Λ型三能级原子系统中光学性质相干控制及周期量级激光脉冲传播的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要进行了两个方面的理论研究工作:一方面对非均匀展宽的Λ型三能级系统中无反转激光及量子相干控制进行理论研究;另一方面,采用时域有限差分法和预估校正运算法则数值求解麦克斯韦—布洛赫方程,模拟了周期量级激光脉冲在稠密的Lambda型三能级原子系统中的传播过程。全文内容共分八章,内容如下:
     第一章为综述,对无粒子数反转激光,相干控制和无粒子数反转激光产生的基本原理以及超短激光脉冲的发展和应用作了简单的阐述,介绍了当前这一研究课题的研究现状和研究内容。
     第二章讨论了封闭的Λ型三能级系统中Doppler展宽对LWI增益的影响,研究发现:不惯探测场和驱动场是同向传播还是反向传播,驱动场是失谐还是共振,系统获得的GWI都不随Doppler展宽值的增大而单调地减小或增大;除探测场和驱动场反向传播且驱动场失谐的情况外,在一定的条件下,选择适当的Doppler展宽值,可以得到比不存在Doppler效应时大得多的GWI;尤其是当探测场和驱动场同向传播且驱动场共振时,获得的GWI更大。另外,我们的研究还表明,在探测场和驱动场反向传播情况下,Doppler展宽值足够大时,增益出现振荡,振荡的区域和幅度随着Doppler展宽值的增大而增大。这些结论是与以前关于封闭Λ型系统中Doppler展宽对LWI增益影响的研究结果(即增益(或强度)随Doppler展宽值的增加而单调减小)大不相同的。
     第三章在第二章研究的基础上首次讨论了自发辐射诱导相干对Doppler展宽的封闭∧型系统中探测场无反转增益的影响,结果表明:不管探测场和驱动场是同向传播还是反向传播,在Doppler展宽值较小时,存在SGC时系统可获得明显大于不存在SGC效应时的LWI增益;存在SGC效应时LWI增益所对应的探测场失谐的取值范围明显大于不存在SGC效应时的取值范围;Doppler展宽值一定时,LWI增益的极大值不随SGC强度的增大而单调地减小或增大,选择合适的SGC强度值,可获得最大的LWI增益。
     第四章首次研究Doppler展宽的封闭系统中探测场和驱动场之间的相对位相对探测场的增益和粒子数布居的控制作用。结果发现:(1)不管探测场和驱动场是同向传播还是反向传播,驱动场是失谐还是共振,无反转增益总是随相对位相的改变而作周期性变化,周期为2π。(2)驱动场共振时,无反转增益极大值随Doppler展宽值的增大而单调减小,且反向传播时比同向传播时减小的速度更快;驱动场失谐时,无反转增益的极大值随Doppler展宽值的增大不再单调地减小或增大。在以上两种情况下,均可以通过调节相对相位的数值而得到最大的无反转增益。(3)自发辐射诱导相干性对无反转增益的贡献远大于动力学相干性的贡献。
     第五章推导了不采用旋波近似和慢变包络近似下的全波麦克斯韦—布洛赫方程,并对时域有限差分法和预估校正运算法则作了细致的阐述。
     第六章采用时域有限差分法和预估校正运算法则数值求解了不采用旋波近似和慢变包络近似下的全波麦克斯韦—布洛赫方程,模拟了周期量级脉冲在稠密Lambda型三能级原子介质中的传播特性,研究结果发现:超短脉冲在稀疏介质和稠密介质中的传播规律有明显的不同;在稀疏介质中,由于电场时间导数项的影响,脉冲的后沿出现振荡;在稠密介质中,脉冲的前沿和后沿均出现振荡;大面积脉冲在稀疏介质中传播时不发生分裂,而在稠密介质中传播时发生分裂;在稠密介质中脉冲的传播延迟于在稀疏介质中脉冲的传播,入射脉冲面积越大,差别越明显。脉冲在稀疏介质和稠密介质中传播过程中的粒子数布居演化情况明显不同。另外在稠密介质中,考虑和不考虑LFC两种情况下,脉冲的拉比频率的时间演化规律明显不同;由于NDD相互作用会增强和减弱光与物质的相互作用,导致考虑NDD相互作用时脉冲的振幅大于和小于不考虑NDD的情况;对大面积脉冲,脉冲发生分裂,脉冲发生分裂,子脉冲间的间距随着传播距离的增加而增大,而且考虑LFC时的子脉冲间的间距小于不考虑LFC时两脉冲的间距;原子密度大的介质内,考虑和不考虑LFC两种情况下,能级|1>, |2>和|3>上的粒子数布居的分布明显不同;入射脉冲的面积越大,LFC对脉冲和粒子数布居的影响越大。
     第七章研究了单色周期量级激光脉冲在稀疏介质和稠密介质中传播时的脉冲频谱演化规律,结果发现:不管是在稀疏介质中还是在稠密介质中,由于自相位调制作用,频谱均被展宽,而在稠密介质中频谱的宽度要远大于稀疏介质中的情况,这主要是由于近偶极—偶极作用导致的。在稠密介质中,由于近偶极—偶极作用和自相位调制作用,频谱出现高频连续波,可以得到最高频率为10ωp的超连续谱。
     第八章对双色周期量级激光脉冲在稠密的Λ型三能级原子介质中的传播特性进行了研究,结果发现两色脉冲的初始相位对脉冲的时间演化有很大的影响,脉冲的分裂现象与稀疏介质明显不同。
This paper represents mainly two aspects research: one is the study of lasing without inversion and coherent control in an inhomogeneous broadeningΛ-type three-level system; the other is to numerically solute the Maxwell-Bloch equations employing predictor-corrector finite-difference time-domain method, and simulate propagation of sub-cycle laser pulse in a denseΛ-type three-level system. This paper consists of eight chapters, and the main contents and results are illustrated as follows:
     In chapter 1, we explain the significance of the studying coherent control, LWI showed the basic principle of producing LWI, give the development and applications of ultrashort laser pulses, and introduce simply the current research state of coherent control, LWI and the interaction of the ultrashort laser pulse with medium.
