随机时滞反应扩散Hopfield神经网络的渐近性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了一系列随机时滞反应扩散Hopfield神经网络的渐近行为,主要分成以下六部分.
     第一章,不仅回顾了神经网络研究的历史和现状,而且论述了研究时滞随机反应扩散Hopfield神经网络的理论意义和应用价值.同时,指出引入时滞,扩散,和随机扰动后系统出现的新现象,并阐述了我们将会遇到的数学困难.
     第二章,研究由无穷维Wiener过程驱动的时滞反应扩散Hopfield神经网络的长期动力行为.首先研究解的存在唯一性.接着给出系统随机指数稳定的条件.最后给出例题验证结果的有效性,同时用Matlab给出仿真.
     第三章,研究由Brown运动驱动的时滞反应扩散Hopfield神经网络的渐近行为.利用Poincare′不等式和随机分析技巧,给出了系统均方意义下指数稳定性的充分条件.同时利用Burkholder-Davis-Gundy不等式, Chebyshev不等式以及Borel-Cantelli引理给出了系统几乎必然指数稳定性的判据.最后给出例题验证结果和方法的有效性,同样用Matlab给出仿真.
     第四章,首先研究了随机时滞反应扩散Hopfield神经网络(RDHNN)的温和解的全局存在唯一性,紧接着通过构造合适的随机动力系统证明了随机吸引子的存在性.
     第五章研究了一类具有S-分布时滞和反应扩散项的Hopfield神经网络的滑动模控制问题.首先改进了一类Hanalay不等式,给出了一种范数不等式.然后通过等效控制方法建立了系统的滑动模态方程,并利用不等式技巧分析了它的吸引集的存在性和零点的指数稳定性.在此基础上设计了变结构控制器,给出了运动轨线到达滑动模态区的时间估计.最后给出了一个例子验证了本文的结果,并利用Matlab作出了仿真.
     最后,我们给出了研究前景展望.
In this paper, we study the asymptotic behavior for different kinds of stochasticreaction diffusion Hopfield neural network with delay, and this dissertation is dividedinto6parts.
     In the first chapter, we not only review history and present situation of researchon the neural network, but also explain theoretical significance and practical valueto the research of neural network. Moreover, We will discuss the new phenomenonsaccompanying the occurrence of delay, reaction-diffusion term as well as stochas-tic disturbance, meanwhile the corresponding mathematical difficulties that we willmeet will be given in this chapter.
     In the second chapter, we focus on the long time behavior of the mild solution fordelayed reaction-diffusion Hopfield neural networks driven by infinite dimensionalWiener processes. We will first study the existence and uniqueness of the mild so-lution for this system. Afterwards we will prove the stochastic exponential stabilityof this system. An example is given to examine the availability of the results of thispaper, simulations is also given by using the Matlab.
     In the third chapter, we study the asymptotic behavior for a class of delayedreaction-diffusion Hopfield neural networks driven by finite dimensional Wiener pro-cesses. Some new sufficient conditions are established to guarantee the mean squareexponential stability of this system by using Poincare′’s inequality and stochasticanalysis technique. The proof of the almost surely exponential stability for this sys-tem is carried out by using the Burkholder-Davis-Gundy inequality, the Chebyshevinequality as well as the Borel-Cantelli lemma. Finally, an example is given to illus-trate the effectiveness of the proposed approach, and the simulation is also given byusing the Matlab.
     In the fourth chapter, we study the global existence and uniqueness of the mildsolution for reaction-diffusion Hopfield neural networks (RDHNN) driven by Wiener processes using a priori estimate, then the random attractor for this system is alsoestablished by constructing proper random dynamical system.
     In the fifth chapter, the sliding mode control problems of a class of Hopfield neu-ral networks with S-type distributed delays and reaction diffusion terms are investi-gated. First, the improved Hanalay inequality and norm inequality are presented.Then, the sliding mode equation is established by the equivalent control method,and the existence of the attracting sets and exponential stability of this system arediscussed by using the inequalities. Then the variable controller is designed, the ap-proximate time estimate from any initial state to sliding manifolds is also obtained.Finally, an example is given to prove the availability the result of this paper, and thesimulation is also given by using the Matlab.
     The prospect of our research will be given at last.
引文
[1]王林山,时滞递归神经网络,北京:科学出版社,2008,3.
    [2]阮炯,顾凡及,蔡志杰,神经动力学模型方法和应用,北京:科学出版社,2002,4.
