磷系阻燃剂BDP的合成及无卤阻燃PPO/HIPS合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚苯醚(PPO)是美国通用电气公司(GE)于20世纪60年代中期开发的热塑性树脂,属于五大通用工程塑料之一。作为具有优良的物理力学性能、耐热性和电气绝缘性的聚苯醚,存在着黏度高、流动性差、对缺口较敏感等缺陷,一般需要对其进行改性。通常对聚苯醚的改性是将聚苯醚和聚苯乙烯尤其是高抗冲聚苯乙烯共混。聚苯醚的阻燃性能良好,具有自熄性,但是高抗冲聚苯乙烯属于易燃材料,二者合一则使得材料的阻燃性能明显降低,故必须加入适当的阻燃剂使其阻燃性能达到使用要求。目前常用的阻燃剂主要有卤系和磷系阻燃剂。卤系阻燃剂在燃烧过程中生成很多烟雾和腐蚀性气体,甚至产生剧毒物质二嗯英,欧盟有些国家已经颁布法令禁止使用此类阻燃剂。
     磷酸酯用作聚合物的阻燃剂已有多年历史,随着阻燃剂研究的不断向前发展,磷酸酯类阻燃剂已经逐渐从单磷酸酯向多聚磷酸酯类过渡。尤其是双磷酸酯的齐聚物,具有结构对称、相对分子质量高、磷含量高等特点,其增塑性、阻燃性、热稳定性均优于普通磷酸酯。这类阻燃剂与聚合物的相容性好,因此得到了广泛的应用。双酚A双(二苯基磷酸酯)(BDP)属于双磷酸酯齐聚物阻燃剂中的杰出代表,国外已有该产品的生产,而国内尚处于研发阶段,暂时没有工业化产品。
     本文首先合成无卤环保高效的磷系阻燃剂双酚A双(二苯基磷酸酯)(BDP)。找到了最适宜的合成路线和反应条件,并改进了后处理方式和工艺以提高能源利用率和原料利用率从而为规模化的工业生产做准备。之后将BDP添加到PPO/HIPS合金中去提高材料的阻燃性能,结果表明BDP对合金的阻燃效率良好,对材料的力学性能损失较小且能提高合金的加工性能;随后采用氮系和无机系的等价格较为便宜的无卤阻燃剂对PPO/HIPS合金进行阻燃研究,发现这两种无卤阻燃剂对材料的阻燃效率一般且对材料的冲击性能影响较大,对材料的加工性能的负面影响不可忽略。为了提高前述两种阻燃方式的阻燃效率,最后采用复配阻燃的方式,将氮系和无机系的阻燃剂同磷系阻燃剂进行复配使用,实验结果表明采用复配阻燃的方式可以使阻燃效率大为提高,而且相比单纯用磷系阻燃剂阻燃材料还具有成本上的优势。更为重要的是采用和磷系阻燃剂复配的方式可以降低氮系和无机系阻燃剂对材料的力学性能和加工性能的损失。综合考虑最优的阻燃方式为改性高岭土复配BDP。
As one of the five largest general engineering plastics, Thermoplastic resin Polyphenylene oxide (PPO) was developed by the General Electric Company (GE) in the mid 60s,20th century. Although PPO has excellent physical and mechanical properties, heat resistance and electrical insulation, it has defects such as high viscosity, poor mobility, very sensitive to notch. So it needs modification. Usually the modification is blend polyphenylene oxide with polystyrene, especially high impact polystyrene. Polyphenylene oxide has a good flame retardant property and its an extinguishing resin. But high impact polystyrene is a flammable materials, the alloy of the two has a weak flame retardant property. Because of these reasons, we need to add some suitable flame retardants on the ally to improve its flame retardant property. Commonly, the most used flame retardants are halogenated and phosphorus flame retardants. Halogenated flame retardants generate a lot of smoke and corrosive gases or even highly toxic dioxins during the combustion process. Some countries in the European Union have enacted laws to prohibit the use of such flame retardants.
     Phosphate ester flame retardants has been used in polymers for many years. With the development of the flame retardants research, phosphate ester flame retardants have been changed from single phosphate ester to polyphosphate. Especially the oligomer of double phosphate. They have advantages of symmetrical structure, high molecular weight and high phosphorus content. They are good plasticizers which are better than normal phosphates in flame resistance and thermal stability. They have good compatibility with polymers and had been widely applied. Bisphenol A bis (diphenyl phosphate) (BDP) is an outstanding representative in such flame retardants. There has industrial products abroad, while in China its still under development and has no industrial products.