     In chapter 2, we discuss the effect of the Doppler-broadening on the gain and the population difference. The result shows that regardless of the driving field being on resonance or not, for the counter- or co-propagating of the probe and driving fields (PDF), GWI does not monotonously decrease or increase with Doppler width increasing; except the case of the counter-propagating PDF with off-resonance driving field, at a suitable Doppler width one can get a gain maximum value much larger than that without Doppler broadening; especially in the situation of the resonant driving field, the co-propagating geometry leads to a more large GWI; in addition, for the counter-propagating geometry, when Doppler width is larger enough, GWI oscillation occurs, and the oscillation amplitude and region increase with Doppler width increasing. These conclusions are very different from that obtained in previous investigation (i.e. the gain monotonously decreases with Doppler width increasing).
     In chapter 3, based on the work of chapter 2, we firstly investigate the effect of the spontaneously generated coherence (SGC) on gain of lasing without inversion (LWI) in a closed three-levelΛ-type atomic system with Doppler broadening. It is shown that, regardless of the driving and probe fields being co- or counter–propagating, at a suitable value of the Doppler width, we can obtain a much larger LWI gain with SGC than that without SGC; and the region of the LWI gain spectrum with SGC is obviously larger than that without SGC. When the Doppler width takes a constant value, the gain does not monotonously decrease or increase with increasing of strength of SGC, the largest LWI gain can be obtained by adjusting strength SGC. Generally speaking, the co-propagating probe and driving fields is favorable to obtain a larger LWI gain.
     In chapter 4, for the first time, we studied the control role of the relative phase between the probe and driving fields on inversionless gain of the probe field in a closed and Doppler broadeningΛ-type three-level system with the spontaneously generated coherence (SGC). It is shown that:(1) Regardless of the driving field being on- or off- resonance, and regardless of the probe and driving fields being co- or counter- propagating, always the gain maximum value varies periodically with variation of the relative phase, the period is 2π. (2) When the driving field is on-resonance, the gain maximum value decreases monotonously with Doppler width increasing, moreover, the decreasing in the counter-propagation case is quicker than that in the co-propagation case; when the driving field is off-resonance, the gain maximum value does not monotonously decrease or increase with Doppler width increasing. For above both cases, the largest inversionless gain can be gotten by adjusting value of the relative phase. (3) The contribution of SGC to the inversionless gain is much larger than that of the dynamically induced coherence.
     In chapter 5, we derive Maxwell-Bloch equations beyond slowly varying envelope approximation (SVEA) and rotation-wave approximation (RWA) are located in chapter five, and simply elucidate the predictor-corrector finite-difference time-domain method.
     In chapter 6, by solving the full Maxwell-Bloch equations without SVEA and RWA, we numerically investigate the interaction of sub-cycle laser pulse and a denseΛ-type three-level atomic system. We find that the Rabi frequency and the populations in a dense medium are quite different from those in a dilute medium; the time derivative of the electric field has stronger effects on the time evolution of the pulse in the dense medium than that in a dilute medium, so the trailing and leading edge of the pulse occurs oscillations; for the larger pulse area, split of pulse occurs in a dense medium, and not occur in a dilute medium; the time of pulse appearing in a dense medium is later than that in the dilute medium; the larger is the area of the input pulse, the more evident is the difference. In addition, the time evolution rules of the carrier Rabi frequency in the two cases with and without LFC are much different in a dense medium; the amplitude of the main pulse is larger or smaller with LFC than that without LFC since the effect of the NDD interaction will enhanced or depresses the light-matter interaction; when the area of the input pulse is larger, split of pulse occurs, and the time interval between the two sub-pulses increase with propagation distance increasing and the time interval between the two sub-pulses in the case without LFC is longer than that with LFC; the time evolution rules of the populations of levels |1>, |2> and |3> in the two cases with and without LFC are much different in a dense medium; the larger is the area of the input pulse, the obviously evident are the effects of LFC on time evolutions of the pulse and populations.
