含双荧光报告基因的转基因载体的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿色荧光蛋白与红色荧光蛋白自发现以来,就因易于检测、荧光稳定、无毒害、种属通用性、易于构建载体、可进行活细胞定位定时观察等特性而得到广泛应用。其应用领域涉及生命科学的各个领域,包括研究基因表达的调控元件、增强子捕获、蛋白定位、研究基因表达的时空特性和空间定位、发育分子机理、筛选药物、临床检验、转基因动物和植物的筛选标记以及对病毒颗粒定位、蛋白质相互作用等方面。因此我们构建了含双荧光报告基因的不同转基因载体分别用于不同目的的转基因实验。
     首先,为了探索团头鲂β-actin启动子在家蚕BmN细胞和家蚕体内的活性,将转基因载体pigA3GFPAβdsRed和辅助质粒混合,通过脂质体介导转染BmN细胞和利用精子介导法导入家蚕受精卵,48 h后,可以观察到同时发绿色荧光和红色荧光的家蚕细胞,7天后,可观察到蚕卵具有绿色荧光和红色荧光,表明来自团头鲂的β-actin启动子在家蚕BmN细胞中具有活性,随着稳定转化细胞的传代,绿色荧光稳定存在,而红色荧光会逐渐减弱直至检测不到,暗示β-actin启动子不能在家蚕中用于驱动外源基因稳定表达。
     然后,为探索来源于昆虫的piggyBac(PB)转座子在鲤科鱼转基因中的适用性,在PB转座子基础上构建了两个转基因载体:pigA3GFP-CMVDsRed-IEneo与pigA3GFPAβDsRed,每个转基因载体分别与辅助质粒pigA3、pigCMV组合对草鱼肾脏细胞CIK进行共转染,都得到了同时具有绿色荧光和红色荧光的CIK细胞,说明启动子PAβ、PA3、Pcmv在CIK细胞具有启动活性。根据转化细胞可稳定传代和PCR验证结果,认证外源基因插入到细胞基因组,证明PB转座子在CIK具有转座活性。将辅助质粒pigA3分别与转基因载体pigA3GFP、pigA3GFPAβDsRed以脂质体-精子介导法共同导入金鱼卵细胞,根据绿色荧光和红色荧光的共表达筛选转基因金鱼,再经PCR、Southern杂交鉴定,表明得到了转基因金鱼,说明PB转座子在金鱼体内具有转座活性。
     此外,为了探索家蚕核型多角体病毒的多角体蛋白包埋特性,构建了含有绿色荧光蛋白基因(gfp)和红色荧光蛋白基因(dsRed)的表达载体pIZT-DsRed。用该载体转染家蚕卵巢细胞系BmN,并以吉欧霉素(zeocin)筛选得到稳定表达绿色荧光蛋白和红色荧光蛋白的细胞系,表明表达载体pIZT-DsRed可以作为转基因载体在BmN细胞使用;进一步以野生型家蚕核型多角体病毒(BmNPV)感染该细胞系,荧光观察发现部分多角体可以发出绿色荧光和红色荧光,Western blot实验结果证实多角体中含有GFP蛋白,显示多角体病毒可以将病毒粒子以外的其他成分包埋进多角体,表明多角体蛋白的包埋机制中存在非特异性识别包埋现象。
Since being discovered, green fluorescent protein and red fluorescent protein were used widely in many biological research fields because of their easy detection, fluorescence stablity, non-toxic, species universal, easy construction, real-time location in living cells and so on. Their applications involved in every field of life science, including the research of regulatory elements, enhaner capture, protein localization of gene expression, expression phase, distribution, molecular mechanisms of axiology, screening drugs, clinical testing, labeling of the transgenic animals and plants, localization of virosome, interaction of proteins and so on. Therefore we constructed different transgenic vectors with dual fluorescent reporter genes for different purposes.
     First, in order to explore the activy of the bluntnose black bream (Megalobrama amblycephala)β-actin promoter (PAβ)in silkworm (Bombyx mori) BmN cells and in vivo, we transferred the transgenic vector pigA3GFPAβDsRed and helper plamid into the BmN cells by the liposome-mediated gene transfer method and into the silkworm eggs by sperm-mediated gene transfer method respectively. 48 hours later, both green fluorescence and red fluorescence were observed in the BmN cells and 7 days later the two kinds of fluorescence were detected in the fertilized eggs of the silkworm. These results suggested that PAβof bluntnose black bream could work in BmN cells. With the steady passage of the transformed cells, the green fluorescence existed stably but the red fluorescence reduced gradually, suggested that the activity of PAβin the BmN cells was weakened because of its susceptible to some cytoline in the BmN cells.
