伊通盆地西北缘构造演化与油气成藏
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伊通盆地是郯庐断裂带北段的一部分,烃源岩厚度大、质量好,储层发育,盆地演化后期的挤压作用使伊通盆地成为富油气资源盆地,勘探潜力较大。盆地经历的多期构造运动,特别是不同构造时期的差异沉降和构造反转作用对油气成藏和保存具有重要的控制作用,不仅使得油气藏经历了多源、多期充注和调整改造、甚至破坏等复杂的成藏历史,而且在不同构造单元油气成藏过程与成藏模式表现出显著的差异性,制约了对该盆地油气聚集规律的进一步认识。伊通盆地的油气勘探程度很低,具有良好的勘探前景,其中西北缘复杂构造带、基岩潜山、东南缘扇体是今后勘探的三大重点领域。但限于整体勘探程度,地质条件复杂,三维地震品质偏差,对盆地的沉积特征、油气成藏控制因素、相应的工程配套技术等还需继续攻关,尤其是西北缘构造复杂,地震资料不能满足储层预测的需要,其构造特征、沉积规律、油气成藏机理、有利勘探区带优选等需进一步研究。
     论文运用新技术、新理念,以石油地质学理论为指导,综合钻井、地球物理、测井、各种化验分析等资料,以叠前深度偏移处理技术、构造精细解释技术、储层预测技术、沉积地震相识别技术、流体包裹体分析技术为主要手段,重点论述了伊通盆地西北缘的构造、沉积、成藏特征,主要得到以下结论:
     (1)太平洋板块俯冲方向的改变,盆地的应力场也逐渐发生了改变,伊通盆地区域应力场发生转变表现在渐新世末期,区域应力场由左旋张扭转变为右旋的压扭。在区域压扭应力作用下,伊通盆地西北缘断裂在新近纪表现为右行走滑、挤压逆冲的性质。主要证据有:1)取芯资料表明,地层改造复杂,揉皱挤压作用结果明显,部分岩心资料表现为地层破碎,已近于垂直,挤压作用使地层形成了多个小褶皱,且发育多期小断层,具有相互错断现象,说明西北缘地层经历了强烈的构造活动,且挤压作用明显;2)盆地西北缘地表的野外地质露头出现大量挤压作用所形成的褶皱构造;3)新三维地震资料,结合钻井资料,综合分析逆断层的确存在。在西北缘形成了复杂构造带,复杂构造带内部的小型断鼻构造常常是泥岩变形作用形成的,构造带内部的“U”型断块,是走滑作用过程中,滞留的断块,从走滑距离上看,靠近西北缘断块距离远,靠近盆地的断块走滑距离相对小;西北缘边界断裂不同区段的构造样式不同,而且隆升挤压作用现今仍在持续,有利于生烃、排烃作用以及油气的运移聚集,使伊通盆地西北缘复杂构造带成为油气富集场所。
     (2)西北缘储层发育,快速堆积的扇体(在地震剖面上表现为厚层、快速尖灭的楔形体)分选差、物性差;长期发育的扇体(在地震上表现为延伸较远的薄层楔形体,常常具有前积结构或下超结构)物性相对较好,而且扇体的规模越大,储层物性越好;扇体识别过程中,属性及反演预测结果只能参考,人工识别地震相、沉积结构等工作很重要。盆地内部多扇体相互叠置,储层发育,但西北缘复杂构造带存在储层不发育区,即存在扇体沟道间,盆地内部叠加连片,储层厚度大。古地貌控制了扇体发育的位置及延伸方向,现今西北缘大黑山东南的沟谷往往是盆地西北缘扇体的物源入口,盆地内部与西北缘相交的大型断层往往控制了扇体的展布方向,盆地内部的同生断层控制砂体的展布,盆地地层厚值区(古洼陷)储层较发育;挤压作用导致储层物性偏差,影响程度与地层变形程度有关。
     (3)西北缘成藏条件有利,首先生烃凹陷靠近西北缘一侧,烃源岩充足,二是构造复杂带是隆升挤压作用形成的,既是油气运移的指向区,又是保存条件较好的成藏带;其油气富集程度受控于烃源岩成熟度、供烃半径和储层发育特征;另外应力释放带保存条件不好,如二号断层与西北缘断层交汇处,是大型物源入口,泥岩不发育,断裂发育,实际钻井资料证实该区保存条件不好;隆升挤压作用与油气成藏密切相关,太平洋板块俯冲方向改变的时间是40Ma左右,利用包裹体分析技术确定最早的成藏时间为37-40Ma左右,说明隆升挤压作用与油气成藏密切相关。盆地西北缘发育近岸水下扇体具备形成大面积断层-岩性油藏、构造-岩性油藏的基本石油地质条件,其主要原因是:规模较大的近岸水下扇体处于有利的构造岩相带中,具备丰富的油源和与之相匹配的大面积分布的水下扇砂体,加上西北缘上倾方向上近西南-东北向发育的两组大逆断层横切西北物源方向的扇体,盆地演化后期的挤压作用,使断层封闭性好,对来自靠山生烃凹陷的油气的聚集成藏和油气富集起着重要的遮挡作用,油气主要在近岸水下扇沉积体系的中扇、外扇相带形成大面积分布的断层-岩性、构造-岩性油气藏。
     (4)盆地西北缘是油气富集的复杂构造带,但不同区段有利面积及层位不同。在莫里青断陷烃源岩成熟度不高,但供烃半径较大,所以主要目的层是盆地下部双二段地层,自生自储成藏模式;岔路河断陷沉降幅度大,烃源岩成熟度高,除了双阳组以外,奢岭组和永吉组都发育有效烃源岩,油藏、气藏并存,目的层系较多,勘探潜力较大;鹿乡断陷居中,烃源岩成熟度介于二者之间,受资料限制,勘探程度较低,但双阳组和奢岭组应为主要目的层。认为莫里青断陷西北缘是保存条件较好的原生油气成藏。油源主要来自于双阳组烃源岩,自生自储,来自西北缘的扇体,被平行于边界断裂的一系列断层所切割,在西北缘复杂构造带,特别是西北缘复杂构造带前沿,形成断层-岩性油气藏,凹陷内部发育大面积的岩性油气藏,保存条件好,含油性也好;垂向上,双二段含油性比双三段好,主要与逆断层下部倾角大,封闭性比上部好有关。
     根据典型油藏剖面解剖和流体包裹体分析所揭示的古油气保存条件、地层水矿化度指标和原油切割去正构金刚烷地化分析显示:多数断层下盘比上盘保存条件好,同一条断层下部比上部保存条件好,盆地西北缘比东南缘保存条件好。盆地东南缘一系列隆起构造带多遭受强烈的改造,虽发生过多幕油气充注,但因油气保存条件差,尤其在构造冠部油气沿断层散失以及遭受大气淡水冲洗和生物降解改造强烈,深部的双阳组破坏稍有减弱,隆起翼部的围斜地区多位于断层下降盘,保存条件也得到改善,含油性将变好。故此,将伊通盆地油气成藏模式总结为改造型和保存型两种主要模式,保存型油气藏将成为勘探的有利目标。本论文主要创新点:
     (1)恢复了盆地西北缘复杂构造带的形成过程,建立了不同区段的构造模式;
     (2)分析了西北缘扇体展布特征及控制因素,并依据古构造、现今地貌、断裂控砂特征,结合地震相特征、钻井实际资料,综合分析预测了西北缘扇体的展布形态,弥补了地震资料不能满足储层预测的缺憾。
     (3)探讨了伊通盆地西北缘复杂构造带的成藏机制,构造对油气藏的控制作用,指出有利勘探区带;
Yitong Basin is a part of north in Tanlu fault zone,Source rocks has a large thickness and the quality is very well,the development of reservoir is very well, transpression in late of basin evolvement make Yitong basin to becoming a lot of hydrocarbon resources basin, potential exploration is abundance. Preliminary study indicates there is a very complex petroleum accumulation history that reservoirs in the Yitong Basin experience multi-stage hydrocarbon charging from multiple sources and late adjustment and reconstruction due to the multi-stage tectonics, especially the difference subsidence and tectonic uplift. Oil and gas exploration degree of YiTong basin is low, which has the good exploration prospects. The complex tectonic belt, bedrock buried hill and the southeast margin of fan bodies are the three key factors in the future exploration. But because of the limiting factor of the overall degree of prospecting, geological condition is complex, three-dimensional seismic quality is not well enough. In order to control the basin sedimentary characteristics and hydrocarbon accumulation factors, the corresponding engineering supporting technology still need to continue to research, especially in the complex structure, seismic data which can not meet the needs of reservoir prediction. Its structure characteristics, sedimentary and hydrocarbon accumulation mechanism, such as favorable exploration zone optimization needs to be studied further.
     This paper applys a new technology, which is based on theories about oil geology, well drilling, geophysics, logging geology and a lot of laboratory tests. Using prestack depth migration procession technology, structure fine interpretation technology, reservoir prediction technology, deposit seismic facies identification technology, fluid inclusion analysis technology, highlightly expound structure, deposit and features of hydrocarbon accumulation. The mainly conclusions are below:
     Conclusion one:Changing subducted direction of Pacific Plates changes the nature of fault in the northwestern Yitong Basin, left-handed transtension changes right-handed transcompress and forms complex tectonic zone. Under the regional pressure torsion stress, YiTong fracture in Neogene in the northwest edge is right strike-slip, extrusion properties of thrust. Main evidence are:1)The core data show that formation complex; crumpled compression is obviously; part of the core data shows that strata broken, almost close to vertical. Squeezed make the geosphere formed multiple small folds, and develop phase of the small fault, has the mutual interleaving phenomenon. It shows that the northwest of the strata has undergone strong tectonic activities, and extrusion effect is obvious.2) Basin field geological outcrops appear a large number of compression in the surface of the fold which is formed by the structure;3) The new3-D seismic data, combining with drilling data, the comprehensive analysis that the reverse fault exactly exist. It formed a complex tectonic belt in the northwest. Complex tectonic belt of small fault nose strcture is usually formed by the deformation of mudstone. U style tectonic block is detenting tectonic block in strike-slipping. From the view of the distance of strike-slipping, if the distance closing the northwest is the more larger, the strike-slipping of tectonic block near by the basin is the more smaller; Different district of bordering fault has different structure style, and uplift tectonic action still is continued, it is favour of the generation of hydrocarbon,hydrocarbon expulsion and the migration and accumulation of hydrocarbon,it makes the complex tectonic zone became the location of hydrocarbon accumulation.
     Conclusion two:The development of reservoir in the northwestern is very well, the fast accumulation of fans (it shows thick lay, fast nipped wedge on seismic section) have a very poor separation and physical property; the remaining developped fans(on seismic section,it displays thin fans having a long distance,often have foreset structure or downlap structure)have a relatively good physical property,and the scale of fans is more larger, the physical property of reservoir is more better; the process of recognize the fan body, the results of predictted inversion and attribute can only reference, artificial identification of seismic facies, sedimentary structure is very important. Basin internal fan is superimposed with each other, reservoir developed, but the complex tectonic belt exist undevelopment reservoir zone. The palaeogeomorphology controls the location of fans development and the extending direction, nowdays the valley of the northeast of Dahei mountain in northwestern Yitong basin often is the provenance entrance controlling fans of the northwestern basin,large fault often controls the throughgoing direction of fans, the growth fault within the basin controls sand body throughgoing, the layer's thickness is the thicker (old below-lying), the reservoir is the more developped; the compression action causes reservoir's physical property becoming poor, the affection is mutually related the layer's deformation.
     Conclusion three:The conditions for oil/gas accumulation are very beneficial. Fiist, hydrocarbon generation depression near the northwestern basin, source rocks is adequate, second, complex tectonic zone is forming by uplift tectonic action, it is the location for hydrocarbon migration, and it has a good accumulation condition; oil/gas accumulation is controlled by maturity for source rocks, radius for efficient hydrocarbon supply and the feature of reservoir development; Otherwides, stress release zone has a bad saving condition, example the intersections of No.2fault and the northwestern fault, it is the entrance for large supply, mudstone development isn't good, fault development is good, actually, the saving conditions for this locations through drilling data is not good; The relationship between uplift tectonic action and hydrocarbon migration is intimate, the time of changing subducted direction of Pacific Plates is about40Ma, using inclusion technologe confirm the earliest time for hydrocarbon migration, it is about37-40Ma, it illustrates that the relationship uplift tectonic action with hydrocarbon migration is intimate. Subaqueous fan body in the nearshore has basic petroleum geological conditions to form large area of fault-lithological oil reservoir, structural-lithologic oil reservoir. The main reason is:the larger the nearshore subaqueous fan body are in a favorable tectonic facies belt, with abundant oil sources and the widespread distribution of subaqueous fan sand body which match to the oil sources, and in the near northeast updip direction-southwest to the development of the two groups of reverse fault crosscutting northwest the fan body of content source direction. The extrusion of basin evolution period, the fault sealing ability is good, from the backer of hydrocarbon-generating sag of the accumulation of oil and gas accumulation and hydrocarbon concentration plays an important role in shade, oil and gas mainly in the nearshore subaqueous fan sedimentary system of fan and outer fan facies formed in the large area of the distribution of fault-lithological, structural-lithologic oil and gas reservoirs.
