中扬子区晚三叠世—新近纪层序岩相古地理演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文运用板块构造理论、沉积学理论、层序地层学的理论和方法,贯彻“构造控盆、盆控相”的研究思路,系统开展了中扬子区沉积体系、层序岩相古地理、盆地类型、层序充填,盆山耦合关系研究,以及中新生代陆相盆地与下伏海相盆地的叠加、改造、并列的关系研究,分析海相油气保存条件单元,剖析晚期构造运动、层序充填对海相盆地成藏的建设性意义和破坏性作用,指出海相盆地有利勘探远景区。
     1、中新生代沉积体系研究
     在5条露头剖面实测的基础上,结合钻井、地震资料综合分析,划分出四种沉积体系类型即:冲积扇、河流、三角洲、湖泊沉积体系,建立了可反映沉积体系基本特征和空间展布几何形态的沉积相类型或单元。根据晚三叠世—新近纪沉积演化特点,划分出五种沉积模式:①前陆盆地的扇三角洲—湖底扇组合的二级扇沉积模式;②前陆盆地的冲积扇—三角洲—湖底扇组合的三级扇沉积模式;③断陷型湖盆的冲积扇—河流—三角洲—湖泊沉积模式;④断陷型湖盆冲积扇—扇三角洲—湖泊沉积模式;⑤坳陷型湖盆的河流—三角洲—湖泊沉积模式。
     2、层序划分和特征研究
     根据地表露头观察到的不整合面、侵蚀面和沉积间断面,结合古生物、沉积相资料及地震反射波组的上超、下超、削截,明确不整合面时空展布范围,取得如下认识:
     ①上三叠统—新近系共划分3个一级层序、10个二级层序,21个三级层序。②上三叠统—新近系识别出8种层序界面识别标志:古风化壳、区域不整合界面、石英质砾石层、侵蚀及冲刷、较长时间的暴露及钙结壳、相序不连续及相转换面、地震剖面上反射终止现象,如上超、削截等接触关系、古气候转换面。③层序界面形成与构造运动密切相关,根据导致层序界面形成的构造运动特点,层序界面分为五种成因类型:抬升隆起侵蚀不整合、同构造期渐进不整合、造山隆升剥蚀不整合、水下侵蚀切割层序不整合、应力场的转换及古气候变化造成的不整合。④分析了中新生代层序发育控制因素,认为层序发育是构造运动、湖平面升降、沉积作用和气侯四大因素共同作用的结果。
     3、系统构造—层序岩相古地理编图与研究
     选择10个二级层序体系域(即盆地扩张体系域和盆地收缩体系域),作为中新生代岩相古地理编图单元,按照“构造控盆、盆控相”思想,首次系统的编制了更具科学性、等时性、成因连续性和勘探实用性的全区构造—层序岩相古地理图。
     研究区晚三叠世—侏罗纪岩相古地理明显受盆地形成及发展演化制约,现有的资料表明,盆地演化可分为四个阶段,即盆地形成阶段、盆地早期发展阶段、盆地晚期发展阶段、盆地萎缩阶段,不同阶段盆地充填系列特点不同。①盆地形成阶段—河流沉积充填为主,该阶段对应于晚三叠世(即Ts2、Ts3期),盆地处于初始发育阶段,研究区多为互不连通的小型盆地,沉积范围较小,盆地充填系列以河流相、沼泽相为主,湖泊沉积不发育。②盆地早期发展阶段—湖泊、三角洲、河流沉积充填,此阶段对应于早侏罗世(即Ts4期)。印支运动Ⅱ幕之后,研究区总体处于相对强烈坳陷时期,陆源区退缩,陆源碎屑供应相对匮乏,沉积区域明显扩大,出现了较多的湖泊相沉积。③盆地晚期发展阶段—河流相砂泥岩充填为主,此阶段对应于中侏罗世(即Ts5期)。燕山运动Ⅰ幕之后,研究区总体仍处于相对强烈坳陷时期,沉积范围较大,陆源碎屑供应充足,沉积厚度巨大。④盆地萎缩阶段—河流充填为主,此阶段对应于晚侏罗世(即Ts6期)。燕山运动Ⅱ幕之后,荆当盆地以及鄂东一带为隆起区,局部开始裂陷;鄂西渝东一带为坳陷区,接受沉积区域明显缩小,沉积基底强烈坳陷,沉积厚度巨大,以河流相砂泥岩充填为主,以上四个盆地演化阶段与晚三叠世至早白垩世(研究区大部分缺失)盆山耦合反映的前陆盆地三次幕式演化阶段具有较强的对应关系。
     研究区白垩纪—新近纪层序岩相古地理演化表现为:
     燕山运动Ⅲ幕、Ⅳ幕,对应构造层序Ts7、Ts8沉积时期,盆地以北西向断陷作用为主,处于亚热带干旱的古气候条件,湖泊类型为宽而浅的氧化型湖泊,沉积物类型以氧化色调为主,暗色泥岩不发育,缺乏生烃能力;物源为多源(以西部为主)、近源碎屑物质,由盆缘至中心构成冲积扇—河流—三角洲—氧化型滨浅湖的沉积体系。几条北西向展布断裂前缘为几个大的沉降带,缺乏统一的沉积中心。
     燕山运动Ⅴ幕,对应构造层序Ts9、Ts10沉积时期,发育多期断拗旋回:旋回早期以断陷作用为主,中晚期以拗陷作用为主,盆地整体上处于中亚热带半干旱干—湿交替的气候条件,湖泊类型为浅水—(半)深水的弱氧化—还原性湖泊,发育浅湖—(半)深湖沉积,暗色泥岩发育,是盆地两套主力烃源岩发育的时期;整体上以北部物源为主,也存在东北部物源。断陷期,当物源与断裂方向垂直时,受断裂的控制而发育水下扇—扇三角洲—湖泊沉积;坳陷期,发育河流—三角洲—湖泊沉积。同时,由于古地形和物源的作用,导致沉积相带在南、北两侧呈不对称分布,砂岩呈现北厚南薄的分布格局,盆地南部为统一的沉积中心。该期是江汉盆地两套主要勘探目的层—新沟咀组下段和潜江组发育的时期。
     喜山期,对应构造层序Ts11沉积时期,渐新世末期的喜山运动,盆地整体抬升遭受剥蚀,结束裂陷盆地发育史。新近系中新统,在区域重力均衡作用下,盆地进入缓慢的拗陷沉降期,主要的沉降中心位于潜北洼陷。主要发育河流相沉积。
     4、中新生代沉积演化(盆山耦合)与物质响应关系研究
     论文通过晚三叠世-新近纪的层序地层格架、层序岩相古地理分析、沉积物组合、岩石学特征、沉降史分析来揭示盆地构造作用过程、盆缘造山带构造作用过程及盆地沉积物质充填过程。
     首次系统的揭示了自印支期以来,中扬子区盆山演化过程;①早三叠世(含晚二叠世)至中三叠世记录了扬子北缘由大陆边缘盆地转变为残留海盆地,反映印支期华北(秦岭)板块与扬子板块之间软碰撞,研究区碰撞未造山的过程;②晚三叠世至早白垩世(研究区部分缺失)记录前陆(磨拉石)盆地的三次幕式演化阶段,反映华北(秦岭)板块与扬子板块之间早燕山期呈斜向陆、陆碰撞,前展逆冲推隆造山作用幕(脉动)式过程;研究表明造山带和前陆盆地具有很好的耦合关系,主要表现在造山带的隆升过程和盆地的沉降历史、地层的剥蚀和充填的沉积物、地层的不整合分布与造山带的迁移规律、构造沉降速率与地层堆积方式等方面均具有对应关系。概括起来,前陆盆地沉积充填特征是造山带的形成演化和前陆盆地沉降的结果。
