随机环境下生物资源保护及最优捕获问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十世纪以来,生物资源的持续利用问题倍受世人关注。本文用数学模型从理论上研究了生物资源的保护及最优捕获问题。考虑到不同类型的噪音干扰,本文建立了三个随机保护区模型,并研究其一系列渐近性质。本文还研究了两类具有多种噪音干扰的随机最优捕获问题。本文的研究内容包括以下几个方面:
     (1)由白噪音和有色噪音共同驱动的具有单参数干扰的随机保护区模型的动力学性质。利用随机分析技巧研究了模型的一些渐近性质,包括各种持久性与灭绝性。分析了保护区的正面效果并给出提高保护区效果的多种措施和划分保护区的方法。
     (2)由白噪音驱动的具有双参数干扰的随机保护区模型的动力学性质。这个模型考虑到了环境白噪音对生物种群生长模型中两个参数的干扰。通过研究模型的一系列渐近性质说明了种群的内禀增长率是该模型中对环境干扰反应最为灵敏的一个系数。
     (3)由白噪音和有色噪音共同驱动的具有双参数干扰的随机保护区模型的动力学性质。将(1)和(2)综合起来进行了全面的分析,得到随机环境下保护区的建立能够很好的起到保护生物种群的作用,当环境条件非常恶劣时,保护区的建立也能够减缓生物种群灭绝的速度。
     (4)随机环境下Gompertz模型的最优捕获问题。分别研究了由布朗运动驱动和由Le′vy过程驱动的随机Gompertz模型的最优捕获问题。用遍历性的方法证明了期望和平稳概率密度意义下的目标函数和最优捕获问题的等价性。本文利用遍历方法来解决随机最优捕获问题。
     (5)随机环境下Logistic模型的最优捕获问题。分别研究了由Le′vy过程驱动的以及由Le′vy过程和Markov过程共同驱动的Logistic模型的最优捕获问题。用遍历性方法证明了关于时间平均和平稳概率密度目标函数在最优捕获问题上的等价性。为随机模型的最优捕获问题提供了一种新的思路,避免了求解Fokker-Planck方程精确解的难题。
Utilization of renewable biological resources has received great attention from theentire world since twentieth century. Based on mathematical models, this paper studiesthe protection and the optimal harvesting problems of biological resources theoretical-ly. Considering diferent types of environmental noise, this paper builds three stochasticmodels with protection zone, and studies the corresponding asymptotic properties. Thispaper also studies the optimal harvesting problems for two types of models with severalkinds of noise. The content of this paper includes the following several aspects:
     (1) The dynamical properties for a stochastic protection zone model with interfer-ence on single parameter which driven by both white noise and color noise. Using s-tochastic analysis techniques, some asymptotic properties are studied, such as persistenceand extinction. We analyze the positive efects of protection zone, give several measuresto improve the efects and get a method of dividing protection zone.
     (2) The dynamical properties for a stochastic protection zone model with interfer-ence on two parameters which driven by white noise. This model considers that twoparameters in the population growth model are disturbed by white noise. Through theresearch of a series of asymptotic properties for this model, we illustrate that the intrinsicgrowth rate of biological population is the most sensitive coefcient under environmentaldisturbance.
     (3) The dynamical properties for a stochastic protection zone model with interfer-ence on two parameters which driven by both white noise and color noise. We give anoverall analysis by synthesizing both (1) and (2). Results say establishing protection zonecan protect the biological population nicely under the random environment, and it alsocan slow down the speed of extinction under terrible circumstance.
     (4) Optimal harvesting problem for Gompertz models in random environment. Westudy the optimal harvesting problems for stochastic Gompertz models driven by Brownmotion and Le′vy process respectively. The equivalency of optimal harvesting problem-s under expectation and stationary probability density meanings is obtained by ergodicmethod. This paper applies ergodic method on the optimal harvesting problem.
