三分量可逆Gray-Scott系统及随机格点动力系统的吸引子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸引子是一个用以描述无穷维动力系统解的长时间渐近行为的最恰当工具.三分量可逆Gray-Scott系统是很重要的一类反应扩散方程,它用以描述两个可逆化学或生化反应.本文主要研究三分量可逆Gray-Scott系统吸引子的存在性问题及带有分数Brown噪声、Levy噪声的随机格点动力系统的随机吸引子的存在性.这些问题的研究可为相关领域如化学、生化反应、生物、材料科学等提供新的视角,丰富了动力系统的研究范畴.
     全文分为三个部分:
     第一部分由前两章构成.
     第一章给出本文的研究背景、现状及本文的研究内容和意义,
     第二章介绍一些相关的准备知识.
     第二部分主要研究三分量可逆Gray-Scott系统的吸引子的存在性问题.
     第三章给出具有Dirichlet边界条件的非自治三分量可逆Gray-Scott系统的一致吸引子的存在性及无界区域上拉回吸引子的存在性.
     第四章分别建立随机三分量可逆Gray-Scott系统在有界、无界区域上随机吸引子的存在性.
     第三部分由第五章组成,分别研究了随机三分量可逆Gray-Scott格点系统及一阶随机格点动力系统在分数Brown噪声及Levy噪声扰动下随机吸引子的存在性问题.
It is well known that attractor is the appropriate tool to study the long timeasymptotic behaviors of the solutions of infinite dimensional dynamical systems.Among the reaction-diffusion systems, the three-component reversible Gray-Scottsystem is a vita model to describe the scheme of two reversible chemical orbiochemical reactions. In this doctoral dissertation, we mainly consider the existenceof global attractors for the three-component reversible Gray-Scott system and thelattice dynamical systems when perturbed by the fractional Brownian noise and Levynoise. These results not only can enrich the contents in the research of the dynamicalsystems, but also can provide new insights to the related research areas, such as,chemistry, biochemistry, biology, science of material, etc.
     The first section consists of the first two chapters. In chapter1, we firstintroduce the background and status of these aspects of research, as well as thecontents and significance of this study. Chapter2recalls some preliminary results.
     In section2, we mainly discuss the existence of global attractors for thethree-component reversible Gray-Scott system. Chapter3considers the uniformattractor for the non-autonomous three-component reversible Gray-Scott systemwith Dirichlet boundary condition on a bounded domain and the pullback attractoron unbounded domains. Chapter4obtains the existence of random attractors for thestochastic three-component reversible Gray-Scott system on bounded domain andunbounded domains, respectively.
     Section3comprises chapters5. We respectively establish the existence of globalrandom attractors of the stochastic three-component reversible Gray-Scott system,the first-order stochastic lattice dynamical system with fractional Brownian noise and Levy noise.
引文
[1] L. Arnold, Random Dynamical Systems, Springer-Verlag, New York and Berlin,1998.
    [2] I. Chueshov, Monotone Random Systems: Theory and Applications, Springer-Verlag, NewYork,2002.
    [3]郭柏灵,蒲学科,随机无穷维动力系统,北京航空航天大学出版社,2009.
    [4]黄建华,黎育红,郑言,随机动力系统引论,科学出版社,2011.
    [5] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York,1998.
    [6] V. Chepyzhov, M. Vishik, Attractors for Equations of Mathematical Physics, vol.49, AMSColloquium Publications, Providence, RI,2002.
    [7] G. Sell, Y. You, Dynamics of Evolutionary Equations, Springer, New York,2002.
    [8] R. Adams, J. Fournier, Sobolev Spaces, second ed., Elsevier Ltd.,2003.
    [9] P. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems,American MathematicalSoc.,2011.
    [10] A. Carvalho, J. Langa, J. Robinson, Attractors for infinite-dimensional nonautonomous dy-namical systems, Springer, New York,2012.
    [11] H. Kunita, Stochastic flow and stochasic differential equations, Cambridge University Press,Cambridge,1990.
    [12] A. Stuart, A. Humphries, Dynamical systems and numberical analysis, Cambridge Univer-sity Press, Cambridge,1996.
    [13] D. Applebaum, Le′vy Processes and Stochastic Calculus, Cambridge University Press, Cam-bridge, UK,2004.
    [14] K.-I. Sato, Le′vy Processes and Infinitely Divisible Distributions, vol.68of Cambridge Stud-ies in Advanced Mathematics, Cambridge University Press, Cambridge, UK,1999.
    [15] G. Samorodnitsky, M. S. Taqqu, Stable Non-Gaussian Random Processes, Chapman&Hall,New York,1994.