     ③晚白垩世至古近纪前陆盆地改造与裂陷盆地发育阶段,构造背景发生重大变化,受到郯-庐断裂强烈活动、中国东部软流圈物质上涌以及推隆造山造成加厚的岩石圈因重力失稳等因素,形成快速均衡隆升、走滑块断隆陷构造以及一系列反转伸展断陷盆地。
     5、中扬子区中新生代盆地与下伏海相盆地叠加、改造、并列的关系,为我们深入认识海相油气成藏规律,分析海相盆地油气勘探前景,优选海相油气勘探区提供了依据,这一分析思路遵循:“构造控盆、盆控相”的思想,同时把层序充填的动态分析过程应用于油气勘探保存条件与勘探前景分析中。中新生代盆地与古生代盆地的叠覆关系划分为5类:①连续型覆盖;②早期暴露型覆盖;③晚期暴露型覆盖;④间断暴露型覆盖;⑤持续暴露型覆盖。根据叠覆关系,划分出四种含油气保存条件单元,即持续型、重建型(沉积重建型)、重叠型、剥蚀残余型。鄂西渝东区与秭归盆地区划分为持续型含油气保存条件单元,江汉平原南部区划分为持续型—重建型含油气保存条件单元,大洪山弧形构造带划分为重叠型含油气保存条件单元,江汉平原南部与大洪山弧形构造带之间的区域为持续型—剥蚀残留型含油气保存条件单元、湘鄂西区为剥蚀残留型含油气保存叠加单元。
     6、通过深入研究认为,在中扬子地区现今构造面貌复杂,海相勘探构造圈闭与成油气期不是十分配套的条件下,主要含油气领域应当是大面积稳定地块圈闭构造,古隆起周缘区,逆冲推复构造带的逆掩原地体,以及上、下构造极不协调形成的潜伏构造圈闭等。优选鄂西渝东褶皱带;秭归盆地区;古隆起周缘区,包括宜都—鹤峰复背斜的北部、当阳复向斜的南部;江汉盆地南部作为前四个层次的海相油气勘探远景区。
Based on the theories and methods of plate tectonic theory and sedimentology,following the research idea of "the structure controlling the basin" and "the basin controlling the facies", this paper studies systematically the basin types,sequence filling,basin-mountain coupling relations,and the superimposition,reform,and juxtaposition relations between Meso-Cenozoic continental basins and underlying marine facies basins,analyzes the preservation condition units of marine facies hydrocarbon,dissects the constructive meaning and disruptive effect of later structural movement and sequence filling on the reservoir formation in marine facies basins,and points out the favorable prospect area in marine facies basins,The detailed study results are as follows..
     1.A systematic study of Meso-Cenozoic depositional systems
     On the basis of 5 measured outcrop profiles,combined with the comprehensive analysis of drilling and seismic data,four depositional systems,i.e.,the alluvial fan,fluvial,Delta,and lacustrine depositional systems are classified,the facies types or units which can reflect the essential characteristics and spatial distribution geometry of depositional systems are established.According to the depositional evolution features of Late Triassic-Neogene,it can be divided into five depositional modes.①the secondary fan depositional mode with the combination of fan delta and sublacustrine fan in the foreland basin;②the tertiary fan depositional mode with the combination of alluvial fan,delta and sublacustrine fan;③the alluvial fan-fluvial-lacustrine depositional mode of rifted lake basin;④the alluvial fanfan deltas - lacustrine depositional mode;⑤and the fluvial-delta-lacustrine depositional mode of depressed lake basin.