     (5) Optimal harvesting problem for stochastic Logistic models. The optimal harvest-ing problems for stochastic Logistic models driven by Le′vy process and driven by both Le′vy process and Markov process are studied respectively. We show the equivalency ofobjective function on optimal harvesting problem between time average and stationaryprobability density meanings by ergodic method. This provide us a new idea for stochas-tic harvesting problem which can avoid the puzzle of solving Fokker-Planck equation.
引文
[1] Bandyopadhyay M, Chattopadhyay J. Ratio-Dependent Predator–Prey Model: Ef-fect of Environmental Fluctuation and Stability[J]. Nonlinearity,2005,18(2):913–936.
    [2] May R, Oster G. Bifurcations and Dynamic Complexity in Simple EcologicalModels[J]. American Naturalist,1976,110(974):573–599.
    [3] Gard T, Kannan D. On a Stochastic Diferential Equation Modeling of Prey-Predator Evolution[J]. Journal of Applied Probability,1976,13(3):429–443.
    [4] Ramanan K, Zeitouni O. The Quasi-Stationary Distribution for Small Random Per-turbations of Certain One-Dimensional Maps[J]. Stochastic Processes and TheirApplications,1999,84(1):25–51.
    [5] Pezzey J, Roberts C, Urdal B. A Simple Bioeconomic Model of a Marine Re-serve[J]. Ecological Economics,2000,33(1):77–91.
    [6] Co te′I, Mosqueira I, Reynolds J. Efects of Marine Reserve Characteristics on theProtection of Fish Populations: A Meta-Analysis[J]. Journal of Fish Biology,2001,59:178–189.
    [7] Halpern B, Warner R. Marine Reserves have Rapid and Lasting Efects[J]. EcologyLetters,2002,5(3):361–366.
    [8] Roberts C, Andelman S, Branch G, et al. Ecological Criteria for Evaluating Candi-date Sites for Marine Reserves[J]. Ecological Applications,2003,13(1):199–214.
    [9] Norse E. Marine Reserves: The Best Option for Our Oceans.[J]. ConservationBiology,2003,1(9):495–502.
    [10] Roberts C, Hawkins J, Gell F. The Role of Marine Reserves in Achieving Sustain-able Fisheries[J]. Philosophical Transactions of the Royal Society B: BiologicalSciences,2005,360(1453):123–132.
    [11] Gerber L, Beger M, McCarthy M, et al. A Theory for Optimal Monitoring ofMarine Reserves[J]. Ecology Letters,2005,8(8):829–837.
    [12] Armstrong C. A Note on the Ecological–Economic Modelling of Marine Reservesin Fisheries[J]. Ecological Economics,2007,62(2):242–250.
    [13] Gell F, Roberts C. The Fishery Efects of Marine Reserves and Fishery Clo-sures[J/OL]. http://www.worldwildlife.org/oceans/fishery$$efects.pdf.
    [14] Fan M, Wang K. Study on Harvested Population with Difusional Migration[J].Journal of Systems Science and Complexity,2001,14(2):139–148.
    [15] Ami D, Cartigny P, Rapaport A. Can Marine Protected Areas Enhance BothEconomic and Biological Situations?[J]. Comptes Rendus Biologies,2005,328(4):357–366.
    [16] Jerry M, Rapaport A, Cartigny P. Can Protected Areas Potentially Enlarge Via-bility Domains for Harvesting Management?[J]. Nonlinear Analysis: Real WorldApplications,2010,11(2):720–734.
    [17] Gerber L, Botsford L, Hastings A, et al. Population Models for Marine ReserveDesign: A Retrospective and Prospective Synthesis[J]. Ecological Applications,2003,13(1):47–64.
    [18] Botsford L, Micheli F, Hastings A. Principles for the Design of Marine Reserves[J].Ecological Applications,2003,13(1):25–31.