     Second, to explore the applicability of the transposon piggyBac derived insects, two transgenic vectors pigA3GFPAβDsRed and pigA3GFP-CMVDsRed-IEneo based on transposon piggyBac were constructed. Both of the green fluorescence and the red fluorescence were detected in the transfected Ctenpharyngoden Idellus kidney (CIK) cells with the transgenic vectors and the helper vector pigA3 or pigCMV in which the transpoase gene was driven by cytomegalovirus (CMV) promoter (PCMV). Moreover the transgenic vector pigA3GFP and pigA3GFPAβDsRed were introduced into eggs of the goldfish (Carassius auratus) by sperm-mediated gene transfer. Finally the transgenic pigA3GFP and pigA3GFPAβDsRed goldfishes were obtained and verified by PCR and Southern blotting, among which the one 2-month-old transgenic pigA3GFPAβDsRed goldfish was dissected and both the green fluorescence and the red fluorescence could be detected in several organs, therefore we suggested that the transposon piggyBac was a potentially powerful tool for producing transgenic fish.
     Third, to explore the profile of immobilization of Bombyx mori nuclear polyhydrosis virus (BmNPV) polyhedron, we firstly constructed both gfp and DsRed contained vector pIZT-DsRed which was used to transfect BmN cells to generate a stable pIZT-DsRed-transformed BmN cell line by screened with zeocin. Then the wild type BmNPV was employed to infect the cell line most of which expressed gfp and DsRed simultaneously so as to observe newly formed polyhedron. The results of emitting green fluorescence and red fluorescence from isolated BmN polyhedron revealed that foreign proteins could be embedded into the polyhedron on a nonspecific recognition way.
引文
[1]张敏,任慧霞.报告基因的应用研究进展.食品与药学.2007,9(09A):45-47
    [2] Naylor LH. Reporter gene technology: the future books bright[J]. Biochem Pharmacol, 1999, 58(5):749-757
    [3] Greer LF, Szalay AA. Imaging of light emission from the expression ofLuciferases in living cells and organisms: a review[J]. Luminescence, 2002,17(1):43-74
    [4] Lorenz WW, Cormier MJ, Okane DJ, etal. Expression of the renila reniformis luciferase gene in mammalian cells[J]. J Biolumin Chemilumin, 1996, 11(1):31-37
    [5] Nguyen VT, Morange M, Bensaude O. Firefly luciferase luminescence assays using scintillation counters for quantitation in transfected mammalian cells[J]. Anal Biochem, 1988, 171(2):404-408
    [6] Davenport D, Nicol JAC. Luminescence in hydromedusae[C ]. Proc.R.Soc. London, 1995, 144:399-411
    [7] Cormier MJ, Hori YD, Karkhanis JE, etal. Evidence for similar biochemical requirements for bioluminescence among the coelenterates[J]. J. Cell. Physiol, 1973, 81:291-298
    [8] Chalfie M, Tu Y, Euskirchen G, etal. Green fluorescent protein as a marker for gene expression[J]. Science, 1994, 263:802-805
    [9] Chalfie M, Tu Y, Euskirchen G, etal. Green fluorescence protein as a marker for gene expression[J]. Science, 1994, 263(5148):802-805
    [10] Youvan DC, Michel-Beyerle ME. Structure and fluorescence mechanism of GFP[J]. N at Biotechnol, 1996, 14(10):1219-1220
    [11] Tsien RY. The green fluorescent protain[J]. Annu. Rev. Biochem, 1998, 67:509-544
    [12] Galipeau J, Li H, Paquin A, etal. Vesicular stamatitis delivery in experimental brain cancer[J]. Cancer Res, 1999, 59(12):2384
    [13]李夏,陈素文,喻达辉.绿色荧光蛋白及其在转基因动物研究中的应用.南方水产,2005,10:78-80
    [14] Aoki U, Takahashi Y, Katherine SK, etal. FEBS Letters, 1996,384:193-197
    [15]周旭,黄伟,何俊峰,等.载报告基因壳聚糖纳米粒制剂体外转染活性考察[J].解放军药学学报,2003,19(4):241-245
    [16]吴世康.绿色荧光蛋白质GFP的发现、表达和发展影像科学与光变化,2009,27(1):69-78
    [17] Yarbrough D, Wachter RM, Kallio K, etal. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0 A resolution. Proc Natl Acad SciUSA, 2001, 98(2):462-467
    [18] Terskikh A, Fradkov A, Ermakova G, etal.“Fluorescent timer”protein that changes color with time[J]. Science, 2000, 290(5496):1585-1588
    [19] Seitz G, Warmarm SW. Visualization of xenotransplanted human rhabdomyosarcorna after transfection with red fluorescent protein[J]. Pediatr Surg. 2006, 41(8):1369-1376
    [20] Yang M, Jiang p, Yamamoto N, etal Real-time whole-body imaging of an orthotopic metastatic prostate cancer model expressing red fluorescent protein[J]. Prostate, 2005, 62(4):374-379