     In this paper, environmental protection and high efficient Halogen-free flame retardant bisphenol A bis (diphenyl phosphate) (BDP) was synthesized first. We found the most appropriate synthetic route and reaction conditions for BDP, and improved post-processing methods and techniques to increase raw materials and energy's utilization rate so as for the preparation of large-scale industrial production of BDP. Then we added BDP to the PPO/HIPS alloy to improve its flame retardant property, the results show that the BDP has good flame retardant property to the alloy, it has a small mechanical property loss to the material and can improve the processability of the alloy; After that we used another two less expensive halogen-free flame retardants which are nitrogen containing and inorganic flame retardants on PPO/HIPS alloy and found that the effects of the other two flame retardants are just so so. They have a big impact on alloy's impact strength and its processability. In order to improve the flame retardant efficiency, compounding method was used finally. The other two flame retardants were compounded with phosphorus flame retardant. It was founded that the compounding method can improve flame retardant efficiency and cost less than phosphorus flame retardant. What's more, compounding method can reduce mechanical property and processability loss of PPO/HIPS alloy. Comparison shows that the best way is using modified kaolin compounded with BDP.
引文
[1]欧育湘,李建军.阻燃剂—性能、制造及应用[M].北京:化学工业出版社,2005.
    [2]邵鸿飞,苏芳.塑料无卤阻燃剂研究进展[J].工程塑料应用,2009,37(8):91-94.
    [3]胡洋,马威,高喻,等.聚苯醚合金的研究进展[J].中国塑料,1999,13(3):7-11.
    [4]赵芸芳.磷酸酯阻燃剂在聚苯醚中的应用[J].现代塑料加工应用,2008,20(4):41-43.
    [5]吴育良,王长安,许凯,等.无卤磷系阻燃聚合物研究进展[J].高分子通报,2005(6):37-42.
    [6]辛忠.合成材料添加剂化学[M].北京:化学工业出版社,2005.
    [7]周逸潇,杨丽,毕成良,等.磷系阻燃剂的现状与展望[J].天津化工,2009,23(1):1-4.
    [8]易岚.含硅阻燃剂的研究进展[J].广东公安科技,2008,1(1):51-54.
    [9]许红英,张俊杰,李红霞.阻燃剂的研究现状及发展前景[J].材料导报,2006,20(12):39-41.
    [10]夏俊,王良芥,罗和安.阻燃剂的发展现状和开发动向[J].应用化工,2005,34(1):1-4.
    [11]史翎,段雪.阻燃剂的发展及在塑料中的应用[J].塑料,2002,31(3):11-15.
    [12]杨明.塑料添加剂应用手册[M].南京:江苏科学技术出版社,2002.
    [13]纪巍,王鉴,董群,等.阻燃剂在塑料中的应用及发展趋势[J].化学工业与工程,2008,25(2):177-182.
    [14]董均.无机氢氧化物阻燃剂的应用与发展趋势[J].中国西部科技,2004(6),16-18.
    [15]Camino G, Maffezzoli A, Braglia M, et al. Effect of hydroxides and hydroxycarbonate structure on fire retardant effectiveness and mechanical properties in ethylene-vinyl acetate copolymer[J]. Polymer Degradation and Stability,2003,74:457-464.
    [16]葛世成.红磷阻燃剂在塑料中的应用及阻燃配方设计[J].塑料工业,2006,34(增刊):277-280.
    [17]Qiang Wu, Jian-ping Liu, Bao-jun Qu, et al. Preparation and characterization of microcapsulated red phosphorus and its flame-retardant mechanism in halogen-free flame retardant polyolefins[J]. Polymer International,2003,52:1326-1331.
    [18]Femandes V J, Fernandes N S, Fonseca V M,et al. Kinetic evaluation of decabromodiphenil oxide as a flam retardant for unsaturated polyester[J]. Thermochimica Acta,2002, (388): 283-288.
    [19]Wakelyn P J, Rearick W. Cotton And Flammability: Overview Of New Development[J]. American Dyestuff Reporter,1998,(2):13-21.