     In chapter 7, we analyze spectrum of a sub-cycle laser pulse propagating in a denseΛ-type three-level atomic medium. It is found that regardless of in a dilute medium and in a dense medium, the spectrum is broaden due to the self-phase modulation (SPM); however, the width is much larger in the dense medium than that in a dilute medium because of NDD interaction. In the dense medium, the supercontinuum spectrum occurs due to SPM and NDD interaction, and the maximum frequency is 10ωp.
     In chapter 8, we investigate the propagating property of the two-color sub-cycle pulses in a denseΛ-type three-level atomic system, we find that the initial phase of the two-color pulse has the effect on the time evolution, and the pulse splitting in a dense medium is very different from those in a dilute medium.
引文
[1] Ficek Z., and Swain S., Quantum interference in optical fields and atomic radiation, J. Modern Opt., 49, 3-42(2002).
    [2] Yabin Dong, Haihong Wang, Jiangrui Gao, and Junxiang Zhang, Quantum coherence effects in quasidegenerate two-level atomic systems, Phys. Rev. A 74, 063810-1-9 (2006)
    [3] Agarwal G. S., Quantum Statistical Theories of Spontaneous Emission and their Relation to other Approaches, edited by H?hler, G,. Springer Tracts in Modern Physics, Vol 70(1974), (Berlin: Springer-Verlag).
    [4] Samad Roshan Entezar and Habib Tajalli, Quantum interference in absorption and dispersion of a four-level atom in a double-band photonic crystal, Phys. Rev. A 75, 023816-1-7 (2007)
    [5] Ferguson M.R., Ficek Z., and Dalton B.J., Effect of a Squeezed Vacuum on Coherent Population Trapping in a Three-level Lambda System, J. Modern Opt., 42(3), 679-706(1995) .
    [6] Roman Kolesov, Coherent population trapping in a crystalline solid at room temperature, Phys. Rev. A 75, 051801-1-4 (2005)
    [7] Ahufinger V. , Mompart J. , and Corbalán R. , Lasing without inversion in three-level systems without external coherent driving, Phys. Rev. A 61, 053814-1-8 (2000)
    [8] Mompart J. and Corbalán R., Lasing without inversion, J. Optics B:Quantum and Semiclas. Opt. 2(3), R7-R24 (2000).
    [9] Kocharovskaya O., Matsko A.B., Rostovtsev Y., Lasing without inversion via decay-induced coherence, Phys. Rev.A 65, 013803-1-7 (2002).
    [10] Rostovtsev Y. , Trendafilov S., Artemiev A., Kapale K., Kurizki G., and Scully M. O. , Numerical Experiments on Free-Electron Lasers Without Inversion, Phys. Rev. Lett. 90, 214802-1-4 (2003)
    [11] Antón M. A. , Calderón O. G. , and Carre?o F. , Control of the inversionless gain and refractive index in a V-type atom via squeezed vacuum and quantum interference, Phys. Rev. A 69, 023801-1-15 (2004)
    [12] Kozyreff G. , Shakhmuratov R. N. , Odeurs J. , Coussement R. , and Mandel P., Inversionless amplification and propagation in an electronuclear level-mixing scheme, Phys. Rev. A 64, 013810-1-7 (2001)
    [13] Harris S.E., Lasers without inversion: interference of lifetime-broadened resonances, Phys. Rev. Lett., 62(9), 1033-1036(1989).
    [14] Scully M.O., Zhu S.Y. and Gavrielides A., Degenerate quantum-beat laser: lasing without inversion and inversion without lasing, Phys. Rev. Lett., 62(24), 2813-2816(1989).
    [15] Agarwal G..S., Origin of gain in systems without inversion in bare or dressed states, Phys.Rev.A 44(1), R28-R30 (1991).
    [16] Luo Z. F. and Xu Z. Z., Lasing without inversion and coherence in dressed states, Phys.Rev.A 45(11), 8292-8294 (1992).
    [17] Tan W. P., Lu W. P., and Harrison R.G., Lasing without inversion in a V system due to trapping of modified atomic states, Phys.Rev.A 46(7), R3613-R3616 (1992).
    [18] Keitel C. H., Kocharovskaya O. A., Narducci L. M., Scully M.O., and Zhu S.Y., Two mechanisms for inversionless amplification in four-level atoms with Raman pumping, Phys.Rev.A 48(4), 3196-3202 (1993).
    [19] Akulshin A. M., Barreiro S., and Lezama A., Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor, Phys.Rev. A 57(4), 2996-3002 (1998)
    [20] Boller K. J., Imamolu A. and Harris S. E., Observation of electromagnetically induced transparency, Phys.Rev.Lett. 66(20), 2593-2596 (1991).
    [21] Petch J. C., Keitel C. H., Knight P. L., and Marangos J. P., Role of electromagnetically induced transparency in resonant four-wave-mixing schemes, Phys.Rev. A 53(1), 543-561 (1996).
    [22] Li. Y. Q., and Xiao M., Electromagnetically induced transparency in a three-level Lambda-type system in rubidium atoms, Phys.Rev.A 51(4), R2703-R2706 (1995); Observation of quantum interference between dressed states in an electromagnetically induced transparency, Phys.Rev.A 51(6), 4959-4962 (1995).