    [21] Seitz G, Warmann S W, Fuchs J, etal. Imaging of cell trafficking and metastases of paediatric rhabdomyosarcoma[J]. Cell Prolif. 2008, 41(2):365-374
    [22] Winnard PT, Jr K, luth J B, etal. Noninvasive optical tracking of red fluorescent protein-expressing cancer cells in a model of metastatic breast cancer[J]. Neoplasia(New York), 2006,8(10): 796-806
    [23] Forner J, Binder S, The red fluorescent protein eqFP61 l:application in subcellular localization studies in higher plants[J] BMC Plant Biol, 2007,7:28
    [24] Matsuura T, Takeuchi M, Ichihara A, etal. Live imaging of yeast Golgi cistemal maturation[J]. Nature, 2006, 441(7096):1007-10l0
    [25] Campbell EM, Perez O, Melar M, etal. Labeling HIV-l virions with two fluorescent proteins allows identiflcation of virions that have productively entered the target cel1[J]. Virology, 2007, 360(2):286-293
    [26] Larnpe M, Briggs JA, Endress U, etal. Double-labelled HIV-l particles for study of virus-cell interaction[J]. Virology, 2007, 360(1):92-104
    [27] Le LP, Le H N, Dmitriev IP, etal. Dynamic monitoring of oncolytic adenovirus in vivo by genetic capsid labeling[J]. Natl Cancer Inst, 2006, 98(3):203-214
    [28] Klingen Y, Conzelmann KK, Finke S. Double-labeled rabies virus:live tracking of enveloped virus transport[J]. Virol, 2008, 82(1): 237-245
    [29] Shaner NC, Campbell RE, Steinbach PA, etal. Improved monomeric red,orange and yellow fluorescent proteins derived from Discosoma red fluorescent protein[J]. Nat Biotechnol. 2004, 22(12):1567-1572
    [30] Russell JH, Keiler KC. Peptide signals encode protein localization[J]. Bacteriol, 2007,189(21):7581-7585
    [31] Fujioka Y, Utsumi M, Ohba Y, etal. Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in Arabidopsis[J]. Plant Cell Physiol, 2007, 48(9):1243-l245
    [32] Jach G, Pesch M, Richter K, eta1. An improved mRFP1 adds red to bimolecular fluorescence complementation[J]. Nat Methods, 2006, 3(8):597-600
    [33] Fan JY, Cui ZQ, Wei HP, etal. Split mcherry as a new red bimolecular fluorescence complementation system for visualizing protein-protein interactions in living cells[J]. Biochem Biophys Res Commun, 2008, 367(1):47-53
    [34] Livet NO, Konzen KA, Field SF, etal. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system[J]. Nature, 2007, 450(7166):56-62
    [35] Cole MJ, Pirity M, Hadjantonakis AK. Shedding light on bioscience[J]. EMBO Rep, 2003,4(9):838
    [1]章继华,何永进.转基因鱼研究现状及商品化趋势[J].2004,10:4-9
    [2] Zhu Z, Li G, He L, etal. Novel gene transfer into the fertilized eggs of gold fish (Carassius auratus)[J]. Angew. Ichthyol, 1985, 1:31-34
    [3]李辉,刘冬梅,沈效宙等.鲤鱼金属硫蛋白基因启动区功能的研究[J].动物学报.1997,43(2):197-203
    [4]纪伟,张培军.转全鱼溶菌酶基因大菱鲆的研究[J].海洋科学.2004,28(5):8-14
    [5]陈浩,杨健,王跃祥等.卵黄蛋白原1(vtg1)启动子调控绿色荧光蛋白的表达的转基因斑马鱼的构建.生物化学与生物物理进展.2006,33(10):965-970
    [6] Liu Z. Isolation and characterization ofβ-actin gene of carp[J]. DNA Sequence, 1990, 1:125-136
    [7] Tong SK, Kuo MW, Chung BC, etal. A cyp19a1b-gfp transgenic zebrafish line that expresses GFP in radial glial cells[J]. Genesis, 2009, 47(2):67-73
    [8]中国农业科学院文献信息中心.转基因动物育种.转基因动物通讯.1995,2(9):2
    [9] Gong Z, Hew C L. Transgenic fish in aquaculture and developmental biology. Current topics in developmental biology[J]. Academic Press, 1995, 30:177-214
    [10] Devlin RH, Yesaki TY, Donaldson EM, etal. Production of germline transgenic pacific salmonids with dramatically increased growth performance[J]. Can JFish Aquaculture, 1995, 52:1376-1384
    [11] Hochachka PW,Mommsen TP.鱼类的生物化学与分子生物学:第2卷[M].昌永华,余来宁译.北京:中国农业出版社,2003:175-178
    [12] Zhu Z. Growth hormone gene and the transgenic fish[M]. Beijing: China Science and Technology Press, 1992:106-116
    [13]杨学明,张立,蒋和生.转基因鱼的研究及其发展前景.广西科学.2006,13(1):76-80
    [14] MeClintock, B. The origin and behavior of mutable loci in maize[J]. Proe Natl Acad Sci USA, 1950, 36:344-355
    [15] Lander ES, Linton LM, Birren B, etal. Initial sequenceing and analysis of the human genome[J]. Nature, 2001.409:860-921
    [16] Waterston RH, Chinwalla AT, Cook LL, etal. Initial sequencing and comparative analysis of the mouse genome[J]. Nature, 2002, 420:520-562