    [3]吴微,神经网络计算,北京:高等教育出版社,2003,1.
    [4]黄立宏,李雪梅,细胞神经网络动力学,北京:科学出版社,2007,4.
    [5] S. Haykin, Neural networks, Prentice-Hall, Englewood Cliffs, NJ,1994,7.
    [6] F. M. Ham, I. Kostanic, Principles of neurocomputing for science and engineering, McGraw-Hill, New York,2001,7.
    [7] C. Bishop, Neural networks for pattern recognition, Clarendon Press, Oxford, London,1995.
    [8] P. Miller, X. Wang, Power-law neuronal fluctuations in a recurrent network model of paramet-ric working memory, Journal of Neurophysiology,95(2006)1099–1114.
    [9] G. Buzsaki, Large-scale recording of neuronal ensembles, Nat Neurosci,7(2004)446–451.
    [10] R. Romo, C. Brody, A. Herna′ndez, and L. Lemus L, Neuronal correlates of parametric work-ing memory in the prefrontal cortex, Nature,399(1999)470–474.
    [11] E. Zohary, M. Shadlen, and W.T. Newsome, Correlated neuronal discharge rate and its impli-cations for psychophysical performance, Nature,370(1994)140–143.
    [12] W. Softky, C.Koch, The highly irregular firing of cortical cells is inconsistent with temporalintegration of random EPSPs, J Neurosci,13(1993)334–350.
    [13] W. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletinof Mathematical Biology,5(1943)115-133.
    [14] D. Hebb, The organization of behavior: a neuropsychological theory, Wiley, New York,1949,7.
    [15] F. Rosenblatt, The perceptron: a probabilistic model for information storage and organizationin the brain, Psychol. Rev.,65(1958)386–408.
    [16] S. Grossberg, Contour enhancement, short term memory, and constancies in reverberatingneural networks, Stud. Appl. Math.,52(1973)213-257.
    [17] J. Anderson, J. Silverstein, S. Ritz, R. Jones, Distinctive features, categorical perception andprobability learning: some applications of a neural model, Psychol Rev,84(1977)413-451.
    [18] K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism ofpattern recognition unaffected by shift in position, Biological Cybernetics,36(1980)93-202.
    [19] J. Hopfield, Neural networks and physical systems with emergent collective computationalabilities, Proc. Natl Acad. Sci. USA,79(1982)2554–2558.
    [20] J. Hopfield, Neurons with grade response have collective computational properties like thoseof two-state neurons, Proc. Natl Acad. Sci. USA,81(1984)3088–3092.
    [21] C. M. Marcus, R. M. Westervelt, Stability of analog neural networks with delay, PhysicalReview A,51(1989)234-247.
    [22] J. Be′lair, Stability in a Model of a Delayed Neural Network, Journal of Dynamics and Differ-ential Equations,4(1993)60-623.
    [23] K. Gopalsamy and X. Z. He, Stability in asymmetric Hopfield nets with transmission delays,Physics D,76(1994)344-358.
    [24]曹进德,李继彬,具有交互神经传递时滞的神经网络的稳定性,应用数学和力学,5(1998)531-549.
    [25] J. Wu, Symmetric functional differential equations and neural networks with memory, Trans.Am. Math. Soc.,350(1998)4799–4838.
    [26] P. Baldi, A. F. Atiya, How delays affect neural dynamics and learning, IEEE Trans. NeuralNetworks,5(1994)612-621.
    [27] H. Lu, Chaotic attractors in delayed neural networks, Phys. Lett. A,298(2002)109–116.
    [28] J. Zhou, T. Chen, L. Xiang, Chaotic lag synchronization of coupled delayed neural net-works and its applications in secure communication, Circuits, Systems and Signal Processing,24(2005)599-613.
    [29] Y. Becerikli, Y. Oysal, Modeling and prediction with a class of time delay dynamic neuralnetworks, Applied Soft Computing,7(2007)1164-1169.
    [30] J. K. Hale, V.S. M. Lunel, Introduction to functional differential equations, Berlin, Springer,1993,6.
    [31]郑祖庥,泛函微分方程理论,合肥:安徽教育出版社,1994,3.
    [32] L. Wang and D. Xu, Global asymptotic stability of bidirectional associative memory neu-ral networks with S-type distributed delays, International Journal of Systems Science,33(2002)869-873.
    [33]廖晓昕,傅予力,高健等,具有反应扩散的Hopfield神经网络的稳定性,电子学报,28(2000)78-80.