     Conclusion four:The northwestern bain is the complex tectonic zone having a lot of gas/oil, but different section have different areas and horizons. At Moliqing fault depression, source rocks's maturity is not high, but ridus supplying efficient hydrocarbon is larger, so the main layer is di-segment under the basin, it develops the pattern of self-generating and self-preserving reservoirs; river forks in the road fault depression have a large sedimentation, and rocks's maturity is high, except for Shuangyang formation, Sheling formation and Yongji formation all develop efficient source rocks, oil and gas reservoirs all present, it have a lot of objective intervals, the potential for exploration is good; At Luxiang fault depression, it's maturity betweens two parties, limited by the data, the level of exploration is low, but Shuangyang formation and Sheling formation are main layers. We think Moliqing rift in the preservation condition is good primary hydrocarbon accumulation. Oil source mainly comes from the shuangyang group of hydrocarbon source rocks, came from the northwest edge of the door body, cutting by a series of fault which is parallel to the boundary faults, in the complex tectonic belt, especially the front of the complex tectonic belt, forming fault-lithological reservoirs, sag of internal development of a large area of lithologic reservoirs, preservation conditions is good, oil content is abundant; Vertical, double two sections of oil content is better than double three sections, the main relation is the angle of underpart of reverse fault is big, sealing ability is better than the upper.
     According to the analysis of the typical petroleum pools and formation water salinity, it incorporateds result of adamantine index and conservation condition from petroleum inclusions, which reveal that conservation condition is better in the foot walls of majority faults than hanging walls and the northwest part is better than the southeast of Yitong basin. A series of uplifted structures in the southeast experiences strong reconstruction, especially at the top part, hydrocarbon migrated from faults suffers water flushing and biodegradation which slightly affect the Shuangyang reservoirs in depp part. Majority limbs of the uplift tectonic zones located at downthrown block of faults have good conservation condition and oil-bearing condition. According to above researches, conservation and reconstruction type reservoirs can be discriminated as two models. Conservation type reservoirs will become the main objects of exploration.
     Major innovation points of this paper are:
     (1) Resuming the forming process on complerx tectonic zone in northwestern basin and building up tectonic style at different sections;
     (2) Analysing fans through-going and controlling factor, in the light of palaeotectonics, nowdays physiognomy, the feature of fault controlling sand body, combining the feature of facies and drilling data, synthesizing and predicting fans through-going, repairing the failing on seismic data can't meeting reservoir prediction;
     (3) Researching the hydrocarbon migration and accumulation models of complex tectonic zone in the northwestern Yitong basin, the action of tectonic controlling the oil/gas, pointing out beneficial exploration area.
引文
[1]Levorsen A I. The obscure and subtle trap[J]. AAPG Bull,1964,48(5):141-156.
    [2]Wilson, J. T.1965. A new class of faults and their bearing on continental drift. Nature, 207,343-347.
    [3]Woodcock, N.1986. The role of strike-slip fault systems at plate boundaries. Philosophical Transactions of the Royal Society of London A,317,13-29.
    [4]Sylvester, A. G.1988. Strike-slip faults. Geological Society of America Bulletin,100, 1666-1703.
    [5]Beck, M. E., JR,1983. On the mechanism of tectonic transport in zones of oblique subduction. Tectonophysics,93,1-11.
    [6]Sieh, K. & Natawidjaja, D.2000. Neotectonics of the Sumatran fault, Indonesia. Journal of Geophysical Research,105,28295-28326.
    [7]Crowell, J. C.1974. Origin of late Cenozoic basins of southern California. In: DICKINSON, W. R. (ed.) Tectonics and Sedimentation. SPEM Special Publications,22, 190-204.
    [8]Bilham, R. & King, G.1989. The morphology of strikeslip faults:examples from the San Andreas fault, California. Journal of Geophysical Research,94,10204-10216.
    [9]Aydin, A. & Nur, A.1982. Evolution of stepover basins and their scale independence. Tectonics,1,91-105.
    [10]Hempton, M. & Dunne, L.1984. Sedimentation in pullapart basins:active examples in eastern Turkey. Journal of Geology,92,513-530.
    [11]Hamilton, W. & Johnson, N.1999. The Matzen project-rejuvenation of a mature field. Petroleum Geoscience 5,119-125.
    [12]Hinsch, R., Decker, K. & Wagreich, M.2005.3-D mapping of segmented active faults in the southern Vienna basin. Quaternary Science Reviews,24,321-336.
    [13]Mcclay, K. & Bonora, M.2001. Analog models of restraining stepovers in strike-slip fault systems. AAPG Bulletin,85,233-260.
    [14]Cunningham, W. D.2005. Active intracontinental transpressional mountain building in the Mongolian Altai:defining a new class of orogen. Earth and PlanetaryScience Letters, 240,436-444.
    [15]King, G. & Nabelek, J.1985. Role of fault bends in the initiation and termination of earthquake rupture. Science,228,984-987.
    [16]Shaw, B.2006. Initiation propagation and termination of elastodynamic ruptures associated with segmentation of faults and shaking hazard. Journal of Geophysical Research, 111,B08302, doi:1029/2005JB004093.
    [17]Mann, P., Hempont, M. R., Bradley, D.C.&Burke, K.1983. Development of pull-apart basins. Journal of Geology,91,529-554.
    [18]Dooley, T. & Mcclay, K. R.1997. Analog modeling of pull-apart basins. AAPG Bulletin, 81,1804-1826.
    [19]Menard, H. W. & Atwater, T.1968. Changes in the direction of sea floor spreading. Nature,219,463-467.
    [20]Garfunkel, Z.1981. Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics,80,81-108.
    [21]Mann, P., Demets, C. & Wiggins-Grandison, M.2007. Toward a better understanding of the Late Neogene strike-slip restraining bend in Jamaica:Geodetic, geologic, and seismic constraints. In:CUNNINGHAM, W. D. & MANN, P. (eds) Tectonics of Strike-Slip Restraining and Releasing Bends. Geological Society, London, Special Publications,290,239-253.
    [22]Freund, R.1974. Kinematics of transform and transcurrent faults. Tectonophysics,21, 93-134.
    [23]Sengo" R, A., Gorur, N. & Saroglu, F.1985. Strikeslip faulting and related basin formation in zones of tectonic escape:Turkey as a case study. In:BIDDLE, K. T. & CHRISTIE-BLICK, N. (eds) Strike-Slip Deformation, Basin Formation, and Sedimentation. SEPM Special Publications,37,227-264.
    [24]Swanson, M. T.2005. Geometry and kinematics of adhesive wear in brittle strike-slip fault zones. Journal of Structural Geology,27,871-887.
