Li-Fe复合氧化物负极材料制备与工业化应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速发展的便携消费电子、电动汽车和智能电网储能电池市场加速了对高性能锂离子电池的需求,特别是高能量密度、高功率密度、低成本和长循环寿命的锂离子电池。开发新型锂离子电池正负极材料成为解决这些问题的主要方向之一。诸多科学家在寻找新型负极材料上做了许多努力。铁基氧化物由于比容量高、原材料丰富和成本低廉,成为其中一种重要的具有潜在应用价值的新型负极材料,受到诸多科学家的青睐。本论文内容涉及自催化反向原子转移自由基聚合制备Li-Fe复合氧化物负极材料、Li-Fe复合氧化物负极材料商业化应用开发包括性能优化和工艺优化、硫化铜(CuS)负极材料固液法制备与表征等。
     在论文第一章绪论中,作者简要地回顾了电池的发展历史,介绍了锂离子电池的原理与生产工艺,重点介绍了负极材料特别是过渡金属氧化物的研究现状,最后简要地提出了本论文的研究目标和方法。
     在第二章中,扼要地介绍本论文中主要用到的实验仪器和药品,详细介绍了实验中使用到的测试扣式电池的制备过程,以及主要的电化学和结构测试手段。
     在第三章中,利用自催化反向原子转移自由基聚合的方法制备出Li-Fe复合氧化物。在本课题组已经开发的丙烯酸热聚合和辐照凝胶聚合的方法以及反向原子转移自由基聚合基础上探索出自催化反向原子转移自由基聚合法制备Li-Fe复合氧化物。与热聚合和辐照凝胶聚合相比较,该合成方法不需要引发的热源和辐射源,能耗低,工艺简单、成本低。与反向原子转移自由基聚合相比较,不需要引入有毒的引发剂和催化剂,合成过程绿色。该方法为工业界大规模制备纳米Li-Fe复合氧化物提供了一种可能的途径,较其他凝胶聚合法具有很好的普适性。
     针对Li-Fe复合氧化物首次库伦效率低、能量效率低的问题以及工业生产中负极采用用水性胶黏剂工艺的实际情况,在第四章里采用将Li-Fe复合氧化物与石墨混合形成混合电极的方法来提高电极的首次库伦效率,并对电极配方进行了优化。经过优化,电极的首次库伦效率可达82.0%。同时还开发了Li-Fe复合氧化物与石墨混合电极的水性胶黏剂工艺,同时对电极配方进行了进一步优化,使用水性胶黏工艺的混合电极首次库伦效率可达到87.7%。
     在第五章中,我们采用固液法合成了六角花状结构的CuS,并对CuS的电化学性能进行了表征与分析。
     在最后,对本论文的创新和不足作了简要总结,并对今后可能的研究方向提出了一些建议。
The rapid development of portable consumer electronics, electric vehicles and smart grid energy storage devices for solar cells and wind energy accelerates the demand of high-performance lithium ion batteries, especially for high power density, high capacity density, low cost and long cycle life. Many studies have been performed to identify alternative materials for anode. A variety of transition metal oxides have been employed for this purpose. Materials based on iron oxide have been considered as potential substitute anode materials due to their high storage capacities, their low cost, environmental friendliness and the abundance of their raw materials. It includes the synthesis of Li-Fe composite oxide anode materials using a so-called self-catalytic reverse atom transfer radical polymerization approach in this Master thesis. And the improvement and optimization of anode electrode to meet the comecial application which includes optimizating peformance and crafts. Finally, we apply a solid-liquid reaction method to prepared copper sulfide (CuS).
     In Chapter 1, we introduce the history and status of lithium-ion batteries, the working principle and manufacturing procedure, anode materials especially transition metal oxides, the methodology and objectives of this thesis.
     In Chapter 2, we list the experimental chemicals and equipments used in the thesis. And we present the process of making a 3023 type coin cell in detail. The electrochemical and structural analyses methods are also described.
     In Chapter 3, we explore a new gel synthesis method named“self-catalytic reverse atom transfer radical polymerization”method to prepare Li-Fe composite oxide anode materials powders. This method is based on the "Radiated Polymer Gel”method and thermal acrylic acid polymerization process in our group and the reverse atom transfer radical polymerization (RATRP). In comparison with "Radiated Polymer Gel”method and thermal acrylic acid polymerization process, our method has some advantages including: no need of thermal or radioactive source; low energy consumption and easily controllable. While compared with the usual reverse atom transfer radical polymerization (RATRP), there is no need of poisonous initiator and catalyst in this method which is therefore a really green synthesis process. It has the potential to be used to synthesize nano-sized Li-Fe composite oxide in massive production.
