at coda portions. Phys. Earth Planet. Inter., 1997,104: 109-125
    Rautian T G, Khalturin V I. The use of the coda for determation of the earthquake source spectrum. Bull. Seismol. Soc. Am., 1978, 68: 923-948
    Revenaugh J. A scattered-wave image of subduction beneath the Transverse Range. Science, 1995a, 268:1888-1892
    Revenaugh J. The contribution of topographic scattering to teleseismic coda in southern California. Geophys. Res. Lett, 1995b, 22: 543-46
    Revenaugh J. Relationship of the 1992 Landers, California, earthquake sequence to seismic scattering. Science, 1995c, 270:1344-47
    Revenaugh J, Mendoza H. Mapping shallow heterogeneity with teleseismic P to Rg scattered waves. Bull. Seismol. Soc. Am., 1996, 86: 1194-99
    Revenaugh J, Reasoner C. Cumulative offset of the San Andreas fault in central California: a seismic approach. Geology, 1997, 25: 123-26
    Revenaugh J. The relation of crustal scattering to seismisity in southern California, J. Geophys. Res., 2000,105: 25403-25422
    Saito T, Sato H, Ohtake M. Envelope broadening of spherically outgoing waves in three-dimensional random media having power-law spectra . J. Geophys. Res., 2002, 107, 10.1029/2001JB000264
    Sato H. Energy propagation including scattering effects: Single isotropic scattering approximation. J. Phys. Earth, 1977,25: 27-41
    Sato H. Mean free path of S-wave under the Kanto district of Japan. J. Phys. Earth, 1978, 26: 185-198
    
    Sato H. Q~(-1) value for S-wave under the Kanto district in Japan. Zisin , 1980,33: 541-543
    Sato H. Coda excitation due to nonisotropic scattering and nonspherical source radiation . J. Geophys. Res., 1982, 87:8665-8674
    Sato H. Attenuation and envelope formation of three-component seismograms of small local earthquakes in randomly inhomogeneous lithosphere. J. Geophys. Res., 1984, 89:1221-1241
    Sato H. Broadening of seismogram envelops in the randomly inhomogeneous lithosphere based on the parabolic approximation; Southeastern Honshu, Japan. J. Geophys. Res., 1989, 94: 17735-17747
    Sato H. Unified approach to amplitude attenuation and coda excitation in the randomly inhomogeneous lithosphere, Pure Appl. Geophys., 1990, 132: 93-121
    Sato H. Energy transportation in one- and two-dimensional scattering media: analytic solution of the multiple isotropic scattering model. Geophys. J. Int. 1993, 112:141-146
    Sato H. Thermal structure of the mantle wedge beneath Northeastern Japan:magmatism in an island arc from the combined data of Seismic anelasticity and velocity and heat flow. Volcanol. Geothem.Res, 1992, 51:237-252
    Sato H. Formulation of the multiple nonisotropic scattering process in 3-D space on the basis of energy transport theory. Geophys. J. Int., 1995, 121:523-531
    Sato H, Fehler M. Seismic Wave Propagation and Scattering in the Heterogeneous Earth. Springer-Verlag, New York, 1998
    Shen Z K, Wang M in, L i Y, et al. Crustal deformation associated with the Altyn Tagh fault system, western China, from GPS. J. Geophys. Res. 2001, 106:30607-30621
    Singh S, Herrmann R B. Regionalization of crustal coda Q in the continental United states, J. Geophys. Res., 1983, 88, 527-238
    Snieder R, Gret A, Douma H. Coda wave interferometry for estimating nonlinear behavior in seismic velocity, Science, 2002, 295:2253-2255
    Snieder R. The Theory of Coda Wave Interferometry, Pure Appl. Geophys. 2006, 163:455-473