    [23] Wei X. G., Wu J. H., Sun G. X., Shao Z., Kang Z. H., Jiang Y. and Gao J. Y.,Splitting of an electromagnetically induced transparency window of rubidium atoms in a staticmagnetic field, Phys.Rev. A 72, 023806-1-5 (2005)
    [24] Zibrov A. S., Lukin M. D., Hollberg L., Nikonov D. E., Scully M. O., Robinson H. G., and Velichansky V. L., Experimental Demonstration of Enhancement Index of Refraction via Quantum Coherence in Rb. Phys.Rev.Lett. 76 (21), 3935-3938 (1996).
    [25] L?ffler M., Nikonov D. E., Kocharovskaya O. A., and Scully M. O., Strong-field index enhancement via selective population of dressed states. Phys.Rev. A 56 (6), 5014-5021 (1997).
    [26] Quang T., and Freedhoff H., Index of refraction of a system of strongly driven two-level atoms, Phys. Rev. A 48(4), 3216-3218 (1993).
    [27] Hau L.V., Harris S. E., Dutton Z. and Behroozi C. H., Light Sped Reduction to 17 Meters Per Second in an Ultracold Atomic Gas, Nature, 397,594-598 (1999).
    [28] Lukin M. D. and Imamoglu A., Nonliear Optics and Quantum Entanglement of Ultraslow Single Photons, Phys. Rev. Lett., 84(7), 1419-1422 (2000).
    [29] Kash M., Sautenkov V. A., Zibrov A.S., Hollberg L., Welch G. R., Lukin M. D., Rostovtsev Y., Fry E. S., and Scully M. O., Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas, Phys.Rev.Lett., 82(26), 5229-5232 (1999).
    [30] Kasapi A., Jain M., Yin G.Y., and Harris S.E., Electromagnetically induced transparency: propagation dynamics, Phys.Rev.Lett.,74(13), 2447-2450(1995).
    [31] Schmidt O., Wynands R., Hussein Z., and Meschede D., Steep dispersion and group velocity below c/3000 in coherent population trapping, Phys. Rev. A 53(1), R27-R30(1996).
    [32] Budker D., Kimball D. F., Rochester S. M., and Yashchuk V. V., Nonlinear magneto-optics an reduced Group velocity of light in atomic vapor with slow Ground State Relaxation, Phys.Rev.Lett., 83(9), 1767-1770(1999).
    [33] Wang L. J., uzmich A. K and Dogariu A., Gain-assisted Superluminal Light Propagation, Nature, 406, 277-279 (2000).
    [34] Kang H., Hernandez G., and Zhu Y. F., Superluminal and slow light propagation inclod atoms, Phys.Rev. A 70, 011801-1-4 (2004).
    [35] Dogariu A., Kuzmich A., and Wang L. J., Transparent Anomalous Dispersion and Superluminal Light-pulse Propagation at a Negative Group Velocity, Phys.Rev. A 63, 053806-1-5 (2001).
    [36] Akulshin A.M., Barreiro S., Lezema A., Quantum Limitations on Superluminal Propagation, Phys. Rev. Lett. 81(11), 2190-2193 (1999).
    [37] Steinberg A. M. and Chiao R.Y., Dispersionless, Highly Superluminal Propagationin a Medium with a Gain Doublet, Phys. Rev. A 49(3), 2071-2075 (1994).
    [38] Bortman-Arbiv D., Wilson-Gordon A. D., and Friedmann H., Phase Control of Group Velocity:From Subluminal to Superluminal Light Propagation, Phys. Rev. A 63, 043818-1-4 (2001).
    [39] Kocharovskaya O. and Khanin Y. I., Coherent amplification of an ultrashort pulse in a three-level medium without population inversion , JETP Lett. 48, 630 (1988).
    [40] Bokor J., Neureuther A.R. and Oldham W. G., “Advanced lithography for ULSI”, IEEE Circuits Devices Mag, 12(1), 11-15 (1996).
    [41] Rundquist A., Durfee C. G., Chang Z., Herne C., Backus S., Murnane M. M., and Kapteyn H. C., Phase-matched generation of coherent soft x-rays, Science 280(5368), 1412-1415(1998).
    [42] Macklin J. J., Kemetec J. D., and Gordan C. L., High-order harmonic generation using intense femtosecond pulses, Phys. Rev. Lett., 70(6), 766-769(1993).
    [43] D. Braunstein and R. Shuker, X-ray laser without inversion in a three-level ladder system, Phys. Rev. A 68, 0138121:14 (2003).
    [44] Agarwal G. S., Inhibition of spontaneous emission noise in lasers without inversion Phys. Rev.Lett., 67(8), 980-982 (1991).
    [45] Zhu Y., and Xiao M., Amplitude squeezing and a transition from lasing with inversion to lasing without inversion Phys.Rev.A 48(5), 3895-3899(1993).