     2.Sequence division and their characteristics
     According to the unconformities,erosion surfaces,and hiatus surfaces observed on surface outcrops,combined with the palaeontologic and depositional faices data,as well as the phenomena of onlap,downlap and truncation in seismic reflection wave groups,the space-time distribution range of unconformities is clarified as shown in the following
     ①The Upper Triassic-Neogene of the middle Yangtze area can be divided into 3 primary sequences,10 secondary sequences,and 21 tertiary sequences.②The formation of sequence boundaries is closely related to the tectonic movement.According to the features of tectonic movement resulting in the formation of sequence boundaries,the sequence boundaries can be classified into the following genetic types:the uplift erosion unconformity,the syntectonic progressive unconformity,the orogenic uplift erosion unconformity,the subaqueous corrosion unconformity,and the stress field transformation or palaeoclimate alternation-incurred unconformity.③Ten identification marks of sequence boundary are identified in the Upper Triassic-Neogene of the work area:the paleocrust of weathering,the regional unconformity boundary,the cherty gravel bed,the erosion and scouring,the long-time exposure and kalkkruste,the discontinuous facies sequence or facies transform interface,and the ending phenomena on seismic profiles,such as the contact relations,e.g.,onlap and truncation,and palaeoclimate transform interface.④The factors controlling over the development of Meso-Cenozoic sequences in middle Yangtze area are analyzed.It is considered that the sequence development is the result of the synergic effect of four factors,i.e.,tectonic movement,lake level rise,deposition and climate
     3.Mapping and study of the lithofacies palaeogeography of structures and sequences for the system
     Ten system tracts(basin extension system tract and basin shrinkage system tract)of secondary sequences are selected to serve as the compilation units for the mapping of Meso-Cenozoic lithofacies palaeogeography.According to the idea of "the structure controlling the basin" and "the basin controlling the facies",the lithofacies paleographic map of structures and sequences of the whole area,which is more scientific,more isochronous, more continuous in origin,and more practical in exploration,is compiled for the first time(Innovation point).
     In the study area,the lithofacies paleography of the Late Triassic-Jurassic is associated with development and evolution of the basin.Available data indicate that the basin evolution can be divided into 4 stages,namely origination,early development,late development and abortion stages,which have different filling features from each other.①During the basin origination,fluvial filling was dominant.This stage is considered to correspond to Late Triassic when the Sequences TS2 and TS3 were deposited.During this stage,the basin consists of small isolated basins,which were small,fluvial and swamp-dominated,with undeveloped lacustrine deposits.②Early basin development stage—when lacustrine, deltaic and fluvial filling were deposited.It corresponds to the period when the Sequence TS4 was deposited.Since the episodeⅡof the Indosinian Movement,the Middle Yangtze Plate depressed entirely,with significantly widened sedimentary extent.The aborted provenance supplied relatively absent detrital material of terrigenous origin,resulting in much lacustrine deposits due to differentiation in paleogeography.③During the late basin development, fluvial sandstone-mudstone filling was dominant,which corresponds to the period when the Sequence TS5 was deposited.Since the EpisodeⅠof the Yansanian Movement,the Middle Yangtze Area has been in an intensive depression stage,with abundant detrital material of terrigenous origin supplied and deposited with great thicknesses.④During the basin abortion, fluvial filling was dominant.This stage corresponds to the period when the Sequence TS6 was deposited.During this stage,the Jinmen-Dangyang and Qianjiang-Eastern Hubei trend was in an uplift area,except for the Western Hubei- Eastern Chongqin-Zhigui Basin trend in a depression area.During this stage,the deposition area is significantly reduced,with the basement intensively depressed,and very thick deposits dominated by fluvial sandstone-mudstones.
     In the study area,evolution of the lithofacies paleography of the Cretaceous-Neogene sequence is characterized by NW-trending fault-depression in the basin during the episodesⅢandⅣof the Yanshanian Movement when the Sequences Ts7 and Ts8 were deposited, as well as by the arid paleoclimate of the subtropical zone,with wide,shallow,oxidized lakes, where deposits in oxidized colors were dominant,with undeveloped dark mudstones,less potential for hydrocarbon generation.The deposits consist of polyenic(mostly in the west) and proximal detrital material,including alluvial-fluvial-deltaic-oxidized shore neritic deposits from margin to center of the basin.Several NW-trending fault fronts represent great subsidence zones in absence of a common depocentre.
     During the episodeⅤof the Yanshan Movement when the Sequences Ts9 and Ts10 were deposited,multi-period fault-depression cycles occurred,which can be divided into the early cycle dominated by fault depression,and mid- late cycle was dominated by depression, when the entire basin was in hemi-arid,arid alternative with humid climate in the mid subtropical zone,with neritic-(hemi)abyssal deposits,including well-developed dark mudstones.This stage represents a main period when the two main source rocks were developed.
     Himalayan when the Sequence Ts11 was deposited.During the Himalayan Movement of the latest Oligocene,the basin was entirely uplifted and eroded,representing the end of the rift-depression basin development.During the Miocene of the Neogene,the basin was in a slow depression and subsidence period,with the subsidence center in the North Qianjiang sag, where fluvial deposits were deposited.