    [34]廖晓昕,杨叔子,程时杰,沈轶,具有反应扩散的广义神经网络的稳定性,中国科学E辑,1(2002)147-164.
    [35]王林山,徐道义,变时滞反应扩散Hopfield神经网络的全局指数稳定性,中国科学E辑,6(2003)137-149.
    [36] L. S. Wang, D. Y. Xu, Global exponential stability of Hopfield reaction-diffusion neural net-works with time-varying delays, Science in China (Series F),46(2003)466-474.
    [37] Q. Song, Z. Wang, Dynamical behaviors of fuzzy reaction-diffusion periodic cellular neuralnetworks with variable coefficients and delays, Appllied Mathematical Model,33(2009)3533-3545.
    [38] X. Lou, B. Cui, New criteria on global exponential stability of BAM neural networks withdistributed delays and reaction-diffusion terms, Int. J. Neural system,17(2007)43-52.
    [39] L. S. Wang, R. J. Zhang, Global exponential stability of cellular reaction-diffusion neuralnetworks with S-type distributed time delays, Nonlinear Analysis Ser. B,10(2009)1101-1113.
    [40] X. Liao, C. Li, Global attractivity of Cohen-Grossberg model with finite and infinite delays,Journal of Mathematical Analysis and Applications,315(2006)244-262.
    [41] G. E. Hinton and T. J. Sejnowski, Analyzing cooperative computation, proceedings of the5thannual congress of the cognitive science society, Rochester, NY,1983,3.
    [42] D. Ackley, D. Hinton, T. Sejnowski, A learning algorithm for blotzmann machines, CognitiveScience,9(1985)147-169.
    [43] D. Rumelhart, G.Hinton, R. Williams, Learning representations by backpropagating errors,Nature,323(1986)533-536.
    [44] S. Hu, X. Liao, X. Mao, Stochastic Hopfield nueral network, J. Physics A,36(2003)1-15.
    [45] W. Allegretto, D. Papini, Stability for delayed reaction-diffusion neural networks, PhysicsLetters A,360(2007)669-680.
    [46]胡适耕,黄乘明,吴付科,随机微分方程,北京:科学出版社,2008,5.
    [47] L. S. Wang, Y. Y. Gao, Global exponential robust stability of reaction-diffusion interval neuralnetworks with time varying delays, Physics Letters A,305(2006)343-348.
    [48] J. Lu, L. Lu, Global exponential stability and periodicity of reaction-diffusion recurrent neu-ral networks with distributed time delays and Dirichlet boundary conditions, Chaos SolitonFractals,39(2009)1538-1549.
    [49] H. Y. Zhao, G. L. Wang, Existence of periodic oscillatory solution of reaction-diffusion neuralnetworks with delays, Physics Letters A,343(2005)372-382.
    [50] Q. Song, J. Cao, Z. Zhao, Periodic solutions and its exponential stability of reaction-diffusion recurrent neural networks with distributed time delays, Nonlinear analysis SeriesB,8(2007)345-361.
    [51] J. Sun, L. Wan, Convergence dynamics of stochastic reaction diffusion reccurent neural net-works with delays, Int. J. Bifur. Chaos,15(2005)2131-2144.
    [52] F. Deng, B. Zhao, Q. Luo, Exponential stability of stochastic Hopfield neural networks withdistributed parameters, Control Theory&Applications,22(2005)196-200.
    [53] L. S. Wang, Y. F. Wang, Stochastic exponential stability of the delayed reaction diffusion in-terval neural networks with Markovian jumping parameters, Physics Letters A,356(2008)346-352.
    [54] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge UniversityPress, Cambridge,1992,3.
    [55] G. Da Prato, J. Zabczyk, Ergodicity for Infinite dimensional Systems, Cambridge UniversityPress, Cambridge,1996,6.
    [56] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, New York,Springer,1988,8.
    [57] I. Chueshov, Introduction to the theory of infinite-dimensional dissipative systems, ActaKharkov,2002,6.
    [58] J. R. Munkres,拓扑学,北京:机械工业出版社,2004,10.
    [59] J. Wu, Theory and applications of partial functional differential equations, Springer-Verlag,New York,1996,9.
    [60] G. Da Prato, A. Debussche, R. Temam, Stochastic Burgers equation, Nonlinear DifferentialEquations and Applications,1(1994)389-402.
    [61] H. Choi, R. Temam, P. Moin, Feedback control for unsteady flow and its application to thestochastic Burgers equation, J. Fluid Mech.,253(1993)509-543.