    [25]Segall, P. & Pollard, D. D.1980. Mechanics of discontinuous faults. Journal of Geophysical Research,85,4337-4350.
    [26]Lazar, M., Ben-Avraham, Z. & Schattner, U.2006. Formation of sequential basins along a strike-slip fault-geophysical observations from the Dead Sea basin. Tectonophysics, 421,53-69.
    [27]Dewey, J. F.&Lamb, S. H.1998. Active tectonics of the Andes. Tectonophysics,205, 79-95.
    [28]Cowgill, E., Yin, A., Arrowsnith, J. R., Xiaofeng, W. & Shuanhong, Z.2004. The Akato Tagh bend along the Altyn Tagh fault, northwest Tibet,1:Smoothing by vertical-axis rotation and the effect of topographic stresses on bend-flanking faults. Geological Society of America Bulletin,116,1423-1442.
    [29]Luyendyk, B. P.1991. A model for Neogene crustal rotations, transtension, and transpression in Southern California. Geological Society of America Bulletin,103, 1528-1536.
    [30]Legg, M. R., Goldfinger, C., Kamerling, M. J., et al.2007. Morphology, structure and evolution of California Continental Borderland restraining bends. In:CUNNINGHAM, W. D. & MANN, P. (eds) Techtonics of Strike-Slip Restraining and Releasing Bends. Geological Society, London, Special Publications,290,143-168.
    [31]Anderson, R. S.1994. Evolution of the Santa Cruz Mountains, California, through tectonic growth and geomorphic decay. Journal of Geophysical Research,99,20161-20 179.
    [32]Suppe,J.,1983, Geometry and kinematics of fault-bend folding:Amrican Journal of Science.,v.283, p.684-721.
    [33]Suppe,J., and D. A. Medwedeff,1990, Geometry and kinematics of fault-propagation folding, Ecolg. Geol. Helv., v.83, p.409-454.
    [34]Suppe,J., G. T. Chou, and S. C. Hook,1992, Rates of folding and fault ing determined from growth strata, in K. R.McClay, ed., Thrust tectonics:London, Chapman, and Hall, p.105-121.
    [35]Carll J F. The geology of the oil regions of Warren, Venango, and Butler counties[J]. The 2nd Pennsylvania Geol.Survey,1880,3:482.
    [36]"Wilson W B. Proposed classification of oil and gas reservoirs[C]. Oklahoma:AAPG Sidney Powers Memorial Volume,1934:433-445.
    [37]Levorsen A I. Stratigraphic versus structural accumulation[J]. AAPG Bull,1936,20(5): 521-530.
    [38]Halbouty M T.探寻地层、不整合、古地貌圈闭的理论基础[A].见:劳伯特.E.金,主编.周家珩,译.地层圈闭油气田(上册)[C].北京:石油化学工业出版社,1972:1-2.
    [39]Halbouty M T编,刘民中,等译.寻找隐蔽油藏[M].北京:石油工业出版社,1988:12.
    [40]Halbouty M T. The deliberate search for the subtle trap[C]. Oklahoma:AAPG Memoir32,1982:1-8.
    [41]潘元林,孔凡仙,杨申镳,等.中国隐蔽油气藏[M].北京:地质出版社,1998.
    [42]胡见义,徐树宝,刘淑萱,等.非构造油气藏[M].北京:石油工业出版社,19861-294.
    [43]Rittenthouse G. Stratigraphic trap classification[J]. In:King R. E. Stratigraphic oil and gas field-classification, exploration methods, and case histories[C]. AAPG Memoir,16, 1972:14-28.
    [44]Biddle K T, Weilchowsky C C. Hydrocarbon traps, in Magoon and Dow eds. [J], The Petroleum System-from Source to Trap[C]:AAPG Memoir 60,1994:219-235.
    [45]Beaumont E A, Foster N H. Exploration for oil and gas traps:Treatise of petroleum geology, AAPG Tulsa, Oklahoma,1999.
    [46]Link P K. Basic petroleum geology,3rd:OGCIPublications, oil & gas Consultants International, Inc. Tulsa,2001:221-225.
    [47]Makhous M. The formation of hydrocarbon depositsin the North African basins: Springer.2001:46-62.
    [48]李四光.旋卷构造及其他有关中国西北部大地构造体系复合问题[M].北京:科学出版社,1955.
    [49]张文佑.从中国大地构造的特征谈中国大地构造单位的命名[J].科学通报,1959,7(2):6-8.
    [50]黄汲清.中国东部大地构造分区及其特点的新认识[J].地质学报,1959,39(2):12-17.
    [51]黄汲清.中国地质构造基本特征的初步总结[J].地质学报,1960,40(1):1-37.
    [52]马杏垣.中国东部前寒武纪大地构造基本轮廓[J].科学通报,1960,7(16):12-13.
    [53]马杏垣,游振东,谭应佳,等.中国大地构造的几个基本问题[J].地质学报,1961,7(8):17-19.
    [54]徐嘉炜.郯城-庐江深断裂带的平移运动[J].华北地质,1964,5(5):11-18.
    [55]李春昱.用板块构造学对中国部分地区构造发展的初步分析[J].地球物理学报,1975,18(1):52-76.
    [56]高维明,李家灵,孙竹友.沂沭大陆裂谷的生成与演化[J].地震地质,1980,2(3):11-18.
    [57]许志琴.谈谈裂谷.地质评论,1980,26(3):260-264.
    [58]许志琴.郯庐裂谷系概述[J].见:构造地质论丛(3).北京:地质出版社,1985:39-46.
    [59]徐嘉炜.郯庐断裂带巨大的平移运动[J].合肥工业大学学报,1980,3(1):1-10.
    [60]许志琴.扬子板块北缘的大型深层滑脱构造及动力学分析[J].中国区域地质,1987,6(4):289-300.
    [61]朱光,徐嘉炜,孙世群.郯庐断裂带平移时代的同位素年龄证据[J].地质评论,1995,41(5):462-456.
    [62]万天丰.郯庐断裂带的演化与古应力场[J].地球科学——中国地质大学学报,1995,20(5):526-534.
    [63]徐嘉炜.郯庐断裂带巨大的平移运动[J].合肥工业大学学报,1980,6(7):32-34.
    [64]承娟英.郯-庐断裂带在渤海海域的构造特征[J].辽宁地质学报,1983,5(2):28-37.
    [65]刘茂强,杨丙中,邓俊国,等.伊通-舒兰地堑地质构造特征及其演化[M].北京:地质出版社,1993.