    [16] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ.Press, New York,1992.
    [17] B. Schmalfu, Backward cocycles and attractors of stochasitic differential equations. In Re-itmann, V., Riedrich, T., Koksch, N.(eds) International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, TU Dresden, Dresden,1992, pp.185–192.
    [18] S. Chow, Lattice Dynamical Systems, Lecture Notes in Mathematics, Volume1822,2003,1-102.
    [19] A.V. Babin, M.I. Vishik, Attractors of partial differential evolution equations in an un-bounded domain. In: New directions in differential equations and dynamical systems. Vol-ume dedicated to J.K.Hale of the occasion of his60-th Birthday. Published by the RoyalSociety of Edinburgh,116a,1991, pp.39-61.
    [20] P.W. Bates, K. Lu, B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur.Chaos11(2001)143-153.
    [21] P.W. Bates, H. Lisei, K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn.6(2006)1-21.
    [22] Z. Brzezniak, Y. Li, Asymptotic compactness and absorbing sets for2D Stochastic Navier-Stokes equations on some unbounded domains, Trans. Amer. Math. Soc.358(2006)5587-5629.
    [23] T. Caraballo, K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicativenoise, Front. Math. China3(2008)317-335.
    [24] T. Caraballo, G. ukaszewicz, J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal.64(2006)484-498.
    [25] T. Caraballo, G. Lukaszewicz, J. Real, Pullback attractors for non-autonomous2D Navier-Stokes equations in some unbounded domains. C R Acad Sci Paris I342(2006)263-268.
    [26] S. Chow, J. Paret, Pattern formation and spatial chaos in lattice dynamical systems, IEEETrans. Circuits Syst.42(1995)746-751.
    [27] S. Chow, J. Paret, W. Shen, Traveling waves in lattice dynamical systems, J. Diff. Eq.149(1998)248-291.
    [28] H. Crauel, A. Debussche, F. Flandoli, Random attractors, J. Dyn. Diff. Equat.9(1997)307-341.
    [29] H. Crauel, F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields,100(1994)365-393.
    [30] M. Garrido-Atienza, P. Kloeden, A. Neuenkirch, Discretization of stationary solutions ofstochastic systems driven by a fractional Brownian motion, Appl. Math. Optim.60(2009)151–172.
    [31] M. Garrido-Atienza, K. Lu, B. Schmalfu, Random dynamical systems for stochastic equa-tions driven by a fractional Brownian motion, Discrete Contin. Dyn. Syst.14(2010)473–493.
    [32] M. Garrido-Atienza, B. Maslowski, B. Schmalfu, Random attractors for stochastic equa-tions driven by a fractional Brownian motion, Internat. J. Bifur. Chaos Appl. Sci. Engrg.20(2010)2761–2782.
    [33] B. Maslowski, B. Schmalfu, Random dynamical systems and stationary solutions of differ-ential equations driven by the fractional Brownian motion, Stochasic Anal. Appl.22(2004)1577–1607.
    [34] X. Liu, J. Duan, J. Liu, P. Kloeden, Synchronization of systems of Marcus canonical equa-tions driven by α-stable noises, Nonlinear Anal. RWA.11(2010)3437–3445.
    [35] F. Flandoli, H. Lisei, Stationary conjugation of flows for parabolic SPDEs with multiplicativenoise and some applications, Stochast. Anal. Appl.22(2004)1385–1420.
    [36] J. Ball. Global attractors of damped semilinear wave equations, Discrete Contin. Dyn. Syst.10(2004)31-52.
    [37] I. Moise, R. Rosa, B. Wang. Attractors for noncompact non-autonomous systems via energyequations, Discrete Contin. Dyn. Syst.10(2004)473-496.
    [38] A. Rodriguez-Bernal, B. Wang. Attractors for partly dissipative reation diffusion systems inRn, J. Math. Anal. Appl.52(2000)790-803.
    [39] M. Efendiev, S. Zelik, The attractor for a nonlinear reaction-diffusion system in an un-bounded domain, Comm. Pure Appl. Math.54(6)625-688(2001).
    [40] S. Zelik, Attractors of reaction-diffusion systems in unbounded domains and their spatialcomplexity, Comm. Pure Appl. Math.56(5)584-637(2003).
    [41] P. W. Bates, K. Lu, B. Wang, Random attractors for stochastic Reaction-Diffusion equationson unbounded domains, J. Diff. Eq.246(2009)845-869.
    [42] F. Abergel, Existence and finite dimensionality of the global attractor for evolution equationson unbounded domains, J. Diff. Eq.83(1),85-108.
    [43] X. Han, W. Shen, S. Zhou, Random attractors for stochastic lattice dynamical systems inweighted spaces, J. Diff. Eq.250(2011)1235-1266.