    [62] S.-E. A. Mohammed, Stochastic functional differential equations, Research Notes in Mathe-matics, Vol.99, Pitman, London,1984,5.
    [63]廖晓昕,稳定性的数学理论及应用,武汉:华中师范大学出版社,2002,6.
    [64] L. Arnold, Random dynamical systems, Springer Monographs in Mathematics, Berlin,Springer-Verlag,1998,3.
    [65] V. I. Utkin, Variable structure systems with sliding modes, IEEE Trans. AC,2(1977)365-371.
    [66] Y. V. Orlov, V. I. Utkin, Sliding mode control in indefinite dimensional systems, Automatica,23(1987)753-757.
    [67] V. I. Utkin, Sliding modes in control and optimization, New York, Springer Verlag,1992,8.
    [68]高为炳.变结构控制理论与设计方法,北京:科学出版社,1996,8.
    [69]高存臣,袁付顺,肖会敏.时滞变结构控制系统,北京:科学出版社,2004,3.
    [70]胡跃明,周其节,二阶分布参数系统的变结构控制,控制理论与应用,10(1993)256-262.
    [71]罗毅平,邓飞其,变时滞分布参数系统的全局指数稳定性,控制理论与应用,22(2005)562-566.
    [72]刘永清,谢胜利,滞后分布参数系统的稳定与变结构控制,广州:华南理工大学出版社,1998,5.
    [73]邢海龙,高存臣等,一类具有时滞不确定分布参数系统的滑动模控制,控制与决策,22(2007)333-336.
    [74] Q. Wang, Computation issue of pointwise controls for diffusion Hopfield neural network sys-tem, Applied Mathematics and Computation,207(2005)267-275.
    [75] S. Nakagiri, Q. Wang, Optimal control problems for distributed Hopfield-type neural net-works, Nonlinear Functional Analysis and Application,7(2002)167-186.
    [76] X. Mao, Stochastic differential equations and applications, Horwood, London,1997,5.
    [77] K. Liu, Lyapunov functionals and asymptotic stability of stochastic delay evolution equations,Stochastics and Stochastics Reports,63(1998)1-26.
    [78] K. Liu, X. Mao, Exponential stability of nonlinear stochastic evolution equations, StochasticProcesses and their Applications,78(1998)173-193.
    [79] T. Taniguchi, Almost sure exponential stability for stochastic partial functional differentialequations, Stoch. Anal. Appl.,16(1998)965-975.
    [80] T. Caraballo, K. Liu, A. Truman, Stochastic functional partial differential equations: exis-tence, uniqueness and asymptotic decay property, Proc. R. Soc. Lond. Ser. A,456(2000)1775-1802.
    [81] R. Jahanipur, Stochastic functional evolution equations with monotone nonlinearity: Exis-tence and stability of the mild solutions, J. Differential Equations,248(2010)1230-1255.
    [82] I. Lasiecka, I. Chueshov, Von Karman evolutions, Monograph series, Springer Verlag, NewYork,2010,9.
    [83] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge University Press,Cambridge,1990.
    [84] P. L. Chow, Stability of nonlinear stochastic evolution equations, Journal of MathematicalAnalysis and Application,89(1982)400-419.
    [85] A. Jentzen and P. E. Kloeden, The numerical approximation of stochastic partial differentialequations, Milan Journal of Mathematics,77(2009)205-244.
    [86] M. Kamrani, S. M. Hosseini, The role of coefficients of a general SPDE on the stability andconvergence of a finite difference method, Journal of Computational and Applied Mathemat-ics,234(2010)1426-1434.
    [87] D. J. Higham, Mean-square and asymptotic stability of the stochastic theta method, SIAM J.Numerical Analysis,38(2000)753-769.
    [88] L. O. Chua, L. Yang, Cellular neural networks: theory and applications, IEEE Trans CircuitsSystem,35(1988)1257-1290.
    [89] E. Allen, S. Novosel, Z. Zhang, Finite element and difference approximation of some linearstochastic partial differential equations, Stoch. Rep.,64(1998)117-142.
    [90] C. Roth, Difference methods for stochastic partial differential equations, Z. Angew. Math.Mech.,82(2002)821-830.
    [91] G. N. Milstein, M. V. Tretjakov, Numerical integration of stochastic differential equationswith nonglobally Lipschitz coefficients, SIAM J. Numer. Anal.,43(2005)1139-1154.