    [46] Bogár P. and Bergou J. A., Two-mode lasing without inversion with injected atomic coherence, Phys.Rev.A 56(1), 1012-1022 (1997).
    [47] Mandel P., Lasing without inversion: a useful concept? Contemporary Physics, 34(5), 235-246 (1993).
    [48] Scully M. O., and Fleischhauer M, Lasers without inversion, Science, 263(), 337 (1994).
    [49] Taubes G., Researches build novel laser by putting a lock on atoms, Science, 270, 737 (1995).
    [50] Lukin M. D., Scully M. O., Welch G. R., Fry E. S., Hollberg L., Padmabandu G. G., Robinson H.G., and Zibrov A.S., Lasing without inversion: the road to new short-wavelength lasers, Laser Phys. 6(3), 436-447 (1996).
    [51] Kocharovskaya O., Lasing without inversion: problems and prospects, Hyperfine Interactions.107 (No.1-4) 187-195 (1997).
    [52] Khurgin J. B. and Rosencher E., Practical aspects of optically coupled inversionless lasers, J. Opt. Soc.Am.B 14(5), 1249-1253 (1997).
    [53] Olga Kocharovskaya, Andrey B. Matsko, and Yuri Rostovtsev, Lasing without inversion via decay-induced coherence, Phys. Rev. A 65, 013803-1-7 (2001)
    [54] Zhu Y.F., Lasing without inversion in a closed three-level system Phys.Rev.A 45(9), R6149-R6152 (1992
    [55] Arimondo E., Mechanism in laser without inversion, Proc. of SPIE 1726, 484 (1992).
    [56] Scully M.O., and Zubairy M.S., Quantum Optics (Cambridge: Cambridge University Press) (1997).
    [57] Strickland D., Mourou G., Compression of Amplified optical pulses, Opt. Commun. 56(3), 219-222(1985)
    [58] Popov A. K., Myslivets S. A., and George T. F., Nonlinear interference e ffects and all-optical switching in optically dense inhomogeneously broadened media, Phys. Rev. A 74, 043811-1-13 (2005)
    [59] Buffa R., Cavalieri S., and Tognetti M. V. , Coherent control of temporal pulse shaping by electromagnetically induced transparency, Phys. Rev. A 69, 033815 -1-4(2004)
    [60] Buffa R., Cavalieri S., Sali E., and Tognetti M. V. , Laser-pulse compression by coherent control in a Doppler-broadened medium: Analytical and numerical studies, Phys. Rev. A 76, 053818-1-8 (2007)
    [61] Gandman A., Chuntonov L., Rybak L., and Amitay Z., Pulse-bandwidth dependenceof coherent phase control of resonance-mediated (2+1) three-photon absorption, Phys. Rev. A 76, 053419-1-9 (2007)
    [62] Carre?o F. , Calderón O. G.., Antón M. A. , and Gonzalo I., Superluminal and slow light in -type three-level atoms via squeezed vacuum and spontaneously generated coherence, Phys. Rev. A 71, 063805-1-11(2005)
    [63] Barros H. G., Ferraz J., W. Lozano B., Acioli L. H., and Vianna S. S., Coherent control of quantum interference in two-photon absorption, Phys. Rev. A74, 055402- 1-4 (2006).
    [64] Yu. Loiko, C. Serrat et al., Ultrashort pulse control of space-dependent excitations in a three-level system, Phys. Rev. A75, 023801-3218 (2007).
    [65] Liu C. P., Gong S. Q., Fan X. J. and Xu Z. Z., Electromagnetically induced absorption via spontaneously generated coherence of a Λ system, Opt. Commun. 231(1-6), 289-295(2004). [66 ] Cui C. L., Jia J. K., Gao J. W., Xue Y., Wang G. and Wu J. H., Ultraslow and super- luminal light propagation in a four-level atomic system, Phys. Rev. A 76, 033815-1-6 (2007)
    [67] Fan X. J., Li J. J., Tian S. F. at el., Phase control of gain and dispersion in an open V-type system, J. Modern Opt., 52(12),1757-1767(2005)
    [68] Fan X.J., Cui N., Tian S.F., Ma H., Gong S.Q. and Xu Z.Z., Phase control of gain and dispersion in an open lambda type inversionless lasing system, J. Modern Opt. 52 (18), 2759 - 2769 (2005); Cui N., Fan X. J. at el., Phase control in an openΛ-type system with spontaneously generated coherence, Chin. Phys., 16(3),718-724(2007).
    [69] Li A.Y., Ma H., Tan X., Yang Y.L., Tong D.M. and Fan X.J., Phase control of probe response in an open ladder type system with spontaneously generated coherence, Opt. Commun. 280(2):397-403 (2007)
    [70] Anto′n M. A., Caldero′n O. G., and Carren?o F., Control of the inversionless gain and refractive index in a V-type atom via squeezed vacuum and quantum interference, Phys. Rev. A 69, 023801-1-7(2004)
    [71] Victor V. Kozlov, Yuri Rostovtsev, and Marlan O. Scully, Inducing quantum coherence via decays and incoherent pumping with application to populationtrapping, lasing without inversion, and quenching of spontaneous emission, Phys. Rev. A 74, 063829-1-10(2006)
    [72] X.J.Fan, A.Y.Li, F.G.Bu, H.X.Qiao, J. Du and Z.Z.Xu, Phase dependent properties for absorption and dispersion in a closed equispaced three-level ladder system, Optik, Available online 21 May 2007.