    [19] Dubey B, Chandra P, Sinha P. A Model for Fishery Resource with Reserve Area[J].Nonlinear Analysis: Real World Applications,2003,4(4):625–637.
    [20] Kar T, Matsuda H. A Bioeconomic Model of a Single-Species Fishery with aMarine Reserve[J]. Journal of Environmental Management,2008,86(1):171–180.
    [21] Loisel P, Cartigny P. How to Model Marine Reserves?[J]. Nonlinear Analysis:Real World Applications,2009,10(3):1784–1796.
    [22] Little L, Smith A, McDonald A, et al. Efects of Size and Fragmentation of Ma-rine Reserves and Fisher Infringement on the Catch and Biomass of Coral Trout,Plectropomus Leopardus, on the Great Barrier Reef, Australia[J]. Fisheries Man-agement and Ecology,2005,12(3):177–188.
    [23] Claudet J, Osenberg C, Benedetti-Cecchi L, et al. Marine Reserves: Size and Agedo Matter[J]. Ecology Letters,2008,11(5):481–489.
    [24] Grafton R, Kompas T. Uncertainty and the Active Adaptive Management of MarineReserves[J]. Marine Policy,2005,29(5):471–479.
    [25] Grafton R, Kompas T, Lindenmayer D. Marine Reserves with Ecological Uncer-tainty[J]. Bulletin of Mathematical Biology,2005,67(5):957–971.
    [26] Hallam T, Clark C. Non-Autonomous Logistic Equations as Models of Popula-tions in a Deteriorating Environment[J]. Journal of Theoretical Biology,1981,93(2):303–311.
    [27] Clark C. Economically Optimal Policies for the Utilization of Biologically Renew-able Resources[J]. Mathematical Biosciences,1971,12(3):245–260.
    [28] Clark C. Mathematical Bioeconomics: The Optimal Management of Renewal Re-sources[M]. New York: Wiley,1976.
    [29] Fister R. Optimal Control of Harvesting in a Predator-Prey Parabolic System[J].Houston Journal of Mathematics,1997,23(2):341–355.
    [30] Ani ta S. Optimal Harvesting for a Nonlinear Age-Dependent Population Dynam-ics[J]. Journal of Mathematical Analysis and Applications,1998,226(1):6–22.
    [31] Fister K, Lenhart S. Optimal Control of a Competitive System with Age-Structure[J]. Journal of Mathematical Analysis and Applications,2004,291(2):526–537.
    [32] Beddington J, May R. Harvesting Natural Populations in a Randomly FluctuatingEnvironment[J]. Science,1977,197(4302):463–465.
    [33] Vergados D, Stassinopoulos G. Adaptive Duty Cycle Control for Optimal Stochas-tic Energy Harvesting[J]. Wireless Personal Communications,2013,68(1):201–212.
    [34] Sapsis T, Vakakis A, Bergman L. Efect of Stochasticity on Targeted Energy Trans-fer from a Linear Medium to a Strongly Nonlinear Attachment[J]. ProbabilisticEngineering Mechanics,2011,26(2):119–133.
    [35] Halvorsen E. Energy Harvesters Driven by Broadband Random Vibrations[J]. Jour-nal of Microelectromechanical Systems,2008,17(5):1061–1071.
    [36] Scruggs J, Cassidy I, Behrens S. Multi-Objective Optimal Control of VibratoryEnergy Harvesting Systems[J]. Journal of Intelligent Material Systems and Struc-tures,2012,23(18):2077–2093.
    [37]吕敬亮.几类随机生物种群模型性质的研究[D].哈尔滨:哈尔滨工业大学,2011.
    [38] Li W, Wang K, Su H. Optimal Harvesting Policy for Stochastic Logistic PopulationModel[J]. Applied Mathematics and Computation,2011,218(1):157–162.
    [39] Supriatna A, Possingham H. Optimal Harvesting for a Predator-Prey Metapopula-tion[J]. Bulletin of Mathematical Biology,1998,60(1):49–65.