    [66]徐嘉炜,马国烽.郯庐断裂带研究的十年回顾[J].地质评论,1992,38(4):316-324
    [67]王登第,韩殿忠.浑河-敦化-密山断裂带地质特征[J].辽宁地质学报,1983,5(2):58-63
    [68]徐嘉炜,马国锋.郯庐断裂带研究的十年回顾[J].地质评论,1992,38(4):316-324
    [69]朱光,王道轩,刘国生,等.郯庐断裂带的演化及其对西太平洋板块运动的响应[J].地质科学,2004,39(1):36-49.
    [70]朱光,徐嘉炜.郯庐断裂带的平移幅度、平移时代及其构造模式(A).见:陈毓川等主编.第30届国际地质大会论文集,第14卷(构造地质学、地质力学).北京:地质出版社,1999:167-175
    [71]程捷,万天丰.郯庐断裂带在新生代的演化[J].地质科技情报,1996,15(3):35-42.
    [72]卢华复,俞鸿年,丁幼文,等.论郯庐断裂带中段新构造期构造应力场的演化[A].构造地质论丛(三),北京:地质出版社,1984:107-115.
    [73]郭孟习,孙炜,尹国义,等.郯庐断裂系的北延及地质-地球物理特征[J].吉林地质,2000,19(3):35-44.
    [74]张庆龙,王良书,谢国爱,等.郯庐断裂系北延及中生代构造体制转换问题的探讨[J]. 高校地质科学,2005,11(40):577-584.
    [75]朱光,刘国生,宋传中,等.郯庐断裂带的脉动式伸展活动[J].高校地质学报,2000,6(3):396-404.
    [76]朱光,王道轩,刘国生,等.郯庐断裂带的伸展活动及其动力学背景[J].地质科学,2001,36(3):269-278.
    [77]刘国生,朱光,宋传中,等.郯庐断裂带新近纪以来的挤压构造与合肥盆地的反转[J].安徽地质,2002,12(2):81-84.
    [78]刘茂强,杨丙中,邓俊国,等.伊通--舒兰地堑地质构造特征及其演化[M].北京:地质出版社.1993.
    [79]童亨茂.伊通地堑边界断裂的性质与演化[J].地质力学学报,2002,8(1):35-42.
    [80]孙万军,刘宝柱,李本才,等.伊通地堑断层系统与构造样式[J].现代地质,2004,18(4):505-510.
    [81]荆凤,申旭辉,洪顺英,等.基于遥感技术研究依兰—伊通断裂带[J].地震,2006,26(3):79-84.
    [82]徐嘉炜.郯城—庐江平移断裂系统.构造地质论丛(3).北京:地质出版社,198418-32
    [83]任延广,陈均亮,冯志强,等.喜山运动对松辽盆地含油气系统的影响[J].石油与天然气地质,2004,25(2):185-190.
    [84]孙晓猛,龙胜祥,张梅生.佳木斯·伊通断裂带大型逆冲构造带的发现及形成时代[J].石油与天然气地质,2006,27(5):637-643.
    [85]李献甫,陈全茂,张学海,等.伊通地堑—走滑断陷盆地的构造特征及演化[J].石油实验地质,2002,24(1):19-30.
    [86]Xu J W (ed). The Tangcheng-Lujiang wrench fault system [M]. John Wiley & Sons. Ltd., UK,1993:1-74.
    [87]朱光,刘国生,牛漫兰,等.郯庐断裂带晚第三纪以来的浅部挤压活动与深部过程[J].地震地质,2002,24(2):265-277.
    [88]陈全茂,李忠飞.辽河盆地东部凹陷构造及含油气性分析[M].北京:地质出版社.1998:141-148.
    [89]程有义,李晓清,汪泽成,等.潍北拉分盆地形成演化及其对成油气条件的控制[J].石油勘探与开发,2004,31(6):32-35.
    [90]王永春,伊通地堑含油气系统与油气成藏[M].北京:石油工业出版社,2001:23-30.
    [91]童亨茂,纪洪勇,宋立忠等.伊通地堑构造样式及其油气分布规律,西安石油学院学报(自然科学版),2002,17(5):9-13
    [92]李丕龙,庞雄奇,等.陆相断陷盆地隐蔽油气藏形成——以济阳坳陷为例[M].北京:石油工业出版社,2004.
    [93]庞雄奇,陈冬霞,张俊.隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J].岩性油气藏,2007,19(1):1-8.
    [94]中国石油天然气股份有限公司勘探与生产分公司.岩性地层油气藏勘探理论与实践[M].北京:石油工业出版社,2005.
    [95]李群.松辽盆地南部隐蔽圈闭及有利地区预测[J].石油与天然气地质,2006,23(2): 159-161.
    [96]李群.松辽盆地长岭凹陷隐蔽油气藏勘探研究[J].地球科学——中国地质大学学报,2002,27(6):770-774.
    [97]温志新,王红漫,陈春强,等.南襄盆地泌阳凹陷南部陡坡带隐蔽油气藏形成与分布[J].石油实验地质,2006,28(2):117-121.
    [98]陆建林.南阳凹陷北部坡折带隐蔽油气藏勘探[J].石油勘探与开发,2004,31(3):38-40.
    [99]张伟,武强,黄敬利.南海北部陆架盆地隐蔽油气藏勘探[J].海洋石油,2006,26(3):20-24.
    [100]张永华,田小敏,罗家群.泌阳凹陷隐蔽油气藏分布特征与勘探方法[J].油气地质与采收率,2001,8(3):28-30.
    [101]邓述全,洪月英,彭平安.马西地区隐蔽圈闭预测[J].石油地球物理勘探,2005,40(增刊):117-120.
    [102]Li Pilong, Zhang Shanwen, Xiao Huanqin, et al. Exploration of Subtle Trap in Jiyang Depression[J]. Petroleum Science,2004,1(2):13-21.
    [103]Hou Qijun, Feng Zhiqiang. The Formation Conditions and Distribution Regularities of Lithologic Reservoirs in the Songliao Basin [J]. Petroleum Science,2004,1(2):44-54.
    [104]Yuan Mingsheng, Wang Jinsong and Li Bin. Formation Conditions and Exploration-favoring Areas of Subtle Reservoirs in West Taibei Sag[J]. Petroleum Science,2004,1(2):87-98.
    [105]Zhang Tao, Yan Xiangbin. A Study of the Genesis of Karst-type Subtle Reservoir in Tahe Oilfield [J]. Petroleum Science,2004,1(2):99-104.
    [106]韩文功,张建宁,王金铎.济阳坳陷隐蔽圈闭识别与精细描述[J].石油与天然气地质,2006,27(6):849-859.
    [107]李丕龙,庞雄奇,陈冬霞,等.济阳坳陷砂岩透镜体油藏成因机理与模式[J].中国科学D辑地球科学,2004,34(S1):143-151.