    [17] Ding S, Wu X, Li G, etal. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice[J]. Cell 2005, 122(3):473-483
    [18] Hutchison CA, Peterson SN, Gill SR, etal. Global trans post-mutagenesis and animal mycoplasmagenome[J]. Science, 1999. 28:2165-2169
    [19] Vilen H,Aalto JM,Kassinen A, etal. A direct transposon insertion tool for modification and functional analysis of viral genomes[J]. Journal of Virology, 2003, 77:123-134
    [20] Kumar A, Seringhaus M, Biery MC, etal. Large-scale mutagenesis of the yeast genome using a Tn7-derived multipurpose transposon[J]. Genome Research, 2004, 14:1975-1986
    [21] Ross Macdonald P, Coelho PS, Roemer U, etal. Large-scale analysis of the yeast genome by transposon tagging and gene disruption[J]. Nature,1999, 402:413-418
    [22] Zwaal RR, Broeks A, Plasterk RH. Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank[J]. Proceedings of the national national academy of sciences of the united states of America, 1993, 90:7431-7435
    [23] Cooley L., Kelley R, Spradling A. Insertional mutagenesis of the Drosophila genome with single P elements[J]. Science 1988, 239:1121-1128
    [24] Plasterk RH,Izsvak Z, and Ivices Z. Resident aliens: the Tcl/mariner superfamily of transposable elements[J]. Trends In Genetics: TIG. 1999, 15:326-332
    [25] Ivics Z, Hackett PB, Izsvak Z, etal. Molecular reconstruction of sleeping beauty, a Tcl-like transposon from fish, and its transposition in human cells[J]. Cell, 1997, 91:501-510
    [26] Ivics Z, Kaufman CD, Zayed H, etal. The Sleeping Beauty transposable element: evolution, regulation and genetic applications[J]. Current issues in molecular biology, 2004, 6(1):43-55.
    [27] Izsvak Z, Ivics Z, Plasterk RH: Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates[J]. Journal of molecular biology, 2000, 302(1):93-102.
    [28] Carlson CM, Dupuy AJ, Fritz S, etal. Transposon mutagenesis of the mouse germline[J]. Genetics, 2003, 165(1):243-256.
    [29] Horie K, Yusa K, Yae K, etal. Characterization of Sleeping Beauty transposition and its application to genetic screening in mice[J]. Molecular and cellular biology, 2003, 23(24):9189-9207.
    [30] Wilson MH, Coated CJ, Georage AL, etal. PiggyBac transposon-mediated Gen transfer in human Cells. Molecalar therapy[J]. The journal of the American Society of Gene Therapy, 2007, 15:139-145
    [31] Yant SR, Chiu W, Ivics Z, etal. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon syatem[J]. Nat Genet, 2000, 25:35-41
    [32] Liu L, Sanz S, Heggestad AD, etal. Endothelial targeting of the sleeping Beauty transposon within lung[J]. Mol Ther, 2004, 10:97-105
    [33] Luo G, Izsvak Z, Bradley A, etal. Chromsomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells[J]. Proc Natl Acad Sci USA, 1998, 95:10769-10773
    [34] Koga A., Suzuki, M., Inagaki, H., etal. Transposable element in fish[J]. Nature, 1996, 383:30-30
    [35] Kawakami K, Shima A, Kawakami N. Identification of a functionaltransposase of the Tol2 element, an Ac-loke element from the Japanese medake fish, and its transpositon in the zebrafish germ lineage[J]. Proceedings Of the National Academy Of Sciences Of the United States Of America, 2000,97:11403-11408
    [36] Koga A, Hori H. Detection of de novo insertion of the medaka fish transposable element Tol2[J]. Genetics, 2000, 156:1243-1247
    [37] Kawakami K, Imanaka K, Itoh M, etal. Excision of the Tol2 transposable element of the medaka fish Oryzias latipes in Xenopus laevis and Xenopus tropicalis[J] Gene, 2004, 338:93-98
    [38] Kawakami K, Noda T. Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells[J]. Genetics, 2004, 166:895-899
    [39] Lavitrano M, Camaioni A, Fazio VM, etal. Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice[J]. Cell, 1989, 57(5):717-723
    [40]卢圣栋.现代分子生物学实验技术.北京:高等教育出版社,1991:518-541
    [41] Powers DA. Gene transfer by mixturing DNA and fish sperm[J]. Mol Mar Biol Biotch, 1992 (1):301-308.
    [42] Heather AH, Stephanie LP, Muir WM. High efficiency production of germ-line transgenic Japanese medaka (Oryzias latipes) by electroporation with direct current-shifted radio frequency pulses[J]. Trans Res, 2003, 12: 403-412.