    [40] Martin A, Ruan S. Predator-Prey Models with Delay and Prey Harvesting[J]. Jour-nal of Mathematical Biology,2001,43(3):247–267.
    [41] Nie L, Teng Z, Hu L, et al. The Dynamics of a Lotka–Volterra Predator–PreyModel with State Dependent Impulsive Harvest for Predator[J]. BioSystems,2009,98(2):67–72.
    [42] Li W, Wang K. Optimal Harvesting Policy for General Stochastic Logistic Pop-ulation Model[J]. Journal of Mathematical Analysis and Applications,2010,368(2):420–428.
    [43] Fujiwara T, Kunita H. Stochastic Diferential Equations of Jump Type and Le′vyProcesses in Difeomorphisms Group[J]. Kyoto Journal of Mathematics,1985,25(1):71–106.
    [44] Applebaum D, Siakalli M. Asymptotic Stability of Stochastic Diferential Equa-tions Driven by Le′vy Noise[J]. Journal of Applied Probability,2009,46(4):1116–1129.
    [45] Kunita H. Ito’s Stochastic Calculus: Its Surprising Power for Applications[J]. S-tochastic Processes and Their Applications,2010,120(5):622–652.
    [46] Schertzera D, Larcheve que M, Duan J, et al. Fractional Fokker–Planck Equationfor Nonlinear Stochastic Diferential Equations Driven by Non-Gaussian Le′vy Sta-ble Noises[J]. Journal of Mathematical Physics,2001,42(1):200–212.
    [47] Bao J, Mao X, Yin G, et al. Competitive Lotka–Volterra Population Dynamic-s with Jumps[J]. Nonlinear Analysis: Theory, Methods&Applications,2011,74(17):6601–6616.
    [48] Bao J, Yuan C. Stochastic Population Dynamics Driven by Le′vy noise[J]. Journalof Mathematical Analysis and Applications,2012,391(2):363–375.
    [49] Higham D. An Algorithmic Introduction to Numerical Simulation of StochasticDiferential Equations[J]. SIAM Review,2001,43(3):525–546.
    [50]林元烈.应用随机过程[M].北京:清华大学出版社,2002.
    [51]刘次华.随机过程引论[M].北京:高等教育出版社,2004.
    [52] Doob J. Stochastic Processes[M]. New York: Wiley,1953.
    [53] Mao X, Yuan C. Stochastic Diferential Equations with Markovian Switching[M].London: Imperial College Press,2006.
    [54]弗里德曼,吴让泉.随机微分方程及其应用[M].北京:科学出版社,1983.
    [55] Mao X. Numerical Solutions of Stochastic Diferential Delay Equations under theGeneralized Khasminskii-Type Conditions[J]. Applied Mathematics and Compu-tation,2011,217(12):5512–5524.
    [56] El Asri B. Stochastic Optimal Multi-Modes Switching with a Viscosity SolutionApproach[J]. Stochastic Processes and Their Applications,2013,123(2):579–602.
    [57] Han Z, Zhao J. Stochastic SIRS Model under Regime Switching[J]. NonlinearAnalysis: Real World Applications,2012,14(1):352–364.
    [58]施仁杰.马尔科夫链基础及其应用[M].西安:西安电子科技大学出版社,1992.
    [59] Meyn S, Tweedie R, Glynn P. Markov Chains and Stochastic Stability[M]. Cam-bridge: Cambridge University Press,2009.
    [60] Mariton M. Jump Linear Systems in Automatic Control[M]. New York: MarcelDekker,1990.
    [61] Yang Z, Mao X, Yuan C. Comparison Theorem of One-Dimensional StochasticHybrid Delay Systems[J]. Systems&Control Letters,2008,57(1):56–63.
    [62] ksendal B, Sulem A. Applied Stochastic Control of Jump Difusions[M].2.Berlin: Springer,2007.