    [20]Levan S L, Tran H C. First International Conference On Wood Protection With Diffusible Preservalives, Nashville Tennessee,1990[C].Madison, Forest Products Research Society,1990, 39-41.
    [21]张月琴,叶旭初.硼系阻燃剂的发展及现状[J].塑料科技,2007,35(9):110-113.
    [22]王永强.阻燃材料及应用技术[M].北京:化学工业出版社,2003.
    [23]于占昌.使用磷系阻燃剂的阻燃技术[J].世界橡胶工业,2004,32(7):7-10.
    [24]Balabanovich A I, Engelmann J. Fire retardant and chairing effect of poly(sulfony ldiphenylene phenylphosphonate) in poly(butylene terephthalate)[J]. Polymer Degradation and Stability[J].2003, (1):85-92.
    [25]Serge Bourbigot, Michel Le Bras, Rene Delobel. Carbonization mechanisms resulting from intumescence-partⅡ. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system[J]. Carbon,1995,33(3): 283-294.
    [26]Ru-Jong Jeng, Shir Min Shau, Jiang-Jen Lin, et al. Flame retardant epoxy polymers based on all phosphorus-containing components [J]. European Polymer Journal,2002, (4):683-693.
    [27]Da-ming Ban, Yu-zhong Wang, Bing Yang, et al. A novel non-dripping oligomeric flame retardant for polyethylene terephthalate[J]. European Polymer Journal,2004 (8):1909-1913.
    [28]Raluca N D, Mihai B, Cornelia, et al. On the compatibility of the IPP/PA6/EPDM blends with and without functionalized IPP Ⅰ. Thermo-oxidative behaviour[J]. Polymer Degradation and Stability,2003,80(3):551-566.
    [29]Grace C, Panchatapa Jash, David D, et al. Fire retardancy of vinyl ester nanocomposites: Synergy with phosphorus-based fire retardants[J]. Polymer Degradation and Stability,2005, 89(1):85-100.
    [30]Cynthia A. de Wit, Dorte Herzke, Katrin Vorkamp. Brominated flame retardants in the Arctic environment-trends and new candidates[J]. Science of the Total Environment,2010, 408(15),2885-2918.
    [31]赵雪,朱平,许秋生.超细协同阻燃剂的制备及应用[J].印染助剂,2006,23(11):19-21.
    [32]Braun U, Chartel B S. Effect of red phosphorus and melamine polyphosphate on the file behavior of HIPS[J]. Journal of Fire Science,2005(23):5-30.
    [33]杨云峰,张现军,胡国胜.无卤阻燃剂的研究现状[J].山西化工,2010,30(1):50-53.
    [34]严慧,杨锦飞.磷系阻燃剂在塑料中的应用进展[J].塑料助剂,2008,(6):6-8.
    [35]荣圻.纺织品阻燃剂的安全评估和绿色品种最新开发[J].印染助剂,2008,25(4):1-11。
    [36]张铁江.常见阻燃剂的利与弊[J].煤炭技术,2010,29(2):204-206.
    [37]冯美平,何翼云,郑文颖.氮系阻燃剂的现状与展望[J].精细石油化工,1998,1(1):24-28.
    [38]Pieter Gijsman, Rieky Steenbakkers, Christian Furst, et al. Differences in the flame retardant mechanism of melamine cyanurate in polyamide 6 and polyamide 66[J]. Polymer Degradation and Stability,2002,78(2):219-224.
    [39]张敏,李如钢.有机硅阻燃剂的研究进展[J].有机硅材料,2009,23(1):51-54.
    [40]刘向峰,张军,陆晓东,等.原位聚合法PS/蒙脱土复合材料燃烧性能的研究[J].中国塑料,2002,16(12):23-26.
    [41]Qiang Wu, Baojun Qu. Synergistic effects of silicotungistic acid on intumescent flame-retardant polypropylene[J]. Polymer Degradation and Stability,2001,74 (2):255-261.
    [42]王雁玉,张建平,李渤.我国膨胀型阻燃剂的研究进展[J].塑料助剂,2011,(1):1-4.
    [43]Mauerer O. New reactive, halogen-free flame retardant system for epoxy resins[J]. Polymer Degradation and Stability,2005,88(1):70-73.
    [44]Haiyun Ma, Lifang Tong, Zhongbin Xu,et al. A novel intumescent flame retardant:Synthesis and application in ABS copolymer[J]. Polymer Degradation and Stability,2007,92(4):720-726.