    [43] Zelenin. High efficiency gene transfer in fish by gene gun[J]. FEBS Letters, 1991, 287:118-120
    [44] Smith K, Spadafora C. Sperm-mediated gene transfer: applications and implications[J]. Bioessays, 2005, 27(5):551-562
    [45] Lauria A, Gandolfi F. Recent advances in sperm cell mediated gene transfer. Mol[J]. Reprod, Dev. 2005, 36:255-257
    [46] Tseng FS, Tsai HJ, Liao IC, etal. Introducing foreign DNA into tiger shrimp(Penaeus monodon) by electroporation[J]. Theriogenology, 2000, 54(9): 1421-1432
    [47] Chen HL, Yang HS, Huang R, etal. Transfer of a foreign gene to Japaneseabalone (Haliotis diversicolor supertexta) by direct testis-injection[J]. Aquaculture, 2006, 253(1-4):249-258
    [48] Labitrano M, Camaioni A, Fazio V, etal. Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice [J]. Cell, 1989, 57:717-723
    [49]常洪,余其兴,周荣家等.精子介导的报告基因在转基因泥鳅胚胎中的表达[J].武汉大学学报.1999,45(4):473-476
    [50]李国华,崔宗斌,朱作言等.鱼类精子携带的外源基因导入[J].水生生物学报,1996,20(3):242-247
    [51]喻丹,张培军.精子载体法转GFP基因文昌鱼活体胚胎的获得[J].科学通报,2005,50(4):402-404
    [52] Spadafora C. Bio Essays, 1998, 20:955-964
    [53] Lavitrano M. Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice[J]. Cell, 1989, 57:717-723
    [54] Fang Y, Huang CC, Kain SR, Li X. Use of coexpression enhanced green fluorescent protein as a maker for identifying transfected cells[J]. Method enzymol, 1999, 302:207-212.
    [55] Hedrick PW. Invasion of transgenes from salmon or other genetically modified organisms into natural populations[J]. Canadian J of Fishe and Aqua Sci, 2001, 58(5):841-844
    [56] Hwang GL, Razak SA, etal. Copy number related transgene expression and mosaic somatic expression in hemizygous and homozygous transgenic tilapia (Oreochromis niloticus)[J]. Transgenic Res, 2000,9(6):417-427
    [1] Hink WF. Established insect cell line from the cabbage looper, Trichoplusia ni[J]. Nature, London, 1970, 226:466–467
    [2] Lynn DE, Hink WF. Infection of synchronized TN-368 cell cultures with alfalfa looper nuclear polyhedrosis virus[J]. Journal of Invertebrate Pathology, 1978, 32(1):1-5
    [3] Fraser MJ, Smith GE, Summers MD, etal. Acquisition of Host Cell DNA sequence by Baculoviruses: Relationship Between Host DNA Insertions and FP Mutants of Autographa californica and Galleria mellonella Nuclear Polyhedrosis[J]. Virol, 1983, 47:287-300
    [4] Cary L, Goebel BG, Wang HG, etal. Transposon mutagenesis of baculoviruses:Analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses[J]. Virology, 1989, 172:156-169
    [5] Elick TA, Bauser CA, Freser MJ, etal. PCR analysis of insertion site specificity, transcription, and structural uniformity of the Lepidopteran transposase element IFP2 in the TN-368 cell genome[J]. Genetica, 1996b, 97:127-139
    [6] Fraser MJ, Cary L, Boonvisudhi K, etal. Assay for movement of Lepidopteran transposon IFP2 in insects cells using a baculovirus genome as as a target DNA[J]. Virology, 1995, 211:397-407
    [7] Sheng ding, xiaohui wu, tian xu, etal., Efficient transposition of the piggyBac (PB)transposon in mammalian cells and mice[J]. Cell, 2005,122:473-483
    [8] Elick TA, Lobo N, Frase MJ, etal. Analysis of the cis-acting DNA element required for piggyBac transposable element excision[J]. Mol Gen genet, 1997,255:605-610
    [9] Robertson HM. Evolution of DNA transposons in eukaryotes[J]. Mobile DNA, 2002, 11:1093-1110
    [10] Handler AM, McCombs SD, Fraser MJ, etal. The lepidopteran transposon vector, piggyBac, mediated germ-line transformation in the Mediterranean fruit fly[J]. Proc Natl Acad Sci USA, 1998,95:7520-7525
    [11] Handler AM, McComb SD. The piggyBac transposon mediates germ0line transformation in the Oriental fruit fly and closely related elements exist in its genome[J]. Insect Mol Biol, 2000, 9:605-612
    [12] Royer C, Jalabert A, Chavaancy G, etal. Biosynthesis and cocoon-export of a recombinant globular protein in transgenic sikworms[J]. Transgenic Res, 2005, 14:463-472