    [63] Peszat S, Zabczyk J. Stochastic Partial Diferential Equations with Le′vy Noise:An Evolution Equation Approach[M]. Cambridge: Cambridge University Press,2007.
    [64] ksendal B, Proske F. White Noise of Poisson Random Measures[J]. PotentialAnalysis,2004,21(4):375–403.
    [65] Di Nunno G, ksendal B, Proske F. White Noise Analysis for Le′vy processes[J].Journal of Functional Analysis,2004,206(1):109–148.
    [66] Lescot P, Ro¨ckner M. Perturbations of Generalized Mehler Semigroups and Ap-plications to Stochastic Heat Equations with Le′vy Noise and Singular Drift[J].Potential Analysis,2004,20(4):317–344.
    [67] Taniguchi T. The Existence and Asymptotic Behavior of Energy Solutions to S-tochastic2D Sunctional Navier–Stokes Equations Driven by Le′vy Processes[J].Journal of Mathematical Analysis and Applications,2012,385(2):634–654.
    [68] Tang M, Zhang Q. Optimal Variational Principle for Backward Stochastic ControlSystems Associated with Le′vy Processes[J]. Science China Mathematics,2012,55(4):745–761.
    [69] Ren Y, El Otmani M. Doubly Reflected BSDEs Driven by a Le′vy Process[J].Nonlinear Analysis: Real World Applications,2012,13(3):1252–1267.
    [70] Barndorf-Nielsen O, Mikosch T, Resnick S. Le′vy Processes: Theory and Appli-cations[M]. Berlin: Springer,2001.
    [71] Mao X. Stochastic Diferential Equations and Applications[M].2. Chichester:Horwood Publishing,2007.
    [72] ksendal B. Stochastic Diferential Equations: An Introduction with Application-s[M].6. Berlin: Springer,2003.
    [73] Situ R. Theory of Stochastic Diferential Equations with Jumps and Application-s[M]. Berlin: Springer,2005.
    [74]黄志远.随机分析学基础[M].北京:科学出版社,2001.
    [75] Deng F, Luo Q, Mao X. Stochastic Stabilization of Hybrid Diferential Equation-s[J]. Automatica,2012,48(9):2321–2328.
    [76] Xi F, Yin G. Almost Sure Stability and Instability for Switching-Jump-DifusionSystems with State-Dependent Switching[J]. Journal of Mathematical Analysisand Applications,2012,400(2):460–474.
    [77] Ji C, Jiang D. Dynamics of an HIV-1Infection Model with Cell-Mediated ImmuneResponse and Stochastic Perturbation[J]. International Journal of Biomathematics,2012,5(5):103–127.
    [78] Jiang D, Shi N. A Note on Non-Autonomous Logistic Equation with Ran-dom Perturbation[J]. Journal of Mathematical Analysis and Applications,2005,303(1):164–172.
    [79] Mao X. Stationary Distribution of Stochastic Population Systems[J]. Systems&Control Letters,2011,60(6):398–405.
    [80] Hu L, Mao X, Shen Y. Stability and Boundedness of Nonlinear Hybrid StochasticDiferential Delay Equations[J]. Systems&Control Letters,2013,62(2):178–187.
    [81]刘蒙.随机种群模型若干性质的研究[D].哈尔滨:哈尔滨工业大学,2012.
    [82]李文学.某些随机延迟微分方程与随机Volterra积分方程的稳定性[D].哈尔滨:哈尔滨工业大学,2009.
    [83] Gray A, Greenhalgh D, Mao X, et al. The SIS Epidemic Model with Marko-vian Switching[J]. Journal of Mathematical Analysis and Applications,2012,394(2):496–516.
    [84] Li X, Mao X. A Note on Almost Sure Asymptotic Stability of Neutral StochasticDelay Diferential Equations with Markovian Switching[J]. Automatica,2012,48(9):2329–2334.