     To address the issues of low initial coulombic efficiency and low energy efficiency of Li-Fe composite oxide, in Chapter 4, we mixed the Li-Fe composite oxide and graphite as a mixed anode to enhance the initial coulombic efficiency. In the same time, we also optimized the composition of the mixed anode laminate. The initial coulombic efficiency can be increased to 82.0% after optimization. Besides this, we developed the aqueous binder process of making the mixed Li-Fe composite oxide and graphite anode electrode laminate and optimized the composition. After optimization, the initial coulombic efficiency can reach 87.7%.
     In Chapter 5, we used a solid-liquid reaction method to prepare hexangular flower type copper sulfide (CuS). We also tested the electrochemical properties and conducted structural analyses of this copper sulfide.
     At last, in Chapter 6, the author listed the achievements and the deficiency in this thesis. And some prospects and suggestions in the future research directions are presented there.
引文
[1]王佩春,2008.纳米Fe2O3基新型负极材料的制备及表征[M]:[硕士].合肥:中国科学技术大学,1..
    [2]汪继强,化学与物理电源—信息化武器装备的动力之源国防工业出版社(2008)
    [3]韩若冰等,电池行业专题报告—技术篇,国泰君安证券研究所(2009)
    [4]丁宁,2009.锂离子电池相关材料的研究[D]:[博士].合肥:中国科学技术大学,5
    [5]三洋能源公司:www.sanyo.com
    [6] A123系统公司:http://www.a123systems.com/a123/applications/plug-in-hybrid
    [7] B.A. Boukamp, R.A. Huggins, J. Elctrochem. Soc. 128 (1981) 725.
    [8] J. Yang, J.O. Besenhard, Solid State Ionics 90 (1996) 281.
    [9] M. Winter, J.O. Besenhard, P. Novak, Adv. Mater. 10 (1998) 725.
    [10] S.H. Ng, D. Wexler, K. Konstantinov, Z.P. Guo, H.K. Liu, Angew. Chem. Int. Ed. 45 (2006) 6869.
    [11] Z.J. Luo, X.L. Liu, H.Y. Mao, C.F. Yao, Z.Y. Deng, J. Power Sources 189 (2009) 16.
    [12] C.K. Chan, G. Liu, K.Mcilwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nature Nano Tech. 3 (2008) 31.
    [13] L.F. Cui, R. Ruffo, C.K. Chan, H.L. Peng, Y. Cui, Nano Lett. 9 (2009) 491.
    [14] N. Dimov, S. Kugino, Electrochim. Acta 48 (2003) 1579.
    [15] M. Rosso, C. Brissot, A. Teyssot, L. Sannier, J.M. Tarascon, R. Bouchetc, S. Lascaud, Electrochim. Acta 51 (2006) 5334.
    [16] H. Li, P. Balaya, J. Maier, J. Electrochem. Soc. 151 (2004) A1878.
    [17] Y.M. Kang, J.H. Kim, H.S. Kim, M.S. Park, J.Y. Lee, H.K. Liu, S.X. Dou, Electrochim. Acta 50 (2005) 3667.
    [18] T. Nagura, K. Tazawa, Prog. Batteries Sol. Cells 9 (1990) 20.
    [19] E. Antolini, Solid State Ionics 170 (2004) 159.
    [20] S.H. Yang, L. Croguennec, et al. Nature Mater. 2 (2003) 464.
    [21] X.Q. Yang, J. Mcbreen, Electrochem. Commun. 2 (2000) 100.
    [22] J.M. Paulsen, J.R. Mueller-Neuhaus, J. Electrochem. Soc. 147 (2000) 508.
    [23] J.M. Paulsen, J.R. Dahn, Solid State Ionics 126 (1999) 3.
    [24] S.W. Song, K.S. Han, Solid State Ionics 135 (2000) 277.
    [25] A. Burukhin, O. Brylev, Solid State Ionics 151 (2002) 259.
    [26] S. Venkatraman, V. Subramanian, et al. Electrochem. Commun. 2 (2000) 18.