    [73] Kocharovskaya O., Matsko A. B., and Rostovtsev Y., Lasing without inversion via decay-induced coherence, Phys. Rev. A 65, 013803-1-7(2001)
    [74] Ahmed E. and Lyyra A. M., Effect of Doppler broadening on Autler-Townes splitting in the molecular cascade excitation scheme, Phys. Rev. A 76 053401: 1-10 (2007)
    [75] Fan X. J., Zhu M. Z., .Hong Z. P, Gong S. Q. and Xu Z. Z., Effects of phase fluctuation in an open four-level inversionless lasing system, Chin. Opt.Lett. 2(11): 673-875 (2004); Zhu M. Z., Zhao C. R., Fan X. J., Gong S. Q., Xu Z. Z., Lasing without or with inversion in an open four-level system with a phase-fluctuation driving field, J. Modern Opt., 53 (15):2101-2110,(2006)
    [76] Fan X. J., Li J. J., Tong D. M., Liu C. P., Gong S. Q. and Xu Z. Z., Investigation of transient process and steady output of lasing without inversion, J. Modern Opt. 52 (15): 2127-2137(2005); Cui N., Hong Z. P.,Li H.,Li A. Y. and Fan X. J., Nonlinear dynamics study of an open resonant Λ-type system,Chin. Opt. Lett. 3(9)546-548 (2005).
    [77] Cui N., Fan X. J., Li A.Y., Liu C. P., Gong S. Q. and Xu Z. Z., Phase control in an openΛ-type system with spontaneously generated coherence, Chin. Phys., 16(3), 718-724 (2007).
    [78] Persson E., Schiessl K., Scrinzi A. and Burgd?rfer J., “Generation of attosecond unidirectional half-cycle pulses: Inclusion of propagation effects,” Phys. Rev. A 74 013818-1-8(2006)
    [79] Leblond H., Sazonov S. V., Mel’nikov I. V., Mihalache D. and Sanchez F., “Few-cycle nonlinear optics of multicomponent media,” Phys. Rev. A 74 063815-1-8(2006)
    [80] Scrinzi A., Ivanov M. Y., Kienberger R. and Villeneuve D. M., Attosecond physics, J.Phys. B: At. Mol. Opt. Phys., 39, R1-R37(2006)
    [81] Thomas Brabec and Ferenc Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics, Rev. Mod. Phys., 72, 545-591(2000)
    [82] Song X. H., Gong S. Q., Yang W. F. and Xu Z. Z., ”Propagation of an attosecond pulse in adense two-level medium,” Phys. Rev. A 70(1), 013817-1-4 (2004)
    [83] Song X. H., Gong S. Q., Jin S. Q. and Xu Z. Z., ”Formation of higher spectral components in a two-level medium driven by two-color ultrashort laser pulses,” Phys. Rev. A 69,015801(2004)
    [84] Song X. H., Gong S. Q., Yang W. F., Jin S. Q., Feng X. L. and Xu Z. Z., Coherent control of spectral effects with chirped femtosecond laser pulses, Opt. Comm. 236(1-3), 151-157(2004)
    [85] Song X. H., Gong S. Q., Li R. X. and Xu Z. Z., “Propagation of an arbitrary elliptically polarized few-cycle ultrashort laser pulse in resonant two-level quantum systems,” Phys. Rev. A 74, 015802-1-4(2006)
    [86] Liu X., “Nonsequential double ionization with few-cycle laser pulses,” Phys. Rev. Lett. 92,133006-1-13 (2004)
    [87] Soares A. and Araujo L. E. E. de , Coherent accumulation of excitation in the electromagnetically induced transparency of an ultrashort pulse train, Phys. Rev. A 76, 043818-1-6 (2007)
    [88] Yang W. F., Song X. H., Gong S. Q., Cheng Y., and Xu Z. Z., Carrier-Envelope Phase Dependence of Few-Cycle Ultrashort Laser Pulse Propagation in a Polar Molecule Medium, Phys. Rev. Lett. 99, 133602 (2007)
    [89] Bergh M. and T?mneanu N. , Interaction of ultrashort x-ray pulses with B4C, SiC, and Si, Phys. Rev. E 77, 026404-1-8 (2008)
    [90] Luís E. E. de Araujo, Propagation of ultrashort pulses in multilevel systems under electromagnetically induced transparency, Phys. Rev. A 73, 053821-1-7 (2006)
    [91] Loiko Y. and Serrat C., Coherent and phase-sensitive phenomena of ultrashort laser pulses propagating in three-level -type systems studied with the finite-differencetime-domain method, Phys. Rev. A 73, 063809 -1-11(2006)
    [92] Song X. H., Gong S. Q. and Xu Z. Z., Propagation of a few-cycle laser pulse in a V–type three-level system, Optics and spectroscopy, 99(4):517-521(2005)
    [93] Bowden C. M. and Dowling J. P., “Near dipole-dipole effects in dense media: generalized Maxwell-Bloch equations,” Phys. Rev. A 47(2), 1247-1251 (1993)
    [94] Calderón O. G., Antón M. A. and Carre?o F., “Near dipole-dipole effects in a V–type medium with vacuum induced coherence,” Eur. Phys. J. D 25(1),77-87(2003)
    [95] Wang N. J. and Rabitz H., “Near dipole-dipole effects in electromagnetically induced transparency,” Phys. Rev. A 51(6), 5029-5031 (1995)
    [96] Crenshaw M. E., Sullivan K. U. and Bowden C. M., “Local field effects in multicomponent media,” Opt. Exp. 1, 152-159(1997)
    [97] Dung Ho T., Buhmann S. Y. and Welsch D. G., “Local-field correction to the spontaneous decay rate of atoms embedded in bodies of finite size,” Phys. Rev. A 74,023802-1-11(2006)
    [98] Kinrot O. and Prior Y., “Nonlinear interaction of propagating short pulses in optically dense media,” Phys. Rev. A 51(6),4996-5007(1995)
    [99] Fleischhauer M., Keitel C. H., and Scully M. O., C. Su, B.T. Ulrivh, S.Y. Zhu, Resonantly enhanced refractive index without absorption via atomic coherence, Phys. Rev. A 46(3),1468-1487(1992).