    [13] Tamura Toshiki, Thibert Chantal, Royer Corinne, etal. Germline transformation of the silkworm Bombyx mori L. using a piggyback transposon-derived vector[J]. Nature Biotechnology, 2000, (18): 81- 84
    [14] Isobe R, Kojima K, Bando H, etal. Use of RNAi technology to confer enhanced resistance to BmNPV on transgenic silkworms[J]. Arch Virol, 2004, 149(10): 1931-1940
    [15] Carlson CM, Largaespada DA. Insertional mutagenesis in mice:new perspectives and tools[J]. Nature Review Genetics, 2005, 568-580
    [16] Thibault ST, Singer MA, Miyazaki WY. A complementary transposon tool kit for Drosophila melanogaster using p and piggyBac[J]. Nature Genetics, 2004, 36:283-287
    [17] Lobo NF, Fraser TS, Adams JA, etal. Interplasmid transposition demonstrates piggyBac mobility in vertibrates species[J]. Genetica, 2006, 128:347-357
    [1]吕鸿声.昆虫病毒分子生物学[M].中国农业科技出版社.1998
    [2] Kovacs GR, Choi J, Guarino LA, etal. Functional dissection of the Autographa californica nuclear polyhedrosis virus immediate-early 1 transcriptional regulatory protein[J]. J Virol, 1992, 66(12):7429-7437
    [3] Huybrechts R, Guarino L, Brussel MV, etal. Nucleotide sequence of a transactivating Bombyx mori nuclear polyhedrosis virus immediate early gene[J]. Biochimica et Biophysica-Gene Structure and Expression, 1992, 1129(3):328-330
    [4] Russell RL, Rohrmann GF. A 25-kDa protein is associated with the envelopes of occluded baculovirus virions[J]. Virology, 1993,195: 532-540
    [5] Hong T, Braunagel SC, Summers MD. Transcription, translation, and cellularlocalization of PDV-E66: a structural protein of the PDV envelope of autographa californica nuclear polyhedrosis Virus[J]. Virology, 1994, 204(1):210-222
    [6]季平,查新民,沈卫德,等.异源多角体蛋白对家蚕核型多角体病毒粒子的包装[J].微生物学报,2002,42(1):50-55
    [7] Wood HA. Protease degradation of autographa californica nuclear polyhedrosis virus protains[J]. Virology. 1980, 103(2):392-399
    [8]吕鸿声.昆虫病毒与昆虫病毒病.北京:科学出版社[M],1982
    [9] Coulibaly F, Chiu E, Gutmann S, etal. The atom structure of baculovirus polyhedra reveals the independent emergence of infectious crystals in DNA and RNA viruss[J]. PNAS, 2009, 106(52):22205-22210
    [10] Coulibaly F, Chiu E, Ikeda K, etal. The molecular organization of cypovirus polyhedra[J]. Nature, 2007, 446:97-101
    [11] Ijiri H, Coulibaly F, Mori H, etal. Structure-based targeting of bioactive proteins into cypovirus polyhedra and application to immobilized cytokines for mammalian cell culture[J]. Biomaterial, 2009, 30:4297-4308
    [1] Grace, T. D. C.Establishment of line of cell from the silkworm Bombyx mori. Nature, 1967, 216:613
    [2] Ikonomou L, Schneider YJ, Agathos SN. Insect cell culture for industrial production of recombinant proteins. Appl Microbiol Biotechnol, 2003, 62(1):1-20
    [3]赵越,李曦,贡成良等.转基因家蚕丝腺组织和转化家蚕培养细胞表达.中国科学C辑.2009,39(7):677-684
    [4]李曦,赵越,贡成良等.稳定转化家蚕BmN细胞表达人粒细胞-巨噬细胞集落刺激因子[J].蚕业科学.2009,35(2):302-307
    [5] Wolfgang W, Quitschket, Ze-Yu Lin, etal. Theβ-actin Promoter[J]. J Biol Chem, 1989, 264(10):9539-9546
    [6] Liu Z J, Boaz M, Anthony J, etal. Functional Analysis of Elements Affecting Expression of theβ-actin Gene of Carp[J]. Mol Cell Biol, 1990, 10(7):3432-3440
    [7] Liliana D Z, Anne S T, Bruce M P. A 40-Base-pair sequence in the 3' end of theβ-actin gene regulatesβ-actin mRNA transcription during myogenesis[J]. Proc Natl Acad Sci USA, 1998, 85:1389-1393
    [8]周阳.用piggyBac进行泥鳅转基因的初步研究[D].[硕士学位论文],苏州:苏州大学,2007
    [9]周亚竞,张志芳,何家禄.家蚕悬浮培养细胞系的建立及悬浮培养[J].蚕业科学,2000,26(1):34-37
    [10] J萨姆布鲁克,DW拉塞尔.分子克隆实验指南(第三版)[M].黄培堂,等译.北京:科学出版社,2003.1276-1282
    [11]曹广力,薛仁宇,何泽,等.基于piggyBac转座子转hGM-CSF基因家蚕的研究[J].蚕业科学,2006,32(3):324-327
    [12] Pourcel C, Tiollais P, Farza H. Transcription of S gene in transgenic mice is associated with hypomethylation at specific site and with Dnase I Sensitivity[J]. J Virl, 1990, 64:931-935