     4.Study of the basin - mountain coupling and material response relations of Meso-Cenozoic
     Based on the analyses of sequence stratigraphy framework,sequence lithofacies palaeogeography,sediment combination,and subsidence history of Late Triassic Late Triassic -Neogene,this paper explains the tectonic action process of basin,the tectonic action process of the orogenic belt of basinal margin,and the filling process of basinal sediments. and reveals the evolutionary process of basins and mountains in the middle Yangtze region since Indo Chinese for the first time;①Early Triassic(including Late Permian)to Middle Triassic recorded the transformation of the northern margin of Yangtze from a continental margin basin to a residual marine basin,reflected the soft collision between North China(Qin Ling)plate and Yangtze plate in Indo-Chinese epoch,and showed the process of collision in the study area without orogenesis;②Late Triassic to Early Cretaceous(partly nonsequential in the study area)recorded the three episodic evolutionary phases in the foreland(Molasse) basin,reflected the oblique land - land collision between North China plate(Qin Ling)and Yangtze plate in Early Yanshanian,and the episodic(pulse)process of orogenesis by advance thrust uplifting;The study indicates that there is a good coupling relation between the orogenic belt and the foreland basin,which is characterized mainly by the coincidence relations in the following points:the uplifting process of the orogenic belt and the subsidence history of the basin,the stratigraphic denudation and the sedimentary fills,the stratigraphic unconformity distribution and the shifting regularity of the orogenic belt,the tectonic subsidence rate and the accumulation style of formations.In summary,the sedimentary filling characteristics of the foreland basin are resulted form the formation and evolution of the orogenic belt and the subsidence of the foreland basin.③In the stage of foreland basin reform and rifted basin development from Late Cretaceous to Paleogene,the structural setting underwent significant changes.Affected by a lot of factors such as the intense activity of Yan-Lu fault,the material upwelling of asthenosphere in eastern China,and the instability of the thrust uplifting-induced thickened lithosphere because of gravity,there formed some rapidly and evenly uplifted and strike-slip uplifted or depressed structures,as well as a series of reversed extension downfaulted basins(Innovation point).
     5.The relationships of superposition,reform,and juxtaposition between Meso-Cenozoic basins and underlying marine facies basins in middle Yangtze region provides us with foundations for the analysis of the regularities of marine facies reservoir formation,the analysis of oil and gas exploration prospects in marine facies basins,and the optimization of marine facies oil and gas exploration districts.The analysis follows the idea of "the structure controlling the basin" and "the basin controlling the facies",and applies the dynamic analysis process of sequence filling into the analysis of the preservation conditions and exploration prospects for oil and gas exploration The superposition relations for Meso-Cenozoic basins and Palaeozoic basins can be divided into 5 types:①the successive coverage;②the earlier exposed coverage;③the later exposed coverage;④the discontinuously exposed coverage; and⑤the continuously exposed coverage.According to the superposition relations,four oil/gas preservation condition units are classified for Middle Yangtze region,i.e.,the successive type,the reconstruction(sedimentary reconstruction)type,the superposition type, and the post-eroded relic type.The region of Western Hubei and Eastern Chongqing and the region of Zigui Basin belong in the type of successive oil/gas preservation condition unit;The southern part of Jianghan Plain,the successive type - the reconstruction type of oil/gas preservation condition unit;The arc structure belt of Dahongshan Mountain,the superposition type of oil/gas preservation condition unit;The area between the southern part of Jianghan Plain and the arc structure belt of Dahongshan Mountain,the sucessive typepost-eroded relic type of oil/gas preservation condition unit;And the Western Hunan and Hubei,the post-eroded preservation condition type of superposed oil/gas units(Innovation point).
     6.Through the in depth study,it is considered that in the cases of complex structural features and not fully matched conditions for the marine facies exploration structural traps and oil/gas formation time,the main oil/gas-bearing areas must be the trap structures in the large sized epeirocratic craton,the periphery area of the palaeohigh,the thrusting in-place geologic body in the structural belt of thrusting and overriding,and the buried structural traps formed due to severe inconsistency between upper and lower structures.Four levels of areas are selected as the marine facies oil and gas exploration prospects,i.e.,the folded belt of Western Hubei and Eastern Chongqing,the basinal area of Zigui,the periphery area of the palaeohigh(including the northern part of Yidu-Hefeng anticlinorium,and the southern part of Dangyang synclinorium),and the southern part of Jianghan Basin.