    [27] J. Cho, G. Kim, Electrochem. Solid State Lett. 2 (1999) 25.
    [28] S. Gopukumar, Y. Jeong, Solid State Ionics 159 (2003) 223.
    [29] Y.P. Fu, C.H. Lin, Solid State Ionics 166 (2004) 137.
    [30] G.G. Amatucci, C.N. Schmutz, et al. J. Power Sources 69 (1997) 11.
    [31] X. Wu, S.B. Kim, J. Power Sources 109 (2002) 53.
    [32] J.H. Kim, S.T. Myung, et al. Chem. Mater. 16 (2004) 906.
    [33] H.Y. Xu, S. Xie, N. Ding, et al. Electrochim. Acta 51 (2006) 4352.
    [34] M. Kunduraci, Chem. Mater. 18 (2006) 3585.
    [35] M. Kunduraci, G.G. Amatucci, J. Power Sources 165 (2007) 359.
    [36 ]J. Molenda, J. Marzec, K. Swierczek, et a1. Solid State Ionics 71 (2004) 215.
    [37] T. Ohzuku, M. Iwanaga, J. Power Sources 81-82 (1999) 90.
    [39] F. Bonino, S. Panero, D. Satolli, et a1. J. Power Sources 97-98 (2001) 389.
    [40] G.Q. Liu, Y.J. Wang, et a1. Electrochim. Acta 50 (2005) 1965.
    [41] H.S. Fang, L.P. Li, J. Power Sources 167 (2007) 223.
    [42]T. Ohzuku, Y. Iwakoshi, J. Electrochem. Soc.140 (1993) 2490.
    [43] X.Y. Hao, G.S. Gai, Y.F. Yang, Rare. Metal. Mat. Eng. 34 (2005) 167.
    [44] D. Aurbach, M.D. Levi, J. Electrochem. Soc.145 (1998) 3024.
    [45] P. Poizot, S. Laruelle, J. M. Tarascon, et al. Nature 407 (2000) 496.
    [46] P. Poizot, J.M. Tarascon, et al. J. Electrochem. Soc. 149 (2002) A1212.
    [47] D. Larcherz, J.M. Tarascon, et al. J. Electrochem. Soc. 149 (2002) A234.
    [48] T. Thomas, J. Electrochem. Soc. 149 (2002) A69.
    [49] M.S Erin, H.K. Jung, et al. Chem. Mater. 146 (2006) 482.
    [50] K. Kataoka, Y. Takahashi, N. Kijima, J. Phys. Chem. Solids 69 (2008) 1454.
    [51] Y.K. Sun, D.J. Jung, Y.S. Lee, et al. J. Power Sources 125 (2004) 242.
    [52]S. Grugeon, S. Laruelle, J.M. Tarascon, et al. Solid State Sciences 5 (2003) 895.
    [53] S. Grugeon, J.M. Tarascon, et al. J. Electrochem. Soc. 148 (2001) A285.
    [54] V.G.. Kumar, J.S. Gnanaraj, G. Salitra, et al. J. Solid State Electrochem. 8 (2004) 957.
    [55] P. Kubiak, M. Womes, et al. J. Power Sources 119-121 (2003) 626.
    [56] K.N. Jung, S.I. Pyun, S.W. Kim, J. Power Sources 119-121 (2003) 637.
    [57] S.I. Pyun, S.W. Kim, H.C. Shin, J. Power Sources 81-82 (1999) 248.
    [58] T. Ohzuku, K. Tatsumi, et al. J. Electrochem. Soc. 147 (2000) 3592.
    [59] P. Martin, M.L. Lopez, et al. Solid State Sci. 6 (2004) 325.
    [60] S.H. Huang, Z.Y. Wen, X.J. Zhu, et al. J. Electrochem. Soc. 152 (2005) 186.
    [61] S.H. Huang, Z.Y. Wen, X.J. Zhu, et al. Electrochem. Commun. 6 (2004) 1093.
    [62] R.V. Moshtev, B. Puresheva, J. Power Sources 56 (1995) 137.
    [63] K. Tanaka, M. Ata, H. Kimura, Bull. Chem. Soc. Jpn. 67 (1994) 2430.
    [64] N. Yoshimoto, M. Morita, J. Power Sources 146 (2005) 195.
    [65] N. Takami, A. Satoh, T. Ohsali, et al. J. Electrochem. Soc. 145 (1998) 478.