    [45]Chen Y W, Yuan C Y, Li C H, et al. Preparation and characterization of novel flame retardant (aliphatic phosphate) cyclotriphosphazene-containing polyurethanes[J]. Journal of Applied Polymer Science,2003,90(5):1357-1364.
    [46]Funda, Osman, Leyla, et al. Synthesis and characterization of water-dispersed flame-retardant polyurethane resin using phosphorus-containing chain extender [J]. Journal of Applied Polymer Science,2004,91 (2):1314-1321.
    [47]谢兴华,冯道全,何石文.阻燃材料的绿色化初探[J].淮南工业学院学报,2002,22(2):54-56.
    [48]戴志宏.无机填料结构形态对MPPO拉伸性能的影响[J].工程塑料应用,2000,28(3):24-25.
    [49]金国珍.工程塑料[M].北京,化学工业出版社,2001.
    [50]刘正英,杨鸣波.工程塑料改性技术[M].北京,化学工业出版社,2007.
    [51]姜丹蕾,韩铁良,吕日红,等.阻燃剂BDP的合成及应用研究[J].塑料助剂,2007,1(1):21-24.
    [52]欧荣庆,周政懋.磷酸酯类和聚磷酸酯类阻燃剂的现状与进展[J].阻燃材料与技术,2004,(1):14-15.
    [53]李效军,李秀云,王月欣,等.缩合型磷酸酯类阻燃剂BDP的合成研究[J].河北工业大学学报,2005,34(2):74-77.
    [54]Alan M Dallielle A. Phenolphthalein bis(dihydrocarbyl phosphate)compounds[P]. US: 5183905,1993-02-02.
    [55]王筱梅,杨平,王西奎.缩合磷酸酯的合成及其阻燃性研究[J].山东建材学院学报,1998,12(1):25-27.
    [56]黄东平,顾慧丹,张叶,等.双酚A双(二苯基磷酸酯)阻燃剂的合成[J].南京师范大学报(工程技术版),2006,6(4):30-33.
    [57]张玉龙,李萍.工程塑料改性技术[M].北京,机械工业出版社,2006.
    [58]孔洁,陈乐培,佟茂国.阻燃剂双酚A双(磷酸二苯酯)的合成[J].廊坊师范学院学报(自然科学版),2010,10(2):66-68.
    [59]熊传溪,刘起虹,董丽杰.HDPE/高岭土复合材料的制备与性能[J].武汉理工大学学报,2002,24(1):1-3.
    [60]宋湘怡,张芝芳,吴水珠,等.表面防划伤无卤阻燃PPO/HIPS合金的制备、性能及应用研究[J].工程塑料应用,2010,38(2):43-46.
    [61]张伟,李刚,李庆春等.磷系阻燃剂对PPO/PS-HI合金性能的影响[J].中国塑料,2010,24(9):72-76.
    [62]郑宝明,杨荣杰,何吉宇,等.低烟阻燃高抗冲聚苯乙烯的研究[J].中国塑料,2002,16(11):33-35.
    [63]安宇洪,张韫宏,沈康,等.一种新型磷类阻燃剂BDP的合成及其应用性能的研究[J].阻燃材料与技术,2001,(6):11-14.
    [64]冯莉,刘炯天,宋所讲.高岭土对不饱和聚酯树脂的热稳定性、阻燃及力学性能的影响[J].应用化学,2008,25(12):1385-1388.
    [65]Sabyasachi G, Gang S. Effect of phosphorus and nitrogen on flame retardant cellulose: A study of phosphorus compounds[J]. Journal of Analytical Applied Pyrolysis,2007,78(2): 371-377.
    [66]Horacek, Grabner. Advantages of flame retardants based on nitrogen compounds[J]. Polymer Degradation and Stability,1996,54(2):205-215.
    [67]王海军,陈立新,缪桦.氮系阻燃剂的研究及应用概况[J].热固性树脂,2005,20(4)36-41.
    [68]汤俊杰,唐安斌,黄杰.磷-氮协效阻燃剂的研究与应用进展[J].材料导报,2008,22(8):73-77.
    [69]张利利,刘安华.磷硅阻燃剂协同效应及其应用[J].塑料工业,2005,33(增刊):203-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700