引文
1.王成善、陈洪德、寿建峰等著,《中国南方海相二叠系层序地层与油气勘探》,四川科学技术出版社,1998年
    2.王岫岩、王贵文,西藏特提斯构造域及其找油前景,石油学报,1998年第19卷第2期,P44-48。
    3.方少仙、吴方浩编著,《石油天然气储层地质学》,石油大学出版社,1998年
    4.田海芹著,《中国南方寒武纪岩相古地理研究及编图》,石油大学出版社,1998年
    5.刘文均、陈源仁、郑荣才等,《层序地层》,成都科技大学出版社,1996年
    6.刘宝琚、余光明等编,《岩相古地理学教程》,地矿部岩相古地理工作协作组,1990年
    7.刘宝瑶、李文汉主编,《层序地层学研究与应用》,四川科学技术出版社,1994年
    8.刘宝珺、曾允孚主编,《岩相古地理基础及工作方法》,地质出版社,1985年
    9.地质矿产部成都地质矿产所主持,《中国南方岩相古地理图集》,科学出版社,1994年
    10.江茂生,碳酸盐与陆源碎屑混合沉积体系研究进展,《地球科学进展》,1995年第10卷第6期总60期,P551-554
    11.牟传龙、丘东洲、王立全、万方著,《湘鄂赣二叠系层序岩相古地理与油气》,地质出版社,2000年8月
    12.纪友亮、张世奇等编者,《层序地层学原理及层序成因机制模式》,地质出版社,1998年
    13.许效松,古地理研究的前景与挑战,古地理学报,1999年第1卷,第4期。
    14.许效松,沉积地质学研究现状和进展在30届国际地质大会上的反响,《四川地质学报》,1996年第16卷第4期总48期,P289-294
    15.许效松、刘宝珺、赵玉光、陆元法著,《上扬子西缘二叠纪——三叠纪层序地层与盆山转换耦合》,地质出版社,1997年
    16.许效松、牟传龙、林明著,《露头层序地层与华南泥盆纪古地理》,成都科技大学出版社,1993年
    17.许效松.徐强.盆山转换和当代盆地分析中的新问题.岩相古地理.1997.16(2).P24-23
    18.何玉林,构造应力场地质研究方法进展,《四川地震》.-1989,(2).-63-71
    19.何登发,董大忠,吕修祥,曹守连编著,《克拉通盆地分析》,石油工业出版社,1996年,8月。
    20.何镜宇、孟祥化主编,《沉积岩和沉积相模式及建造》,地质出版社,1987年
    21.吴巧生、王华,1998,沉积盆地构造应力场研究综述,《地质科技情报》.-1998,17(1).-8-12
    22.吴亚生、范家松,根据生物礁定量计算茅口期全球海平面变化幅度,《中国科学D辑》2001年3月第31卷第3期,P233-242
    23.张文荣等,《中扬子地区印支期以来构造运动对圈闭形成及油气聚集保存条件影响的研究》,科研报告,1990年.
    24.张光亚著,《塔里木古生代克拉通盆地形成演化与油气》,地质出版社,2000年12月。
    25.张明利、万天丰,1998,含油气盆地构造应力场研究新进展,《地球科学进展.》1998,13(1).-38-43
    26.杨守业,R E E示踪沉积物物源研究进展,《地球科学进展》,1999年第14卷第2期,P164-167
    27.杨巍然、杨森楠等著,《造山带结构与演化的现代理论和研究方法》,中国地质大学出版社,1991年
    28.邱楠生,电子顺磁共振技术在沉积盆地有机质及热史研究中的应用——现状和进展,《地球物理学进展》,1994年第9卷第3期总31期,P87-97
    29.陈子恩等,《恢复烃源岩原始有机质丰度模型研究与应用》,科研报告,中国石化股份有限公司,2000年
    30.陈洪德.覃建雄.王成善.寿建峰.李祥辉.中国南方二叠纪层序岩相古地理特征及演化,沉积学报.1999.17(4).P511
    31.陈荣书主编,《石油及天然气地质学》,中国地质大学出版社,1994年
    32.陈绵琨等,《湖北及邻区海相地层油气资源评价》,科研报告,2000年
    33.陈戴生,当前沉积学及岩相古地理学新进展——第四届全国沉积学及岩相古地理学学术会仪侧记,《铀矿地质》,1996第12卷第2期,P71-74,124
    34.周雁、梁西文、陈仁学等,《中扬子区海相地层构造——层序岩相古地理研究及编图》,中国石化江汉油田研究院科研报告,2001年。
    35.周名魁、王汝植、李志明等著,《中国南方奥陶—志留纪岩相古地理与成矿作用》,地质出版社,1993年
    36.文可东等,《渝鄂湘边区油气资源序列及其应用研究》,中国石化江汉油田研究院科研报告,1998年
    37.郑荣才、尹世民、彭军.基准面旋回结构与叠加样式的沉积动力学分析.沉积学报.2000.18(3).P369-375
    38.郑荣才,基准面旋回结构与叠加样式的沉积动力学分析,《沉积学报》,2000年第18卷,第3期,P370-375
    39.信荃麟、刘泽容主编,《含油气盆地构造相分析》,地质出版社,1993年
    40.费琪、邓忠凡,西藏特提斯构造域海相油气前景,地球科学:中国地质大学学报,1996年第21卷第2期,P114-119。
    41.赵国连.层序地层学的研究现状,沉积与特提斯地质.2000.20(3).P100-101
    42.赵重远,特提斯:油气聚集何方,勘探家(石油与天然气),2000年第20卷第5期第2册,P59-66。
    43.赵澄林,沉积学和古地理学的进展和展望,《石油勘探新进展国际研讨会论文集》(史训知等主编),1995年P1-8
    44.徐文凯、戴少武等,《江汉盆地海相地层勘探目标评价研究》,科研报告,1993年.