    [66] Y. Ein-eli, V.R. Koch, J. Electrochem. Soc. 144 (1997) 2968.
    [67] Y. Idota, Y. Miyaki, et al., Can. Pat. Appl. 2 (1994) 134.
    [68] T. Ohzuku, A. Ueda, Solid State Ionics 69 (1994) 201.
    [69] X.M.Wang, E. Yasukawa, J. Electrochem. Soc. 148 (2001) A1058.
    [70] X.M. Wang, C. Yamada, H. Naito, G. Segami, K. Kibe, J. Electrochem. Soc. 153 (2006) A135.
    [71] K. Xu, M.S. Ding, S. Zhang, J.L. Allen, T.R. Jow, J. Electrochem. Soc. 149 (2002) A622.
    [72] Y.E. Hyung, D.R. Vissers, K. Amine, J. Power Sources 119/121 (2003) 383.
    [73] S. Zhang, T.R. Jow, J. Power Sources 113 (2003) 166.
    [74] E.G. Shim, T.H. Nam, J.G. Kim, S.I. Moon, J. Power Sources 175 (2008) 533.
    [75] L. E. Ouatania, R. Dedryvère, J.-B. Ledeuil, P. Biensan, J. Desbrières, D. Gonbeau, J. Power Sources 189 (2009) 72.
    [76] J.T. Lee, Y.J. Chu, X.W. Peng, F.M. Wang, C.R. Yang, C.C. Li, J. Power Sources 173 (2007) 985.
    [77] A. Guerfi, M. Kaneko, M. Mori, K. Zaghib, J. Power Sources 163 (2007) 1047.
    [78] M.S. Ding, T.R. Jow, J. Electrochem. Soc.149 (2002) A1489.
    [79] N. Ding, J. Xu, Y.X. Yao, I. Lieberwirth, C.H. Chen, J. Power Sources 192 (2009) 644.
    [80] Novoselov KS, Geim AK, Jiang D, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science 2004, 306: 666-9.
    [81] Chew SY, Ng SH, Wang JZ, Krumeich F, Chou SL, et al. Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon 2009, 47:2976-83.
    [82] Yoo E, Kim J, Hosono E, Kudo T, Honma I. Large reversible Lithiumstorage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8: 2277–82.
    [83] Stankovich S, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature, 2006, 442: 282-6.
    [84] Niyogi S, Bekyarova E, McWilliams JL, Hamon MA, Haddon RC. Solution properties of graphite and graphene. J. Am. Chem. Soc. 2006, 128: 7720-1.
    [85] Chen H, Muller MB, Wallace GG, Li D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 2008, 20: 3557-61.
    [86] Liu N, Luo F, Wu H, Liu Y, Chen J. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 2008, 18: 1518-25.
    [87] Wang J S,Matyjaszewski K, J. Am. Chem. Soc.,1995,117(20):5614-5615.
    [88] Wang J S,Matyjaszewski K,Macromolecules,1995,28:7901-7910.
    [1] Y.Z. Piao, Hyun Sik Kim, Yung-Eun Sung, Taeghwan Hyeon, Chem. Commun., 46 (2010) 118.
    [2] W.J. Weydanz, M. Wohlfahrt-Mehrens, R.A. Huggins, J. Power Souces 81-82 (1999) 237.
    [3] B.A. Boukamp, G.C. Lesh, R.A. Huggins, J. Elctrochem. Soc. 128 (1981) 725.
    [4] J. Yang, M. Winter, J.O. Besenhard, Solid State Ionics 90 (1996) 281.
    [5] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Adv. Mater. 10 (1998) 725.
    [6] S.H. Ng, J.Z. Wang, D. Wexler, K. Konstantinov, Z.P. Guo, H.K. Liu, Angew. Chem. Int. Ed. 45 (2006) 6869.
    [7] Z.J. Luo, D.D. Fan, X.L. Liu, H.Y. Mao, C.F. Yao, Z.Y. Deng, J. Power Sources 189 (2009) 16.
    [8] C.K. Chan, H.L. Peng, G. Liu, K.Mcilwrath, X.F. Zhang, R.A. Huggins, Y. Cui,Nature Nano Tech. 3 (2008) 31.
    [9] L.F. Cui, R. Ruffo, C.K. Chan, H.L. Peng, Y. Cui, Nano Lett. 9 (2009) 491.