    [92] T. Caraballo, I. D. Chueshov, and P. E. Kloeden, Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM J. Math. Analysis,38(2006)1489-1507.
    [93] J. Duan, K. Lu, B. Schmalfuss, Invariant manifolds for stochastic partial differential equations,Annal of Probability,31(2003)2109-2135.
    [94] Z. Brze′zniak, Y. Li, Asymptotic compactness and absorbing sets for2D stochastic Navier-Stokes equations on some unbounded domains, Transaction of American Mathematical Soci-ety,358(2006)5587-5629.
    [95] P. W. Bates, K. Lu, B. Wang, Random attractors for stochastic reaction-diffusion equations onunbounded domains, Journal of Differential Equations,246(2009)845-869.
    [96] D. Yang, Random attractors for the stochastic Kuramoto-Shivahinsky equation, Stoch. Anal.Appl.,24(2006)1285-1303.
    [97] B. Gess, W. Liu, M. Ro¨ckner, Random Attractor a class of stochastic partial differential equa-tions driven by general additive noise, Journal of Differential Equations,251(2011)1225-1253.
    [98] F. Flandoli, B. Schmalful, Random attractors for the3D stochastic Navier-Stokes equationwith multiplicative noise, Stoch. Stoch. Rep.,59(1996)21-45.
    [99] T. Caraballo, J. A. Langa, J.C. Robinson, A stochastic pitchfork bifurcation in a reaction-diffusion equation, Proc. R. Soc. Lond. Ser. A,457(2001)2041-2061.
    [100] Z. Wang, S. Zhou, Random attractor for stochastic reaction-diffusion equation with multi-plicative noise on unbounded domains, Journal of Mathematical Analysis and Applications,384(2011)160-172.
    [101] M. Hairer, J. C. Mattingly, Ergodicity of the2D Navier-Stokes equations with degeneratestochastic forcing, Annal of Mathematics,164(2006)993-1032.
    [102] P. E. Kloeden, J. A. Langa, Flattening, squeezing and the existence of random attractors,Proc. R. Soc. A,463(2007)163-181.
    [103] P. Balasubramaniam, S. K. Ntouyas, D. Vinayagam, Existence of solutions of semilinearstochastic delay evolution inclusions in a Hilbert space, Journal of Mathematical Analysisand Applications,307(2005)238-251.
    [104] H. Crauel, F. Flandoli, Attractors for random dynamical systems, Probability Theory andRelated Fields,100(1994)365-393.
    [105] H. Crauel, A. Debussche, F. Flandoli, Random attractors, Journal of Dynamical and Differ-ential Equations,9(1997)307-341.
    [106] G. Wang, M. Zeng, B. Guo, Stochastic Burgers’ equation driven by fractional Brownianmotion, J. Mathematical Analysis and Application,371(2010)210-222.
    [107] T. Shardlow, Numerical methods for stochastic parabolic PDEs, Numerical Functional Anal-ysis and Optimization,20(1999)121-145.
    [108] C. Roth, Difference methods for stochastic partial differential equations, Z. Angew. Math.Mech.,82(2002)821-830.
    [109] D. J. Higham, X. Mao and A. Stuart, Strong convergence of Euler-type methods for nonlinearstochastic differential equations, SIAM J. Num Anal.,40(2002)1041-1063.
    [110]崔宝同,楼旭阳,具反应扩散混合时滞Cohen-Grossberg神经网络的指数耗散性.控制理论与应用,25(2008)619-622.
    [111] W. Li, W. Bian, Variable structure control indefinite dimensional system, Applied Mathemat-ics and Mechanics,16(1995)283-291.
    [112] J. Mallet-Parret, R. D. Nussbaum, Boundary layer phenomena for differential-delay equationswith state-dependent time lag I, Arch. Ration. Mech. Anal.,120(1992)99-146.
    [113] J. Mallet-Parret, R. D. Nussbaum, Boundary layer phenomena for differential-delay equationswith state-dependent time lags II, J. Reine Angew. Math.,477(1996)129-197.
    [114]王林山,可微动力系统渐近性研究及其在神经网络中的应用:[博士学位论文],成都:四川大学数学学院,2002.
    [115] X. Fan, Random attractor for a damped Sine-Gordon equation with white noise, Pacific Jour-nal of Mathematics,216(2004)63-76.
    [116] D. Xu, Z. Yang, Y. Huang, Existence–uniqueness and continuation theorems for stochasticfunctional differential equations, J. Differential Equations,245(2008)1681-1703.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700