    [108]刘小平,邱楠生.黄骅坳陷歧口凹隐蔽油气藏成藏期分析[J].石油天然气学报,2006,28(3):203-205.
    [109]张杰,邱楠生,韦阿娟,等.黄骅坳陷歧口凹陷隐蔽油气藏形成条件与分布规律[J].西安石油大学学报(自然科学版),2005,20(3):32-35.
    [110]隋淑玲,谭俊敏.东营凹陷低位三角洲砂体隐蔽油气藏研究[J].油气地质与采收率,2004,11(2):25-28.
    [111]张俊,庞雄奇,姜振学,等.东营凹陷砂岩透镜体油气成藏机理及有利区预测[J].地球科学——中国地质大学学报,2006,31(2):250-256.
    [112]张德武,冯有良,邱以钢,等.东营凹陷下第三系层序地层研究与隐蔽油气藏预测[J].沉积学报,2004,22(1):67-72.
    [113]陈冬霞,庞雄奇,邱楠生,等.东营凹陷隐蔽油气藏的成藏模式[J].天然气工业,2005,25(12):12-15.
    [114]张晶,王伟锋,史文东,等.东营凹陷永北地区隐蔽油气藏分布规律及勘探方向[J].石油天然气学报,2005,27(12):831-834.
    [115]孙龙德.东营凹陷中央隆起带沉积体系及隐蔽油气藏[J].新疆石油地质,2000,21(2):123-127.
    [116]谯汉生,王明明.渤海湾盆地隐蔽油气藏[J].地学前缘,2000,7(4):497-506.
    [117]袁选俊,谯汉生.渤海湾盆地富油气凹陷隐蔽油气藏勘探[J].石油与天然气地质,2002,23(2):130-133.
    [118]项华,徐长贵.渤海海域古近系隐蔽油气藏层序地层学特征[J].石油学报,2006,27(2):11-15.
    [119]袁选俊,薛良清,池英柳,等.坳陷型湖盆层序地层特征与隐蔽油气藏勘探——以松辽盆地为例[J].石油学报,2003,24(3):11-15.
    [120]冯有良,周海民,李思田,等.陆相断陷盆地层序类型与隐蔽油气藏勘探——以南堡凹陷古近系为例[J].地球科学——中国地质大学学报,2004,29(5):603-608.
    [121]朱怀平,李武,吴传芝,等.油气化探技术在隐蔽油气藏勘探中的作用[J].石油与天然气地质,2004,25(3):344-348.
    [122]李廷辉,陈洪涛,孔凡东,等.储层综合预测技术在隐蔽油气藏勘探中的应用——以板桥凹陷东斜坡为例[J].石油物探,2003,42(3):340-345.
    [123]易士威,王权.岩性地层油气藏勘探思路与勘探方法[J].中国石油勘探,2005(2):9-14.
    [124]沈守文,彭大钧,颜其彬,等.层序地层学预测隐蔽油气藏的原理和方法[J].地球学报,2000,21(3):300-304.
    [125]柏涛,徐志伟.波阻抗反演及其在隐蔽圈闭预测中的应用[J].石油试验地质,2004,26(1):63-67.
    [126]张善文,王英民,李群.应用坡折带理论寻找隐蔽油气藏[J].石油勘探与开发,2003,30(3):5-7.
    [127]马丽娟,郑和荣,陈霞.隐蔽油气藏地震预测技术研究新进展[J].地球物理学进展,2007,22(1):294-300.
    [128]吴东胜,陈华军,刘少华,等.三维可视化技术在隐蔽油气藏勘探中的应用[J].石油物探,2005,44(1):44-46.
    [129]牛嘉玉,李秋芬,鲁卫华,等.关于“隐蔽油气藏”概念的若干思考[J].石油学报,2005,26(2):122-126.
    [130]陈果,彭军.中国非构造油气藏研究现状[J].大庆石油地质与开发,2005,24(3):1-4.
    [131]沈守文,彭大钧,颜其彬,等.层序地层学预测隐蔽油气藏的原理和方法[J].地球学报,2000,21(3):300-305.
    [132]肖乾华,李宏伟,李云松.层序地层学原理与方法在隐蔽油气藏勘探中的应用[J].断块油气田,1998,5(2):6-8.
    [133]薛良清.湖相盆地中的层序、体系域与隐蔽油气藏[J].石油与天然气地质,2002,23(2):115-120.
    [134]宗国洪,冯有良,刘承华,等.同沉积断裂带砂砾岩隐蔽油藏研究——以东营凹陷胜北断裂带为例[J].石油实验地质,2003,25(3):274-279.
    [135]冯有良,邱以钢.高精度层序地层学在济阳坳陷下第三系隐蔽油气藏勘探中的应 用[J].石油学报,2003,24(1):49-57.
    [136]李思田,潘元林,陆永潮,等.断陷湖盆隐蔽油藏预测及勘探的关键技术—高精度地震探测基础上的层序地层学研究[J].地球科学——中国地质大学学报,2002,27(5):592-598.
    [137]林畅松,潘元林,肖建新,等.构造坡折带——断陷盆地层序分析和油气预测的重要概念[J].地球科学——中国地质大学学报,2000,25(3):260-265.
    [138]王英民,金武弟,刘书会.断陷湖盆多级坡折带的成因类型、展布及其勘探意义[J].石油与天然气地质,2003,24(3):199-203.
    [139]Meissner F F. Petroleum geology of the Bakken Formation, Williston Basin, North Dakata and Montana[C]//Montana Geological society. Proceedings of 1978 Williston Basin Symposium. Billings:Montana Geological Society,1978:207-227.
    [140]Hunt J M. Petroleum geochemistry and geology[M]. San Franscisco:Freeman,1979: 617.
    [141]Du Rouchet J. Stress fields, a key to oil migration [J]. AAPG Bulletin,1981,65(1):74-85.
    [142]王捷,关德范.油气生成运移聚集模型研究[M].北京:石油工业出版社,1999:98-99.
    [143]姜培海.渤海海域隐蔽油气藏成藏机理研究[J].复式油气田,2000,(3):125.
    [144]Margara K. Reevaluation of montmorillontile dehydration as causeofabnormal pressure and hydrocarbon migration[J]. AAPG Bulletin,1975,59:292-302.
    [145]陈冬霞,庞雄奇,邱楠生,等.砂岩透镜体成藏机理[J].地球科学,2004,29(4):483-488.
    [146]张云峰,付广.砂岩透镜体油藏聚油机理及成藏模式[J].断块油气田,2000,7(2):12-14.
    [147]McAulife C D. Oil and gas migration:Chemical and physical constraints [J]. AAPG Bull.,1979,63(5):767-781.