    [44] X. Han, Random attractors for stochastic sine-Gordon lattice systems with multiplicativewhite noise, J. Math. Anal. Appl.376(2011)481-493.
    [45] X. Han, Random attractors for second order stochastic lattice dynamical systems with mul-tiplicative noise in weighted spaces, Stoch. Dyn.12(3)(2012)1-20.
    [46] J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lat-tice with white noises, Physica D233(2007)83-94.
    [47] P. Imkeller, B. Schmalfuss, The conjugacy of stochastic and random differential equationsand the existence of global attractors, J. Dyn. Diff. Equat.13(2001)215-249.
    [48] H. Mahara et al, Three-variable reversible Gray-Scott model, J. Chem. Physics121(2004)8968–8972.
    [49] Y. You, Dynamics of three-component reversible Gray-Scott model, Disc. Cont. Dyn. Sys.,Ser. B14(2010)1671-1688.
    [50] Y. You, Dynamics of two-compartment Gray-Scott equations, Nonlinear Anal.74(2011)1969-1986.
    [51] Y. You, Global attractor of Gray-Scott equations, Comm. Pure Appl. Anal.7(2008)947–970.
    [52] Y. You, Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion systems,Comm. Pure Appl. Anal.10(2011)1415-1445.
    [53] Y. You, Robustness of global attractors for reversible Gray-Scott systems, J. Dyn. Diff.Equat.24(2012)495–520.
    [54] J. Pearson, Complex patterns in a simple system, Science261(1993)189-192.
    [55] K. Lee, W. McCormick, Q. Ouyang, H. Swinney, Pattern formation by interacting chemicalfronts, Science261(1993)192-194.
    [56] K. Lee, W. McCormick, J. E. Pearson, H. Swinney, Experimental observation of self-replicating spots in areaction-diffusion system, Nature369(1994)215–218.
    [57] A. Doelman, T. Kaper, P. A. Zegeling, Pattern formation in the one-dimensional Gray–Scottmodel, Nonlinearity10(1997)523–563.
    [58] T. Kolokolnikov, J. Wei, On ring-like solutions for the Gray-Scott model: Existence, insta-bility and self-replicating rings, Euro. J. Appl. Math.16(2005)201–237.
    [59] D. Morgan, T. Kaper, Axisymmetric ring solutions of the2D Gray-Scott model and theirdestabilization into spots, Physica D192(2004)33–62.
    [60] J. Wei, M. Winter, Asymmetric spotty patterns for the Gray-Scott model in R2, Stud. Appl.Math.110(2003)63–102.
    [61] J. Wei, M. Winter, Existence and stability of multiple-spot solutions for the Gray-Scott modelin R2, Physica D176(2003)147–180.
    [62] L. Yang, A. M. Zhabotinsky, I. R. Epstein, Stable squares and other oscillatory Turing pat-terns in a reaction-diffusion model, Phys. Rev. Lett.92(2004)1–4.
    [63] Y. Lv, W. Wang, Limiting dynamics for stochastic wave equations, J. Diff. Eq.244(2008)1-23.
    [64] Y. Lv, J. Sun, Dynamical behavior for stochastic lattice systems, Chaos Solitons Fractals27(2006)1080-1090.
    [65] Y. Lv, J. Sun, Asymptotic behavior of stochastic discrete complex Ginzburg-Landau equa-tions, Physica D221(2006)157-169.
    [66] I. Moise, R. Rosa, X. Wang, Attractors for non-compact semigroups via energy equations,Nonlinearity11(1998)1369-1393.
    [67] J. Robinson, Stability of random attractors under perturbation and approximation, J. Diff.Eq.186(2002)652-669.
    [68] F. Morillas, J. Valero, Attractors for reation-diffusion equations in Rnwith continuous non-linearity, Asymptot. Anal.44(2005)111-130.
    [69] A. Debussche, On the finite dimensionality of random attractors, Stoch. Anal. and App.15(1997)473–492.
    [70] A. Debussche, Hausdorff dimension of a random invariant set, J. Math. Pures. Appl.77(1998)967–988.
    [71] B. Wang, Dynamics of systems on infinite lattices, J. Diff. Eq.221(2006)224-245.
    [72] B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl.331(2007)121-136.
    [73] B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D128(1999)41-52.
    [74] B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on un-bounded domains, J. Diff. Eq.246(6)(2009)2506-2537.
    [75] B. Wang, Random attractors for the stochastic FitzHugh-Nagumo system on unboundeddomains, Nonlinear Anal.71(2009)2811-2828.