    [100] Karawajczyk A. and Zajrzewski J., Lasers without inversion in a Doppler-broadened medium, Phys. Rev. A 51(1), 830-834(1995).
    [101] Vemuri G., Agarwal G. S., Role of inhomogeneous broadening in lasing without inversion in ladder systems, Phys. Rev. A 53(2),1060-1064(1996).
    [102] J. Mompart, C. Peters, and R. Corbalan, Lasing without inversion in three-level systems: Self-pulsing in the cascade schemes, Phys. Rev. A 57(3), 2163-2168(1998).
    [103] Luki n M. D., Scully M. O., Welch G. R., Fry E. S. et al., Lasing without inversion: the Road to New Short-Wavelength Lasers, Laser Phys. 6(3), 436-447(1996).
    [104] Boon J. R., Zekou E., McGloin D., and Dunn M. H., Prediction of inversionless gain in a mismatched Doppler-broadened medium, Phys. Rev. A 58(3),2560-2566(1998).
    [105] Ahufinger V., Mompart J., and Corbalan R., Lasing without inversion with frequency up-conversion in a Doppler-broadened V-type three-level system, Phys. Rev. A 60(1),614-620(1999).
    [106] Zhu Y. F., Light amplification mechanisms in a coherently coupled atomic system, Phys. Rev. A 55(6), 4568 - 4575 (1997)
    [107] Lezama A., Zhu Y. F., Kanakar M., and Mossberg T. W., Radiative emission of driven two-level atoms into the modes of an enclosing optical cavity: The transition from fluorescence to lasing, Phys. Rev. A 41(3), 1576 - 1581 (1990)
    [108] Zakrzewski J. and Lewenstein M., Theory of dressed-state lasers in the bad-cavity limit, Phys. Rev. A 45, 2057 - 2069 (1992).
    [109] Karawajczyk A and Zakrzewski J, Semiclassical study of double-lambda laser without inversion, Opt. Commun., 107(11), 145-160(1994).
    [110] Ma H. M., Gong S. Q., Liu C. P., Sun Z. R., Xu Z. Z., Effects of spontaneous emission induced coherence on population inversion in a ladder-type atomic system, Opt. Commun., 223(1),97-103(2003).
    [111] Liu C. P., Gong S. Q., Fan X. J. and Xu Z. Z., Electromagnetically induced absorption via spontaneously generated coherence of a lamda system, Opt. Commun., 231(2),289-295(2004).
    [112] Berman P. R., Spontaneously generated coherence and dark states, Phys. Rev. A, 72 035801-1-4(2005).
    [113] Antón M. A., Calderón O. G., and Carre?o F., Spontaneously generated coherence effects in a laser-driven four-level atomic system, Phys. Rev. A, 72 023809-1-12(2005).
    [114] Gonzalo I., Antón M. A., Carre?o F. and Calderón O. G., Squeezing in a Λ-type three-level atom via spontaneously generated coherence, Phys. Rev. A, 72 033809-1-13(2005)
    [115] Niu Y. P. and Gong S. Q., Enhancing Kerr nonlinearity via spontaneously generated coherence, Phys. Rev. A, 73, 053811-1-6(2006).
    [116] Gong S. Q., Paspalakis E. and Knight P. L, Effects of spontaneous emissioninterference on population inversions of a V-type atom, J. Modern Opt., 45, 2433(1998).
    [117] Menon S. and Agarwal G. S., Effects of spontaneously generated coherence on the pump-probe response of a Lambda system, Phys. Rev. A 57(5), 4014-4018(1998).