    [1] Grabher C, Wittbrodt J: Meganuclease and transposon mediated transgenesis in medaka. Genome biology, 2007, 8 Suppl 1:S10
    [2]章继华,何永进.转基因鱼研究现状及商品化趋势.2004.10:4-9
    [3] Lin S. Transgenic zebrafish. Methods in molecular biology (Clifton, NJ), 2000, 136:375-383
    [4] Kurauchi K, Hirata T, Kinoshita M: Characteristics of ChgH-GFP transgenic medaka lines, an in vivo estrogenic compound detection system. Marine pollution bulletin, 2008, 57(6-12):441-444
    [5] Koster RW, Fraser SE: FGF signaling mediates regeneration of the differentiating cerebellum through repatterning of the anterior hindbrain and reinitiation of neuronal migration. J Neurosci, 2006, 26(27):7293-7304
    [6] Elo B, Villano CM, Govorko D, White LA: Larval zebrafish as a model for glucose metabolism: expression of phosphoenolpyruvate carboxykinase as a marker for exposure to anti-diabetic compounds. Journal of molecular endocrinology, 2007,38(4):433-440
    [7] Paquet D, Bhat R, Sydow A, Mandelkow EM, Berg S, Hellberg S, Falting J, Distel M, Koster RW, Schmid B et al: A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. The Journal of clinical investigation, 2009, 119(5):1382-1395
    [8] Cha YR, Weinstein BM: Visualization and experimental analysis of blood vessel formation using transgenic zebrafish. Birth Defects Res C Embryo Today, 2007, 81(4):286-296
    [9] Ivics Z, Kaufman CD, Zayed H, Miskey C, Walisko O, Izsvak Z: The Sleeping Beauty transposable element: evolution, regulation and genetic applications. Current issues in molecular biology, 2004, 6(1):43-55
    [10] Plasterk RH, Izsvak Z, Ivices Z. Resident aliens: the Tcl/mariner superfamily of transposable elements.Trends In Genetics: TIG, 1999, 15, 326-332
    [11] Ivics Z, Hackett PB, Izsvak Z, etal. Molecular reeonstruction of sleeping beauty, a Tcl-like transposon from fish, and its transposition in human cells.Cell, 1997, 91:501-510
    [12] Davidson AE, Balciunas D, Mohn D, etal. Ekker SC: Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Developmental biology, 2003, 263(2):191-202
    [13] Grabher C, Henrich T, Sasado T, etal. Transposon-mediated enhancer trapping in medaka. Gene, 2003, 322:57-66
    [14] Dupuy AJ, Akagi K, Largaespada DA, etal. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature, 2005, 436(7048):221-226
    [15] Collier LS, Carlson CM, Ravimohan S, etal. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature, 2005, 436(7048):272-276
    [16] Koga, A., Suzuki, M., Inagaki, H., etal. Transposable element in fish. Nature, 1996, 383:30-30
    [17] Parinov S, Kondrichin I, Korzh V, etal. Tol2 transposon-mediated enhancertrap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn, 2004, 231(2):449-459
    [18] Kawakami, K., Shima, A., Kawakami, N. etal. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medake fish, and its transposition in the zebrafish germ lineage. PNAS, 2000, 97(21):11403-11408
    [19] Mitra R, Fain-Thornton J, Craig NL. piggyBac can bypass DNA synthesis during cut and paste transposition. The EMBO journal, 2008, 27(7):1097-1109
    [20] Balu B, Shoue DA, Fraser MJ, etal. High-efficiency transformation of Plasmodium falciparum by the lepidopteran transposable element piggyBac. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(45):16391-16396
    [21] Grossman GL, Rafferty CS, Clayton JR, etal. Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect molecular biology, 2001, 10(6):597-604
    [22] Handler AM, Harrell RA. Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect molecular biology, 1999, 8(4):449-457
    [23] Tamura T, Thibert C, Royer C, etal. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nature biotechnology, 2000, 18(1):81-84
    [24] Lobo NF, Fraser TS, Adams JA, etal. Interplasmid transposition demonstrates piggyBac mobility in vertebrate species. Genetica, 2006, 128(1-3):347-357
    [25] Hikosaka A, Kobayashi T, Saito Y, etal. Evolution of the Xenopus piggyBac transposon family TxpB: domesticated and untamed strategies of transposon subfamilies. Molecular biology and evolution, 2007, 24(12):2648-2656