    [10] N. Dimov, S. Kugino, M. Yoshio, Electrochim. Acta 48 (2003) 1579.
    [11] Z.S. Wen, J. Yang, B.F. Wang, K. Wang, Electrochem. Commun. 5 (2003) 165.
    [12] T. Hasegawa, S.R. Mukai, Y. Shirato, H. Tamon, Carbon 42 (2004) 2573.
    [13] J. Saint, M. Morcrette, D. Larcher, L. Laffont, S. Beattie, J.P Peres, D. Talaga, M.Couzi, J.M. Tarascon, Adv. Funct. Mater. 17 (2007) 1765.
    [14] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407 (2000) 496.
    [15] M. Rosso, C. Brissot, A. Teyssot, M. Dolle, L. Sannier, J.M. Tarascon, R. Bouchetc, S. Lascaud, Electrochim. Acta 51 (2006) 5334.
    [16] H. Li, P. Balaya, J. Maier, J. Electrochem. Soc. 151 (2004) A1878.
    [17] Y.M. Kang, M.S. Song, J.H. Kim, H.S. Kim, M.S. Park, J.Y. Lee, H.K. Liu, S.X. Dou, Electrochim. Acta 50 (2005) 3667.
    [18] J.S. Do, C.H. Weng, J. Power Sources 159 (2006) 323.
    [19] J.S. Wang,K. Matyjaszewski, J. Am. Chem. Soc.,1995,117(20):5614-5615.
    [20] J. S. Wang,K .Matyjaszewski,Macromolecules,1995,28:7901-7910.
    [21] N. Ding, X.W. Ge, C.H. Chen, Mater. Res. Bull. 40 (2005) 1451-1459.
    [22] C. Kim, K.S. Yang, J.Y. Kim, M. Endo, J. Mater. Sci. 38 (2003) 2987–2991.
    [23] C. Kim, K.S. Yang, M. Kojima, K. Yoshida, Y.J. Kim, Y.A. Kim,M. Endo, Adv. Funct. Mater. 16 (2006) 2393–2397.
    [24] Y. Yu, C.H. Chen, J.L. Shui, S. Xie, Angew. Chem. Int. Ed. 44 (2005) 7085.
    [25] Y. Yu, C.H. Chen, Y. Shi, Adv. Mater. 19 (2007) 993.
    [26] Y. Yu, Y. Shi, C.H. Chen, Chem. Asian J. 1 (2006) 826.
    [27] Y. Yu, Y. Shi, C.H. Chen, Nanotech.18 (2007) 571.
    [28] Z.W. Zhao, D. Wexler, Electrochem. Commun. 9 (2007) 697.
    [29] X.N. Zhang, P.X. Huang, Electrochem. Commun. 9 (2007) 713.
    [30] M. Winter, J.O. Besenhard, Electrochim. Acta 45 (1999) 31.
    [31] M.C. Zhi, G.S. Wei, G.G. Yu, Chem. Mater. 21(2009) 1162.
    [32] Saikat Mandal, Axel H.E. M¨uller, Mater. Chem. and Phy. 111 (2008) 438.
    [33] H. Liu, G.X, Wang, J.Z. Wang, D. Wexler, Electrochem. Commun. 10 (2008) 1879.
    [34] C.Z. Wu, X. Zhu, C.Z. Yang, Y. Xie, J. Phys. Chem. B 110 (2006) 17806.
    [35] P.C. Wang, H.P. Ding, T. Bark, C.H. Chen, Electrochim. Acta 52 (2007) 6650.
    [36] W. Dong, C. Zhu, J. Mater. Chem. 12 (2002) 1676.
    [37] Q. Han, Z.H. Liu, Z.Y. Chen, T.M. Wang, H. Zhang, J. Phys. Chem. C 111 (2007) 5034.
    [38] Y.Y. Fu, R.M. Wang, J. Xu, J. Chen, Y. Yan, A.V. Narlikar, H. Zhang, Chem. Phys. Lett. 279 (2003) 373.
    [39] J.J. Wu, Y.L. Lee, D.K.P. Wong, J. Phys. Chem. B 110 (2006) 18108.
    [40] B. Tang, G.L.Wang, L.H. Zhuo, J.C. Ge, L.J. Cui, Inorg. Chem. 45 (2006) 5196.