    [148]Barker C. Primary migration:The importance of water-organ-ic-mineral matter interactions in the source rock[C]. AAPG Studies in Geology. Tulsa, Oklahoma, 1980:12-13.
    [149]李明诚.石油与天然气运移[M].北京:石油工业出版社,1987:37-38.
    [150]林景晔,门广田,黄薇.砂岩透镜体岩性油气藏成藏机理与成藏模式探讨[J].大庆石油地质与开发,2004,23(2):5-7.
    [151]李丕龙,张善文,宋国齐等.断陷盆地隐蔽油气藏形成的机制——以渤海湾盆地济阳坳陷为例[J].石油实验地质,2004,26(1):3-10.
    [152]张善文,王永诗,石砥石,等.网毯式油气成藏体系——以济阳坳陷新近系为列[J].石油勘探与开发,2003,30(1):1-8.
    [153]李丕龙,庞雄奇,陈冬霞,等.济阳坳陷砂岩透镜体油藏成因机理与模式[J].中国科学D辑地球科学,2004,34(S1):143·151.
    [154]张善文,王永诗,石砥石,等.网毯式油气成藏体系——以济阳坳陷新近系为列[J].石油勘探与开发,2003,30(1):1-8.
    [155]卓勤功.断陷盆地洼陷带岩性油气藏成藏机理及运聚模式[J].石油学报,2006,27(6):19-22.
    [156]解习农,刘晓峰,胡祥云,等.超压盆地中泥岩的流体压裂与幕式排烃作用[J].地质科技情报,1998,17(4):59-64.
    [157]胡济世.异常高压、流体压裂与油气运移(上)[J].石油勘探与开发,1989,16(2):16-23.
    [158]胡济世.异常高压、流体压裂与油气运移(下)[J].石油勘探与开发,1989,16(3):16-23.
    [159]孔凡仙.东营凹陷北带砂砾岩扇体勘探技术与实践[J].石油学报,2000,21(2):27-31.
    [160]潘元林,宗国洪,郭玉新.济阳断陷湖盆层序地层学及砂砾岩油气藏群[J].石油学报,2003,24(3):16-23.
    [161]Vail P R, Mitchum R M Jr, Thompsons S. Global-cycles of relative changes of sea level[J]. AAPG Memoir,1977,26:83-97.
    [162]Vail P R. Sequence stratigraphy workbook, fundamentals of sequen cstratigraphy[A]. In:Bally A W. AAPG annual convention short course:sequence stratigraphy interpretation of seismic stratigraphy interpretation procedure [C]. AAPG Atlas of seismic stratigraphy,1988.
    [163]Vail P R, AudeⅡlard F, Bowman S A, et al. The stratigraphic signatures of tectonics, eustasy and sedimentology:an overview[A]. In:Einsele G, Ricken W, Seilacher A. Cycles and events in stratigraphy [C]. Berlin:Springer-Verlag,1991:617-659.
    [164]van Wagoner J C, Mitchum R M, Campion K M, etal. Siliciclastic sequence stratigraphy in well logs, cores and outcrops[J]. AAPG Methods in Exploration Series, 1990,7:1-8.
    [165]van Wagoner J C. Overview of sequence stratigraphy of foreland basin deposits: terminology, summary of papers, and glossary of sequence stratigraphy [J]. AAPG Memoir,1995,64:490.
    [166]Posamientier H W, Jervey M T, Vail P R. Eustatic controls on clastic deposition I-conceptual framework [A]. In:Wilgus C K, Hastings B S, Kendall C G St C, etal. Sea-level changes:an integrated approach[C]. SEPM Special Publication,1988,42:69-125.
    [167]Haq B U, HardenbolJ, Vail P R. Chronology of fluctuating sea levels since the Triassic (250 million years ago to present)[J]. Science,1987,235:1156-1167.
    [168]Jervey M T. Quantitative geological modeling expression[A]. In:Wilgus C K, Hastings B S, Kendall C G St C, etal. Sea-level changes:an integrated approach [C]. SEPM Special Publication,1988,42:47-70.
    [169]Cross T A, Homewood P W. Amanz Gressly's role in founding modem stratigmphy[J]. Geological Society of American Bulletin,1997,109:1617-1630.
    [170]Cross T A. Controls on coal distribution in trensgressive-regressive cycles, Upper Cretaceous, Westermn Interior, USA[A]. In:Wilgus C K, Hastings B S, Kendall C G St C, etal. Sea-level changes:an integrated approach[C]. SEPM Special Publication,1988, 42:293-308.
    [171]Cross T A, Lessenger M A. Correlaion strategies for clastic wedges[A]. In:Coalson E B, Osmend J C, Williams E T. Innovative appli-cations of petroleum technology in the Rocky Mountain[C]. Denver:Area-Rocky Mountain Association of Geologists,1997: 183-203.
    [172]Cross T A, Lessenger M A. Construction and application of a stratigraphic inverse model[A]. In:Harbaugh J W, Watney W L, Rankey E C, et al. Numerical experiments in stratigraphy:recent advances in stratigraphic and sedimentologic computer simulations[C]. SEPM Special Publication,1999,62:69-83.
    [173]邓宏文.美国层序地层研究中的新学派——高分辨率层序地层学[J].石油与天然气地质,1995,16(2):89-97.
    [174]邓宏文,王洪亮,李熙喆.层序地层基准面的识别、对比技术及应用[J].石油与天然气地质,1996,17(3):177-183.
    [175]徐怀大.层序地层学理论用于我国断陷盆地分析中的问题[J].石油与天然气地质,1991,12(1):52-57.
    [176]徐怀大.陆相层序地层学研究中的某些问题[J].石油与天然气地质,1997,18(2):83-89.
    [177]蒲仁海.断陷盆地层序地层学的几点进展[J].石油与天然气地质,2002,23(4):410-414.
    [178]高新生,赵霞飞,李天明,等.准噶尔盆地西部侏罗系层序地层特征[J].石油与天然气地质,2001,22(2):165-168.
    [179]陈开远,孙爱霞,杜宁平.成油体系中的层序地层学[J].石油与天然气地质,1998,19(3):221-226.
    [180]许广明,徐怀大,孔祥言.高分辨率层序地层学在油藏数值模拟中的应用[J].石油与天然气地质,1999,20(2):115-119.
    [181]胡宗全,李明娟.准噶尔盆地西北缘侏罗系层序模拟与沉积相演化特征[J].石油与天然气地质,2003,24(4):351-355.
    [182]Dalrymple R W, Zaitlin B A. High resolution sequence stratigraphy of a complex, incised valley Succession, cobequid bay-salmon River Estuary, Bay of Fundy, Canada[J]. Sedimentology,1995,41 (6):1069-1091.