    [85] Khasminskii R. Stability of Regime-Switching Stochastic Diferential Equation-s[J]. Problems of Information Transmission,2012,48(3):259–270.
    [86] Anderson W. Continuous-Time Markov Chains: An Applications-Oriented Ap-proach[M]. Berlin: Springer,1991.
    [87] Narita K. Explosion Time of Second-Order Ito Processes[J]. Journal of Mathemat-ical Analysis and Applications,1984,104(2):418–427.
    [88] Narita K. No Explosion Criteria for Stochastic Diferential Equations[J]. Journalof the Mathematical Society of Japan,1982,34(2):191–203.
    [89] Mao X, Marion G, Renshaw E. Environmental Brownian Noise Suppresses Explo-sions in Populations Dynamics[J]. Stochastic Processes and Their Applications,2002,97(1):95–110.
    [90] Ikeda N, Watanabe S. A Comparison Theorem for Solutions of Stochastic Dif-ferential Equations and Its Applications[J]. Osaka Journal of Mathematics,1977,14(3):619–633.
    [91] Liu M, Wang K. Dynamics of a Leslie-Gower Holling-type II Predator-Prey Sys-tem with Le′vy Jumps[J]. Nonlinear Analysis: Theory, Methods&Applications,2013,85:204–213.
    [92] Xing Z, Peng J. Boundedness, Persistence and Extinction of a Stochastic Non-Autonomous Logistic System with Time Delays[J]. Applied Mathematical Mod-elling,2012,36(8):3379–3386.
    [93] Li X, Jiang D, Mao X. Population Dynamical Behavior of Lotka–Volterra Systemunder Regime Switching[J]. Journal of Computational and Applied Mathematics,2009,232(2):427–448.
    [94] Zhu C, Yin G. On Competitive Lotka–Volterra Model in Random Environments[J].Journal of Mathematical Analysis and Applications,2009,357(1):154–170.
    [95] Halpern B. The Impact of Marine Reserves: Do Reserves Work and does ReserveSize Matter?[J]. Ecological Applications,2003,13(1):S117–S137.
    [96] Huang L. Stochastic Stabilization and Destabilization of Nonlinear DiferentialEquations[J]. Systems&Control Letters,2013,62(2):163–169.
    [97] Wu F, Yin G. Environmental Noise Impact on Regularity and Extinction of Popu-lation Systems with Infinite Delay[J]. Journal of Mathematical Analysis and Ap-plications,2012,396(2):772–785.
    [98] Xu R, Ma Z. The Efect of Stage-Structure on the Permanence of a Predator–Prey System with Time Delay[J]. Applied Mathematics and Computation,2007,189(2):1164–1177.
    [99] Xu R, Ma Z. The Efect of Dispersal on the Permanence of a Predator–Prey Sys-tem with Time Delay[J]. Nonlinear Analysis: Real World Applications,2008,9(2):354–369.
    [100] Hu G, Liu M, Wang K. The Asymptotic Behaviours of an Epidemic Model withTwo Correlated Stochastic Perturbations[J]. Applied Mathematics and Computa-tion,2012,218(21):10520–10532.
    [101] Goldie J, Coldman A. Drug Resistance in Cancer: Mechanisms and Models[M].Cambridge: Cambridge University Press,1998.
    [102] Kozusko F, BajzerZˇ. Combining Gompertzian Growth and Cell Population Dy-namics[J]. Mathematical Biosciences,2003,185(2):153–167.
    [103] Gutierrez-Jaimez R, Roma′n P, Romero D, et al. A New Gompertz-Type DifusionProcess with Application to Random Growth[J]. Mathematical Biosciences,2007,208(1):147–165.
    [104] Cooper R. Growth in the Ostrich[J]. Animal Science Journal,2005,76(1):1–4.
    [105] Alvarez L, Shepp L. Optimal Harvesting of Stochastically Fluctuating Population-s[J]. Journal of Mathematical Biology,1998,37(2):155–177.