    [26] Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T: Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell, 2005, 122(3):473-483
    [27] Fraser MJ, Ciszczon T, Elick T, etal. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect molecular biology, 1996,5(2):141-151
    [28] Maragathavally KJ, Kaminski JM, Coates CJ. Chimeric Mos1 and piggyBac transposases result in site-directed integration. Faseb J, 2006, 20(11):1880-1882
    [29] Ding S, Wu X, Li G, etal. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell, 2005, 122(3):473-483
    [30] Wilson MH, Coates CJ, George AL. PiggyBac transposon-mediated gene transfer in human cells. Molecular therapy, 2007,15:139-145
    [31] Sarkar A, Sim C, Hong YS, etal. Molecular evolutionary analysis of the widespread piggyBac transposon family and related“domesticated”sequence. Molecular Genetics and Genomes, 2003, 270(2):173-180
    [32]赵浩斌,朱作言.脂质体介导的鲫CAB细胞转化及转化细胞的核移植.水产学报.2001,25(5):402-407
    [33]王崇龙.RNAi技术抑制家蚕杆状病毒研究.硕士论文,2006
    [34]周文林.家蚕丝腺生物反应器表达hgm-csf转基因载体的构建及其应用研究.博士论文,2007
    [35]周文林.家蚕丝腺生物反应器表达hgm-csf转基因载体的构建及其应用研究.博士论文,2007
    [36]李国华,崔宗斌,朱作言等.鱼类精子携带的外源基因导入[J].水生生物学报,1996,20(3):242-247
    [37]李辉,刘冬梅,沈效宙等.鲤鱼金属硫蛋白基因启动区功能的研究.动物学报.1997,43(2):197-203
    [38]赵晓祥,李晶.美洲鲽抗冻蛋白基因的亚克隆及构建转基因鱼的表达载体.生物技术.1995,5(4):34-36
    [39]易梅生,李振东,洪云汉,等.青鳉干细胞及其应用.中国科学.2010,40(2):115-123
    [40]纪伟,张培军.转全鱼溶菌酶基因大菱鲆的研究.海洋科学.2004,28(5):8-14
    [41] Liu Z. Isolation and characterization ofβ-actin gene of carp[J]. DNA Sequence, 1990, 1:125-136
    [42] Maragathavally KJ, Kaminski JM, Coates CJ. Chimeric Mos1 and piggyBac transposases result in site-directed integration. Faseb J, 2006, 20(11):1880-1882.
    [43] Cary LC, Goebel M, Corsaro BG, etal. Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology, 1989, 172(1):156-169
    [44] Fraser MJ, Ciszczon T, Elick T, etal. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect molecular biology, 1996, 5(2):141-151
    [45] Spadafora C. Bio Essays, 1998, 20:955-964
    [1]吕鸿声.昆虫病毒分子生物学[M].北京:中国农业科技出版社,1998:284-289
    [2] Smith G E, Summers M D, Fraser M J. Production of human beta interferon in insect cells infected with a baculovirus expression vector[J]. Mol Cell Biol, 1983, 3(12): 2156-2165
    [3] Mori H, Ito R, Nakazawa H, etal. Expression of Bombyx mori cytoplasmic polyhedrosis virus polyhedrin in insect cells by using a baclovirus expression vector, and its assembly into polyhera[J]. J Gen Virol, 1993, 74(1):99-102
    [4] Chen L, Shen W D, Wu Y, etal. The transgenic BmN cells with polyhedron gene: a potential way to improve the recombinant baculovirus infection per os to insect larvae[J]. Appl biochem biotechnol, 2008, 158 (2): 277-284
    [5]季平,查新民,沈卫德,等.异源多角体蛋白对家蚕核型多角体病毒粒子的包装[J].微生物学报,2002,42(1):50-55
    [6]曹翠平,郭爱琴,吴小锋等.利用BmNPV多角体包埋外源蛋白的观察[J].蚕业科学,2009,35(4):790-795
    [7]李曦,赵越,贡成良,等.稳定转化家蚕BmN细胞表达人粒细胞-巨噬细胞集落刺激因子[J].蚕业科学,2009,35(2):302-307
    [8]周阳.用piggyBac进行泥鳅转基因的初步研究[D].[硕士学位论文],苏州:苏州大学,2007
    [9]吕鸿声.昆虫病毒分子生物学[M].北京:中国农业科技出版社.1998:254-256
    [10] Ljiri H, Coulibaly F, Nishimura G, etal. Structure-based targeting of bioactive proteins into cypovirus polyhedra and application to immobilized cytokines for mammalian cell culture[J]. Biomaterials, 2009, 30(26):4297-4308
    [11] Coulibaly F, Chiu E, Gutmann S, etal. The atomic structure of baculovirus polyhedra reveals the independent emergence of infectious crystals in DNA and RNA viruses [J]. PNAS, 2009, 106(52):22205-22210
    [12]刘惠敏,毕庶春,李广泽等.核型多角体病毒感染柞蚕幼虫细胞的电子显微镜观察[J].蚕业科学,1980,6(2):86-95
    [13] Ikeda K, Nakazawa H, Mori H, etal. Immobilization of diverse foreign proteins in viral polyhedra and potential application for protein microarrays[J]. Proteomics, 2006, 6(1): 54-66
    [14]杨华元,张明刚.靶向药物转运系统[J].中日友好医院学报,2001,15(5):292-296

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700