    [183]Ulicny D, Spicakova L. Response to high frequency sea-level change in a fluvial to estuarine succession:Cenomanian Palaeovalley Fill, Bohemian Cretaceous[A]. Howell J A, Aitken J F. High resolution sequence stratigraphy:innovations and applications[C]. Geological Sociesty Special Publication,1996,104(5):247-268.
    [184]Juan P M. Sequence stratigraphy in alluvial settings:a flume-based model with application to outcrop and seismic data[J]. AAPG Bulletin,1998,82(9):1736-1753.
    [185]Brian J W. Permeability structure of a compound valley fill in the cretaceous fall river formation of south Dakota[J]. AAPG Bulletin,1998,82 (9):206-227.
    [186]李思田,杨士恭.论沉积盆地的等时地层格架和基本建造单元[J].沉积学报,1992,10(4):11-22.
    [187]顾家裕,张兴阳.陆相层序地层学进展与在油气勘探开发中的应用[J].石油与天然气地质,2004,25(5):484-490.
    [188]解习农,李思田.陆相盆地层序地层学研究特点[J].地质科技情报,1993,12(2):22-26.
    [189]丘东洲,赵玉光.西准噶尔前陆盆地晚期层序地层模式及其应用[J].岩相古地理,1993,3(4):1-16.
    [190]顾家裕.陆相层序地层学格架概念及模式[J].石油勘探与开发,1995,22(4):6-11.
    [191]李思田,林畅松,解习农等.大型陆相盆地地层层序学研究——以鄂尔多斯中生代盆地为例[J].地学前缘,1995,2(4):133-136.
    [192]樊太亮,李卫东.层序地层运用于陆相油藏预测的成功实例[J].石油学报,1999,20(2):12-17.
    [193]李思田,潘元林,陆永潮等.断陷盆地隐蔽油藏预测及勘探的关键技术——高精度地震探测基础上的层序地层学研究[J].地球科学——中国地质大学学报,2002,27(5):592-597.
    [194]林畅松,李思田,任建业.断陷湖盆层序地层研究和计算机模拟[J].地学前缘,1995,2(3):77-84.
    [195]魏魁生非海相层序地层学——以松辽盆地为例[M].北京:地质出版社,1996.
    [196]池柳英.陆相断陷盆地层序成因初探[J].石油学报,1996,17(3):19-25.
    [197]陆永潮,赵祖辉,陈平等.东营凹陷高精度层序地层学研究及在油气勘探新领域中的应用[J].地球科学——中国地质大学学报,2001,26(增刊),105-108.
    [198]潘元林,宗国洪,郭玉新等.济阳断陷湖盆层序地层学及砂砾岩油气藏群[J].石油学报,2003,24(3):16-23.
    [199]纪友亮,张世奇.陆相断陷湖盆层序地层学[M].北京:石油工业出版社,1996.44-50.
    [200]张世奇,纪友亮.陆相断陷湖盆层序地层学模式探讨[J].石油勘探与开发,1996,23(5):20-23.
    [201]姜在兴.层序地层学原理及应用[M].北京:石油工业出版社,1996.
    [202]冯有良,李思田,解习农.陆相断陷盆地层序形成动力学及层序地层模式[J].地学前缘,2000,7(3):119-132.
    [203]朱筱敏.层序地层学[M].东营:石油大学出版社,2000.
    [204]顾家裕.陆相盆地层序地层学格架概念及模式[J].石油勘探与开发,1995,22(4):6-10
    [205]朱筱敏,康安,王贵文.陆相坳陷型和断陷型湖盆层序地层样式探讨[J].沉积学报,2003,21(2):283-287
    [206]蒋恕,王华,陆永潮,等.中国东部第三纪陆相断陷含油气盆地沉积模式构建[J].地球科学——中国地质大学学报,2003,28(增刊):592-597.
    [207]任建业,陆永潮,张青林.断陷盆地构造坡折带形成机制及其对层序发育样式的控制[J].地球科学——中国地质大学学报,2004,29(5):596-602.
    [208]刘茂强,杨丙中,邓俊国,等.伊通--舒兰地堑地质构造特征及其演化[M].北京:地质出版社.1993.
    [209]童亨茂.伊通地堑边界断裂的性质与演化[J].地质力学学报,2002,8(1):35-42.
    [210]孙万军,刘宝柱,李本才,等.伊通地堑断层系统与构造样式[J].现代地质,2004,18(4):505-510.
    [211]李献甫,陈全茂,张学海,等.伊通地堑—走滑断陷盆地的构造特征及演化[J].石油实验地质,2002,24(1):19-30.
    [212]Xu J W (ed). The Tangcheng-Lujiang wrench fault system [M]. John Wiley & Sons. Ltd., UK,1993.1-74.
    [213]朱光,刘国生,牛漫兰,等.郯庐断裂带晚第三纪以来的浅部挤压活动与深部过程[J].地震地质,2002,24(2):265-277.
    [214]陈全茂,李忠飞.辽河盆地东部凹陷构造及含油气性分析[M].北京:地质出版社.1998.141-148.
    [215]程有义,李晓清,汪泽成,等.潍北拉分盆地形成演化及其对成油气条件的控制[J].石油勘探与开发,2004,31(6):32-35.
    [216]苗洪波,陈红汉,王立武等.大型挤压构造事件对油气成藏的影响[J].石油试验地质,2009,31(1):63-67
    [217]秦建中.青藏高原羌塘盆地有机相展布与成烃模式[J].石油实验地质,2006,28(3):264-270.
    [218]陈斌,邓运华,郝芳,等.黄河口凹陷BZ34断裂带油气晚期快速成藏模式[J].石油学报,2006,27(1):37-40.
    [219]高长海,查明.柴达木盆地北缘冷湖南八仙构造带油气成藏条件及成藏模式[J].中国石油大学学报(自然科学版),2007,31(4):1-7.
    [220]方世虎,徐怀民,郭召杰,等.辽河滩海地区西部凹陷成藏条件与成藏模式.石油实验地质,2004,26(3):223-227.
    [221]江凡,刘喜欢,陈岭.迈陈凹陷M8构造油气藏特征及成藏模式预测.海洋石油,2007,27(2):6-10
    [222]胡光灿,谢姚祥.中国四川盆地东部高陡构造石炭系气田[M].北京:石油工业出版社,1997.
    [223]刘朝露,贾承造,夏斌,等.塔东地区盆山耦合与油气成藏模式研究[J].天然气地球科学,2005,16(5):552-558
    [224]江涛,邱玉超,宋立斌,等.伊通盆地西北缘断裂带的性质.现代地质,2009,23(5):860-864

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700