    [118] Li J. J., Liu C. P., Cui N., Li H., Fan X. J., Lasing with and without inversion due to spontaneously generated coherence in an open V-type system, Chin. Opt. Lett., 2(12), 725-727)2004).
    [119] Gong S. Q., Li Y., Du S. D., et al, Unexpected population inversion via spontaneously generated coherence of a Λsystem, Phys.Lett A 59(1),43-48(1999)
    [120] Paspalakis E., Kylstra N. J., and Knight P.L., Transparency of a short laser pulse via decay interference in a close V-type system, Phys.Rev.A 61,045802-1-4(2000)
    [121] Bai Y. F., Guo H., Sun H., et al., Effects of spontaneously generated coherence on the conditions for exhibiting lasing without inversion in a V system. Phys. Rev., A 69, 043814:1-5 (2004).
    [122] Zhang Q., Keil M., Shapiro M., Coherent control and phase locking of two-photon processes in the nanosecond domain, J.Opt.Soc.Am B, 20(11), 2255-2261(2003).
    [123] Ghafoor F., Zhu S.Y. and Zubairy M. S., Amplitude and phase control of spontaneous emission, Phys. Rev. A 62, 013811-1-7 (2000).
    [124] Wu J. H. and Gao J. Y., Phase control of light amplification without inversion in a Λ system with spontaneously generated coherence, Phys. Rev. A, 2002, 65 (063807):1-5.
    [125] Wu J. H. and Gao J. Y., Phase control of the probe gain without population inversion in a four-level V model, JOSA B, 19(12),2863-2866( 2002)
    [126] Liu C. P., Gong S. Q., Fan X. J. and Xu Z. Z., Phase control of spontaneously generated coherence induced bistability .Opt. Commun., 239 (3),383-388(2004).
    [127] Yee K. S., “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307(1966)
    [128] Xia K. Y., Gong S. Q., Liu C. P., Song X. H. and Niu Y. P., “Near dipole-dipole effects on the propagation of few-cycle pulse in a dense two-level medium, ” Opt.Exp. 13(6), 5913-5924 (2005)
    [129] Shimizu F., Frequency Broadening in Liquids by a Short Light Pulse, Phys. Rev. Lett. 19(19), 1097-1100 (1967)
    [130] Alfano R. R. and Shapiro S. L., Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses, Phys. Rev. Lett. 24(11), 592 - 594 (1970)
    [131] 徐永钊,任晓敏,王子南,张霞,黄永清, 利用正常色散微结构光纤产生平坦的超连续谱, 光电子·激光,18(8),889-892(2007).
    [132] 周冰,姜永亮,陈晓伟,冷雨欣,李儒新,徐至展,超短激光脉冲在不同色散参量光子晶体光纤中传输的数值模拟,光学学报,27(2),323-328(2007).
    [133] 夏舸,黄德修,元秀华,正常色散平坦光纤中皮秒抽运脉冲超连续谱的形成研究,物理学报,56(4),2212-2217(2007).
    [134] 孙喜文,王清月,胡明列,柴路,栗岩峰,刘博文,光子晶体光线中调制不稳定现象与超连续光谱的产生,光子学报,36(1),51-54(2007).
    [135] Wu Y, Lou C Y, Han M, Wang Tong , Gao Yi-Zhi, Effects of pulse chirp on supercontinuum produced in dispersion decreasing fibre, Chin. Phys. 11(6), 578-58(2002).
    [136] Corkum P. B. and Rolland C., Supercontinuum generation in gases, Phys. Rev. Lett. 57(18), 2268-2271(1986).
    [137] Zhao K., Liu J. C., Wang C. K., Luo Y., “The modulation of supercontinuum generation and formation of attosecond pulse for ultrashort pulses propagating in a generalized two-level medium”, J. Phys. B: At. Mol. Opt. Phys. 40, 1523-15349(2007).
    [138] 陈泳竹, 李玉忠, 屈 圭, 徐文成 ,反常色散平坦光纤产生平坦宽带超连续谱的数值研究, 物理学报, 55(2), 717-722(2006).
    [139] Kasparian J, Sauerbrey R et al, Infrared extension of the super continuum generated by femtosecond terawatt laser pulses propagating in the atmosphere, Opt. Lett. 25(18),1397-1399 (2000)
    [140] Hughes S., Subfemtosecond soft-x-ray generation from a two-level atom: Extreme carrier-wave Rabi flopping, Phys. Rev. A 62, 055401-1-4(2000)
    [141] Xiao J., Wang Z. Y. and Xu Z. Z., Spectrum of a few-cycle laser pulse propagation in a two-level atom medium, Chin. Phys. 10 941-945(2001).
    [142] Zhao K., Liu J. C., Wang C. K., Luo Y., Resonant propagationg of femtosecond laser pulse in DBASVP molecule: one-dimensional asymmetric prganic molecule, Chin. Phys. 14(10), 2014-2018 (2005).
    [143] 刘纪彩,赵 珂,王传奎 , 飞秒激光脉冲三能级有机分子介质中传播时的频谱分析, 原子与分子物理学报, 23 (6), 990-993(2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700