    [106] Reed W. A Stochastic Model for the Economic Management of a Renewable Ani-mal Resource[J]. Mathematical Biosciences,1975,22:313–337.
    [107] Reed W. Optimal Escapement Levels in Stochastic and Deterministic Harvest-ing Models[J]. Journal of Environmental Economics and Management,1979,6(4):350–363.
    [108] Gleit A. Optimal Harvesting in Continuous Time with Stochastic Growth[J]. Math-ematical Biosciences,1978,41(1):111–123.
    [109] Ludwig D. Optimal Harvesting of a Randomly Fluctuating Resource. I: Applica-tion of Perturbation Methods[J]. SIAM Journal on Applied Mathematics,1979,37(1):166–184.
    [110] Sancho N, Mitchell C. Economic Optimization in Controlled Fisheries[J]. Mathe-matical Biosciences,1975,27(1):1–7.
    [111] Sancho N, Mitchell C. Optimal Efort of Canada’s Ofshore Ground Fisheries-AnApplication of Economic Optimization Techniques[J]. Mathematical Biosciences,1977,34:157–166.
    [112] Andersen P, Sutinen J. Stochastic Bioeconomics: A Review of Basic Methods andResults[J]. Marine Resource Economics,1984,1(2):117–136.
    [113] Dennis B, Patil G. Applications in Ecology: In Lognormal Distributions: Theoryand Applications[M]. New York: Marcel Dekker,1988.
    [114] Zhu C, Yin G. Asymptotic Properties of Hybrid Difusion Systems[J]. SIAMJournal on Control and Optimization,2007,46(4):1155–1179.
    [115] Strang G. Linear Algebra and Its Applications[M].3. Watkins: Harcourt Brace,1988.
    [116] Khasminskii R. Stochastic Stability of Diferential Equations[M]. Berlin: Springer,1980.
    [117] Arnold L. Random Dynamical Systems[M]. Berlin: Springer,1995.
    [118] Chiarella C, He X, Wang D, et al. The Stochastic Bifurcation Behaviour of Specu-lative Financial Markets[J]. Physica A: Statistical Mechanics and Its Applications,2008,387(15):3837–3846.
    [119] Klebaner F. Introduction to Stochastic Calculus with Applications[M]. London:Imperial College Press,2005.
    [120] Crauel H, Gundlach M. Stochastic Dynamics[M]. Berlin: Springer,1999.
    [121] Anishchenko V, Astakhov V, Neiman A, et al. Nonlinear Dynamics of Chaotic andStochastic Systems: Tutorial and Modern Developments[M]. Berlin: Springer,2007.
    [122] Applebaum D. Le′vy Processes and Stochastic Calculus[M]. Cambridge: Cam-bridge University Press,2004.
    [123] Yamada T, Ogura Y. On the Strong Comparison Theorems for Solutions of S-tochastic Diferential Equations[J]. Probability Theory and Related Fields,1981,56(1):3–19.
    [124] Gard T. Aggregation in Stochastic Ecosystem Models[J]. Ecological Modelling,1988,44(1):153–164.
    [125] Kifer Y. Principal Eigenvalues, Topological Pressure, and Stochastic Stability ofEquilibrium States[J]. Israel Journal of Mathematics,1990,70(1):1–47.
    [126]王克.随机生物数学模型[M].北京:科学出版社,2010.
    [127] Motoo M, Watanabe S. On a Class of Additive Functionals of Markov Processes[J].Kyoto Journal of Mathematics,1965,4(3):429–469.
    [128] Liptser R. A Strong Law of Large Numbers for Local Martingales[J]. Stochas-tics: An International Journal of Probability and Stochastic Processes,1980,3(1-4):217–228.
    [129] Prato D, Zabczyk J. Ergodicity for Infinite Dimensional Systems[M]. Cambridge:Cambridge University Press,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700