    [76] B. Wang, X. Gao, Random attractors for wave equations on unbounded domains, DiscreteContin. Dyn. Syst.(2009)800-809.
    [77] B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on R3,Trans. Amer. Math. Soc.363(2011)3639-3663.
    [78] B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on un-bounded domains. Nonlinear Anal.70(2009)799-3815.
    [79] B. Wang, Pullback attractors for non-autonomous reaction-diffusion equations on Rn. Front.Math. China4(3)(2009)563-583.
    [80] R. Kapval, Discrete models for chemically reacting systems, J. Math. Chem.6(1991)113-163.
    [81] T. Erneus, G. Nicolis, Propagating waves in discrete bistable reaction diffusion systems,Physic D67(1993)237-244.
    [82] X. Wang, S. Li, D. Xu, Random attractors for second-order stochastic lattice dynamicalsystems, Nonlinear Anal.72(2010)483-494.
    [83] Y. Wang, Y. Liu, Z. Wang, Random attractors for partly dissipative stochastic lattice dynam-ical systems, J. Difference Equ. Appl.14(2008)799-817.
    [84] Q. Ma, S. Wang, C. Zhong, Necessary and sufficient conditions for the existence of globalattractors for semigroups and applications, Indiana Univ. Math. J.51(2002)1541-1559.
    [85] S. Lu, H. Wu, C. Zhong, Attractors for nonautonomous2D Navier-Stokes equations withnormal external forces, Discrete Contin. Dyn. Syst.13(2005)701-719.
    [86] S. Lu, Attractors for nonautonomous2D Navier-Stokes equations with less regular normalforces, J. Diff. Eqns.230(2006)196-212.
    [87] C. Zhao, S. Zhou, X. Liao, Uniform attractor for a two-dimensional nonautonomous in-compressible non-Newtonian fluid with locally uniform integrable external forces, J. Math.Phys.47(2006)052701-052713.
    [88] C. Zhao, S. Zhou, L2-compact uniform attractors for a nonautonomous incompressible non-Newtonian fluid with locally uniformly integrable external forces in distribution space. J.Math. Phys.48(2007)032702.
    [89] C. Zhao, S. Zhou, Sufficient conditions for the existence of global random attractors forstochastic lattice dynamical systems and applications, J. Math. Anal. Appl.354(2009)78-95.
    [90] S. Zhou, Attractors for second order lattice dynamical systems, J. Diff. Eq.179(2002)605-624.
    [91] S. Zhou, Attractors for first order dissipative lattice dynamical systems, Phys. D178(2003)51-61.
    [92] S. Zhou, W. Shi, Attractors and dimension of dissipative lattice systems, J. Diff. Eq.224(2006)172-204.
    [93] S. Zhou, Attractors and approximations for lattice dynamical systems. J. Diff. Eq.200(2004)342-368.
    [94] X. Zhao, S. Zhou, Kernel sections for processes and nonautonomous lattice systems, DiscreteContin. Dyn. Syst. Ser. B9(2008)763-785.
    [95] S. Zhou, Upper-semicontinuity of attractors for random lattice systems perturbed by smallwhite noises, Nonlinear Anal.75(2012)2793–2805.
    [96] S. Zhou, X. Han, Pullback exponential attractors for non-autonomous lattice systems, J. Dyn.Diff. Equat.24(2012)601–631.
    [97] S. Zhou, L. Wei, A random attractor for a stochastic second order lattice system with randomcoupled coefficients, J. Math. Anal. Appl.395(2012)42-55.
    [98] A. Gu, S. Zhou, Z. Wang, Uniform attractor of non-autonomous three-component reversibleGray-Scott system, Appl. Math. Computa.219(2013)8718–8729.
    [99] A. Gu, Pullback D-attractors of non-autonomous three-component reversible Gray-Scottsystem on unbounded domains, submitted,(2011).
    [100] A. Gu, Z. Wang, S. Zhou, Random attractors for stochastic three-component reversibleGray-Scott system on infinite lattices, Discrete Dyn. Nat. Soc.2012(2012)1-17.
    [101] A. Gu, Random attractors for stochastic three-component reversible Gray-Scott system withmultiplicative white noise, J. Appl. Math.2012(2012)1-15.
    [102] A. Gu, Random attractors of stochastic three-component reversible Gray-Scott system onunbounded domains, Abstr. Appl. Anal.2012(2012)1-22.
    [103] A. Gu, Random attractors of stochastic lattice dynamical systems driven by fractionalBrownian motions, Int. J. Bifurcat. Chaos2013(23)1-9.
    [104] A. Gu, Random attractor for stochastic lattice dynamical systems with α-stable Le′vy noises,submitted,(2012).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700