    45.徐强等,中国沉积学研究两头和发展方向,《西南石油学院学报》,2000年,第3-4期
    46.钱奕中、陈洪德、刘文均主编,《层序地层学理论和研究方法》,四川科学技术出版社,1994年12月
    47.高福红,沉积物源区研究的新进展,《世界地质》,1994年,第13卷,第3期,总第47期,P98-103
    48.黄思静、石和、刘沽、沈立成,锶同位素地质学进展,地球科学进展,2001年4月,第16卷,第二期,P194-200
    49.曾允孚、夏文杰主编,《沉积岩石学》,地质出版社,1986年
    50.童玉明、谢征康,特提斯壳体演化新解与青藏高原含油性分析,地球科学:中国地质大学学报,1996年第21卷第2期,P136-140。
    51.覃建雄,现代沉积学理论重大进展综述,《地质科技情报》,1995年第14卷第3期总59期,P23-32
    52.蔡乾忠,特提斯与海相油气:开拓我国海域油气新领域,海洋地质动态,1999年第7期(总第200期),P1-7。
    53.[美]C.K.威尔格斯等著,徐怀大等译,《层序地层学原理》石油工业出版社,1994年,P3-22
    54.Christopher G.st.C.Kendall和Ian Lerche,全球海平面的升与降,徐怀大等译,《层序地层 学原理》,石油工业出版社,1994年5月P3—22
    
    55. Morris W. Leighton, Dennis R. Kolata, Donald F. Oltz, J.James Eidel, 编,刘里斌,于福华,杨时榜等译,《内克拉通盆地》,石油工业出版社,2000年10月。
    
    56. Barley M E; Blake T S; Groves D I, The Mount Bruce Megasequence Set and eastern Yilgarn Craton; examples of late Archaean to early Proterozoic divergent and convergent craton margins and controls on mineralization. In: Precambrian metallogeny related to plate tectonics. BA: Gaal Gabor (editor); Schulz Klaus J (editor) .Precambrian Research. 58; 1-4, Pages 55-70. 1992.
    57. Barrett P J, History of the Ross Sea region during the deposition of the Beacon Supergroup 400-180 million years ago. Journal of the Royal Society of New Zealand. 11; 4, Pages 447-459. 1981.
    58. Bernard Pittet, Andre Strasser, Emanuela Mattiol, Depositional sequences in Deep-shelf environments: A response to sea-level changes and shallow-platform carbonate productivity (OXFORDIAN, GERMANY and SPAIN) Journal of Sedimentary Research. 2000, V.70,p392-407
    59. BODINE, J. H、 STECKLER, M. S., AND WATrS, A. B. , Observations Offlexure andthe rheologyOfthe oceanic lithosphere: Journal Of Geophysical Research, 1981, v. 86, p.3695-3707.
    60. BOND, G., Speculations On real sea-level changes and vertical motions Ofcontinents at selected times in the Cretaceous and Tertiary periods: Geology, 1978, v. 6, p. 247-250.
    61. Burgess Peter M; Gurnis Michael; Moresi Louis, Formation of sequences in the cratonic interior of North America by interaction between mantle, eustatic, and stratigraphic processes. Geological Society of America Bulletin. 109; 12, Pages 1515-1535. 1997.
    62. Byers C W; Dott R H Jr. ; Smith G L, Cambro-Ordovician sequence stratigraphy and paleogeography for the craton and eastern passive margin of North America. In: 13th International sedimentological congress; Abstracts of papers. International Sedimentological Congress. 13; Pages 138-139. 1990.
    63. CARTER, R. M., Themid-OligoceneMarshall paraconformity, New Zealand: coincidence withglobal eustatic sea-level fall Orrise: Journal Of Geology, 1985, v. 93, p. 359-371.
    64. CHARPRONIERE, G. C. H. , Oligocene and Miocene larger foraminiferida from Australia and New Zealand: Bureau Of Mineral Resources, Geology and Geophysics Bulletin, 1984. V. 188. p. 1-98.
    65. Cheney Eric S, Interregional correlation of pre-Phanerozoic rocks by sequence stratigraphy. In: 29th international geological congress; abstracts. International Geological Congress, Abstracts—Congres Geologique Internationale, Resumes. 29; Pages 259. 1992.
    66. Cheney E S, Sequence stratigraphy and plate tectonic significance of the Transvaal succession of Southern Africa and its equivalent in Western Australia. In: Geology and geochemistry of the Transvaal Supergroup, Southern Africa. Precambrian Research. 79; 1-2, Pages 3-24. 1996.
    67. Christoph Lehmann, David A. Osleger, Isabel Montanez, Sequence stratigraphy of lower cretaceous (Barremian-Albian) carbonate platforms of northeastern Mexico: regional and global correlation, Journal of Sedimentary Research, vol70, No.2, March, 2000, P373-391.
    68. Cisne J. L. ,Gildner R. F., Measurement of sea-level chages in epeiric seas:the Middle Ordovician transgression in North American Midcontinent. Sea-level changes; an integrated approch. SEPM Special Publication 1988,v.42, 217-226.
    69. Cisne J. L. ,Gildner R. F., Rabe B. D. Epeiric sedimentation and sea-level: Synthetic ecostratigraphy. Lethaia, 1984,17:267-288.
    70. CLOETINGH, S, Intraplate stresses: a new tectonic mechanism for relative fluctuations Of sea level: Geology, 1986, v. 14, p. 617—620.
    71. Cooper John D; Edwards Jeffrey C, Cambro-Ordovician craton-margin carbonate section, southern Great Basin; a sequence-stratigraphic perspective. In: Paleozoic paleogeography of the Western United States; II. Field Trip Guidebook - Pacific Section, Society of Economic Paleontologists and Mineralogists. 67; Pages 237-252. 1991.
    72. Cooper John D; Edwards Jeffrey C, Cambrian-Ordovician craton margin section, southern Great Basin; a sequence stratigraphic perspective. In: AAPG-SEPM-SEG-SPWLA Pacific Section annual meeting. AAPG Bulletin. 75; 2, Pages 360-361. 1991.
    73. Crevello Paul Daniel, Stratigraphic evolution of Lower Jurassic carbonate platforms; record of rift tectonics and eustasy, central and eastern High Atlas, Morocco. Colorado School of Mines. Golden, CO, United States. Pages: 341. 1990.