    Takahashi T, Sato H, Nishimura M. Strong inhomogeneity beneath Quaternary volcanoes revealed from the peak delay analysis of S-wave seismograms of microearthquakes in northeastern Japan. Geophys. J. Int., 2006, in press
    Taira T, Yomogida K. Imaging of three-dimensional small-scale heterogeneities in the Hidaka, Japan region: Coda spectral analysis. Geophys. J. Int., 2004a, in press
    Taira T, Yomogida K. Imaging of small-scale crustal heterogeneity as seismic scatterers with array data Ⅰ: Theory. J. Geophys. Res., 2005a, submitted
    Taira T, Yomogida K, Kuwahara Y, et al. Imaging of smallscale crustal heterogeneity as seismic scatterers with array data Ⅱ: Application of the Nagamachi-Rifu fault area , Japan. J. Geophys. Res., 2005b, submitted
    Thomas J C, Chauvin A, Gapais D, et al. Paleomagnetic evidence for Cenozoic block rotations in the Tadjik depression (central Asia). J. Geophys. Res. 1994, 99:15141-15106
    Toksoz M N, Dainty A M, Reiter E, et al. A model for attenuation and scattering in the earth's crust. Pure Appl.Geophys, 1988, 128:81-100
    Tselentis G. Intrinsic and Scattering Seismic Attenuation in W. Greece, Pure Appl. Geophys. 1998, 153:703-712
    Tuv'e T, Bianco F, Patan'e D, et al. Attenuation study in the Straits of Messina area (southern Italy). Tectonophysics, 2006, 421:173-185
    Ugalde A, Pujades L, Canas J, et al. Estimation of the intrinsic absorption and scattering attenuation in northeastemVenezuela (south-eastern Caribbean) using codawaves. Pure Appl. Geophys, 1998, 153:685-702
    Wesley P. Diffusion of seismic energy in the near range. J. Geophys. Res., 1965, 70, 5099-5106
    Wu R S, Aki K. Elastic wave scattering by a random medium and the small scale inhomogeneities in the lithosphere. J. Geophys. Res., 1985a, 90:10 261-10273
    Wu R S. Multiple scattering and energy transfer of seismic wave-Separation of scattering effect from intrinsic attenuation -Ⅰ. Theoretical model, Geophys. J. R. astr. Soc., 1985b, 82:57-80
    Wu R S, Aki K. Multiple scattering and energy transfer of seismic wave-Separation of scattering effect from intrinsic attenuation -Ⅱ. Application of the theory to Hindu Kush region. Pure Appl. Geophys., 1988a, 128:49-80
    Wu R S, Aki K. Introduction: seismic wave scattering in tree-dimensionally heterogeneous earth. Pure Appl. Geophys, 1988b, 128:1-6
    Wu R S, Aki K. The perturbation method in elastic wave scattering. Pure Appl Geophys. 1989, 131:605-538
    Yoshimoto K, Sato H, Yoshihisa I, et ql. Frequency-dependent attenuation of P and S waves in the Kanto area, Japan, based on the coda-normalization method. Geophys J Int., 1993, 114: 165-174
    Yoshimoto K, Sato H, Yoshihisa I, et al. Frequency-dependent attenuation of high-frequency P and S waves in the upper crust in western Nagano, Japan. Pure Appl. Geophys, 1998, 153: 489-502
    Yoshimoto K. Monte Carlo simulation of seismogram envelopes in scattering media. Geophys. J. R., 2000, 105:6153-6161
    Zcng Y. Su F, Aki K. Scattering wave energy propagation in a random isotropic scattering medium: 1. Theory. J. Geophys. Res., 1991a, 96: 607-619
    Zcng Y. Compact solutions for multiple scattered wave energy in time domain. Bull. Seismol. Soc. Am., 1991b, 81: 1022-1029
    Zhao D, Hasegawa A. Horiuchi S. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. J. Geophys. Res., 1992, 97:19909-19928
    Zhao D, Ochi F, Hasegawa A, et al. Evidence for the location and cause of large crustal earthquakes in Japan. J. Geophys. Res., 2000, 105:13579-13549

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700