    74. Cross T A, Controls on coal distribution in transgressive-regressive cycles, Upper Cretaceous, Western Interior, U. S. A. In:Wilgaus CK, et al. Sea-level changes: Anintergrated approach. SEPM Sepcial Publication, 1988, 42, 371-380
    75. Fedo Christopher M; Cooper John D, Sedimentology and sequence stratigraphy of Neoproterozoic and Cambrian units across a craton-margin hinge zone, southeastern California, and implications for the early evolution of the Cordilleran margin. In: The influence of magmatism, tectonics, sea level change and paleo-climate on Precambrian basin evolution; change over time. Sedimentary Geology. 141-142; Pages 501-522. 2001.
    76. Fischer A. G. The lofer cyclothem of the Alpine Triassic. State Geological Survey of Kansas, Bulletin, 1964,169:107-149.
    77. Fischer A. G. The lofer cyclothem of the Alpine Triassic. State Geological Survey of Kansas, Bulletin, 1964,169:107-149.
    78. Galloway W E. Genetic stratigraphic sequences in basin analysis I: architecture and genesis of flooding-surface bounded depositional units. AAPG. 1989, 73,P125-142.
    79. Galloway W E. Genetic stratigraphic sequences in basin analysis I: architecture and genesis of flooding-surface bounded depositional units. AAPG. 1989, 73, P125-142.
    80. Glumac Bosiljka; Walker-Kenneth-R, Carbonate deposition and sequence stratigraphy of the terminal Cambrian grand cycle in the Southern Appalachians, U. S. A. Journal of Sedimentary Research. 70; 4, Pages 952-963. 2000.
    81. Gonzalez Leon Carlos, Sequence stratigraphy and paleogeographic setting of the Antimonio Formation (Late Permian-Early Jurassic), Sonora, Mexico. In: Special issue dedicated to the International workshop on The geology of northwestern Sonora. Revista Mexicana de Ciencias Geologicas. 14; 2, Pages 136-148. 1997.
    82. Grotzinger J P; Bowring S A, Sequence stratigraphy of Bear Creek Group and correlations between Kilohigok Basin and Wopmay Orogen, NW Canada. In: Geological Society of America, 1989 annual meeting. Abstracts with Programs - Geological Society of America. 21; 6, Pages 373. 1989.
    83. Guidish, T. M., Lerche, I., Kendall, C. G. St. C., and O'Brien, J. J., Relationship between eustatic sea level changes and basement subsidence: American Association of Petroleum Geologists Bulletion, 1984,v.68,p. 164-177.
    84. Hallock. P. and Schlager. W. Nutrient excess and the demise of coral reefs and carbonate platforms: Palaios. 1986. V.1.P389-398
    85. Haq B U, Hardenbol J, Vail P R. Mesozoic and Cenozoic chronostratigraphy and eustatic cycles. S ea-level changes:an integrated approach. SEPM Special Publication , 1988, 42, 71-108
    86. Hardenbol, J., Vail, P. R., and Ferrer, J., Interpreting paleoenviornments, subsidence history, and sea-level changes of passive margins from seismic and biostratigraphy: Oceanology Acta, Proceedings,26th International. Geologic Congress, Geology of Continental Margins Symposium, 1981, P. 33—44.
    87. Harris Mark T; Sheehan Peter M, Upper Ordovician-Lower Silurian depositional sequences determined from middle shelf sections, Barn Hills and Lakeside Mountains, eastern Great Basin. In: Paleozoic sequence stratigraphy; views from the North American Craton. Special Paper - Geological Society of America. 306; Pages 161-176. 1996.
    88. Harrison, C. G. A., Brass, G. W., Saltzman, E., Sloan, J., II ., Southan, J., and Whitman J. M., Sea level variations, global sedimentation rates and the hypsographic curve: Earth and Planetary Science Letter, 1981,v. 54, p1—16.
    89. Harrison, C. G. A., Brass, G. W., Saltzman, E., Sloan, J., II ., Southan, J., and Whitman J. M., Sea level variations, global sedimentation rates and the hypsographic curve: Earth and Planetary Science Letter, 1981,v.54,p1—16.
    90. Holland Steven M; Patzkowsky Mark E, Sequence stratigraphy and long-term paleoceanographic change in the Middle and Upper Ordovician of the Eastern United States. In: Paleozoic sequence stratigraphy; views from the North American Craton. Special Paper - Geological Society of America. 306; Pages 117-129. 1996.
    91. Johnson Markes E, Stable cratonic sequences and a standard for Silurian eustasy. In: Paleozoic sequence stratigraphy; views from the North American Craton. Special Paper - Geological Society of America. 306; Pages 203-211. 1996.
    92. Kossinna, E., Die Erdoberflache, in Gutenberg, B., ed., Handbuch der Geophsik, v. 2, Aufbau der Erde: Gebruder borntraeger, Abschuitt VI, berlin, 1933, p. 809-954.
    93. Kossinna, E., Die Tiefen des Weltmeeres: Berlin Univ. Inst. Meereskunde, Veroff., Geogr. Naturwiss, 1921, n. 9, p70.
    94. Ludvigson Greg A; Jacobson Stephen R; Witzke Brian J; Gonzalez Luis A, Carbonate component chemostratigraphy and depositional history of the Ordovician Decorah Formation, Upper Mississippi Valley. In: Paleozoic sequence stratigraphy; views from the North American Craton. Special Paper - Geological Society of America. 306; Pages 67-86. 1996.
    95. McDonough Katie Joe, Cretaceous eustasy from a paleoshoreline; North American Craton. Colorado School of Mines. Golden, CO, United States. Pages: 100. 1989.
    96. Montanez Isabel P; Osleger David A, Contrasting sequence boundary zones developed within cyclic carbonates of the Bonanza King Formation, Middle to Late Cambrian, southern Great Basin. In: Paleozoic sequence stratigraphy; views from the North American Craton. Special Paper - Geological Society of America. 306; Pages 7-21. 1996.
    97. Neal W. Driscoll, Jeffrey K. Weissel, GarryD. Karner, and Gregory S. Mountain. Stratigraphyic Response of a carbonate platform to relative sea-level changees: Broken Ridge, Southeast Indian Ocean, AAPG Bulletin. 1991, V75.P808-831
    98. Ojakangas Richard W; Morey G B; Southwick D L, Paleoproterozoic basin development and sedimentation in the Lake Superior region, North America. In: The influence of magmatism, tectonics, sea level change and paleo-climate on Precambrian basin evolution; change over time. Sedimentary Geology. 141-142; Pages 319-341. 2001.
    99. Oschman. W. Environmental cycles in the late Jurassic northwest European epeiric basin: interaction with atmospheric and hydrospheric circulations: Sedimentary Geology 1990. V69. P313-332
    100. Pelechaty Shane M; Grotzinger John P; Kashirtsev Vladimir A; Zhernovsky Vladimir P , (Zhernovskiy Vladimir P), Chemostratigraphic and sequence stratigraphic constraints on Vendian-Cambrian basin dynamics, Northeast Siberian Craton. Journal of Geology. 104; 5, Pages 543-563. 1996.
    101. Raatz William D; Ludvigson Greg A, Depositional environments and sequence stratigraphy of Upper Ordovician epicontinental deep water deposits, eastern Iowa and southern Minnesota. In: Paleozoic sequence stratigraphy; views from the North American Craton. Special Paper - Geological Society of America. 306; Pages 143-159. 1996.
    102. S. N. Ehrenberg, N. A. H. Pickard, L. B. Henriksen, T. A. Svana, P. Gutteridge, and D. Macdonald, A depositional and sequence stratigraphic model for coldwater, spiculitic strata based on the Kapp starostin formation (Permian) of Spitsbergen and equivalent deposits from the Barents Sea, AAPG Bulletin, V, 85, NO. 12(December 2001), pp2061-2087
    103. Sarg J F, Carbonate sequence stratigraphy In Wilgus C K et al Eds: Sea-level changees: an integrated approach. SEPM Special publication 1988. 42,155-18
    104. Schlager. w. Depositional bias and environmental change-important factors in sequence stratigraphy. Sedimentary Geology, 1991. V70.p109-130
    105. Schutter Stephen R, The Glenwood Shale as an example of a Middle Ordovician condensed section. In: Paleozoic sequence stratigraphy; views from the North American Craton. Special Paper - Geological Society of America. 306; Pages 55-65. 1996.
    106. Shaver Robert H, Silurian sequence stratigraphy in the craton, Midwestern U.S.A. and southwestern Ontario. In: Geological Society of America, North-Central Section, 26th annual meeting. Abstracts with Programs - Geological Society of America. 24; 4, Pages 64. 1992.
    107. Smith George L; Byers Charles W; Dott Robert H Jr., Sequence stratigraphy of the Prairie du Chien Group, Lower Ordovician, Midcontinent, U.S.A. In: Paleozoic sequence stratigraphy; views from the North American Craton. Special Paper - Geological Society of America. 306; Pages 23-33. 1996.
    108. Smith Mark G; Bustin R Marc, Late Devonian and Early Mississippian Bakken and Exshaw black shale source rocks, Western Canada sedimentary basin; a sequence stratigraphic interpretation. AAPG Bulletin. 84; 7, Pages 940-960. 2000.
    109. Steinhauff D Mark; Walker Kenneth R, Sequence stratigraphy of an apparently noncyclic carbonate succession; recognizing subaerial exposure in a largely subtidal, Middle Ordovician stratigraphic sequence in eastern Tennessee. In: Paleozoic sequence stratigraphy; views from the North American Craton. Special Paper - Geological Society of America. 306; Pages 87-115. 1996.
    110. Tipper, J. L. Modeling Carbonate platform Sedimentation-lag comes naturally: Geology, 1997.V. 25, p495-498
    111. Vail P R. Mitchum R M, Thompson S. Seismic stratigraphy and global changes of sea level. Seismic stratigraphy-applications to hydrocarbon exploration. AAPG Memoir, 1977,26:83-97
    112.Vail P R:Seismic Stratigraphy interpretation using sequence stratigraphy. Part1: seismic Stratigraphy interpretation procedure. In: Atls of seismic Stratigraphy (Ed. Bally A W) AAPG studies in Geology, 1987, 27, 1-10
    113. Wilson, J. L. and Carbonate Facieses in Geological History: Berlin, Springer-Verlag. 1975, p471
    114. Witzke Brian J (editor); Ludvigson Greg A (editor); Day Jed (editor), Paleozoic sequence stratigraphy; views from the North American Craton. Geological Society of America (GSA). Boulder, CO, United States. Pages: 446. 1996.
    115. Witzke Brian J; Bunker Bill J, Relative sea-level changes during Middle Ordovician through Mississippian deposition in the Iowa area, North American Craton. In: Paleozoic sequence stratigraphy; views from the North American Craton. Special Paper - Geological Society of America. 306; Pages 307-330. 1996.
    Xu Xiaosong; Liu Baojun; Zho Yuguang, Sequence boundary and sea level changes in western margin of upper Yangtze Platform during Permian and Triassic. In: Sequence stratigraphy and sea-level changes of China. Journal of China University of Geosciences. 7; 1, Pages 105-111. 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700