    [41] L. Wang, Y. Yu, C.H.Chen, J. Power Sources 183 (2008) 717
    [42] S.Q.Wang, J.Y.Zhang, C.H. Chen, SCRIPTA MATERIALIA 60 (2009) 1117
    [43] Y. Yu, C.H. Chen, J.L. Shui, S. Xie, Angew. Chem. Int. Ed. 44 (2005) 7085.
    [44] D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J.B. Leriche, J.M. Tarascon, J. Electrochem. Soc. 150 (2003) A133.
    [45] L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon, Nat. Mater. 5 (2006) 567.
    [46] Y. N. Li, P. Zhang, Z.P. Guo, P. Munroec, H.K. Liu, Electrochimica Acta 53 (2008) 4213.
    [47] Ch.H. Lu, W.Ch. Lee, Sh.J. Liou, G.T.K. Fey, J. Power Sources 81–82 (1999) 696.
    [48] M. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura, Macromolecules 28 (1995) 1721.
    [49] J.S. Wang, K. Matyjaszewski, Macromolecules 28 (1995) 7901.
    [50] H.N.Duana, J.Gnanaraj , X.P. Chena, B.Q. Li, J.Y.Liang, J. Power Sources 185 (2008) 512.
    [51] Q.T.Pan, K. Huang, S.B. Ni, F. Yang, J. Phys. D: Appl. Phys. 42 (2009) 015417.
    [52] L.P. Wang, P. Wang , X.W. Pei, Reactive & Functional Polymers 68 (2008) 649.
    [53] G. Moineau, Ph. Dubois, R. Jrme, T. Senninger, and Ph. Teyssi, Macromolecules 31(1998) 545.
    [54] M. Rosso, C. Brissot, A. Teyssot, M. Dolle, L. Sannier, J.M. Tarascon, R. Bouchetc, S. Lascaud, Electrochim. Acta 51 (2006) 5334.
    [55] F. Zhang, K.X. Wang, G.D. Li, J.S. Chen, Electrochem. Commun. 11 (2009) 130
    [1] X.N. Zhang, P.X. Huang, Electrochem. Commun. 9 (2007) 713.
    [2] M. Winter, J.O. Besenhard, Electrochim. Acta 45 (1999) 31.
    [3] M.C. Zhi, G.S. Wei, G.G. Yu, Chem. Mater. 21(2009) 1162.
    [4] Saikat Mandal, Axel H.E. M¨uller, Mater. Chem. Phy. 111 (2008) 438.
    [5] H. Liu, G.X, Wang, J.Z. Wang, D. Wexler, Electrochem. Commun. 10 (2008) 1879.
    [6] P.C. Wang, H.P. Ding, T. Bark, C.H. Chen, Electrochim. Acta 52 (2007) 6650.
    [7] W. Dong, C. Zhu, J. Mater. Chem. 12 (2002) 1676.
    [8] Q. Han, Z.H. Liu, Z.Y. Chen, T.M. Wang, H. Zhang, J. Phys. Chem. C 111 (2007) 5034.
    [9] J.J. Wu, Y.L. Lee, D.K.P. Wong, J. Phys. Chem. B 110 (2006) 18108.
    [10] L. Wang, Y. Yu, C.H.Chen, J. Power Sources 183 (2008) 717
    [11]Y. Yu, C.H. Chen, J.L. Shui, S. Xie, Angew. Chem. Int. Ed. 44 (2005) 7085.
    [12] Y. Yu, Y. Shi, C.H. Chen, Chem. Asian J. 1 (2006) 826
    [13] Y. Yu, C.H. Chen, Y. Shi, Adv. Mater. 19 (2007) 993.
    [14] Y. Yu, Y. Shi, C.H. Chen, Nanotech.18 (2007) 571.
    [1] W.J. Weydanz, M. Wohlfahrt-Mehrens, R.A. Huggins, J. Power Souces 81-82 (1999) 237.
    [2] B.A. Boukamp, G.C. Lesh, R.A. Huggins, J. Elctrochem. Soc. 128 (1981) 725.
    [3] J. Yang, M. Winter, J.O. Besenhard, Solid State Ionics 90 (1996) 281.
    [4] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Adv. Mater. 10 (1998) 725.
    [5] S.H. Ng, J.Z. Wang, D. Wexler, K. Konstantinov, Z.P. Guo, H.K. Liu, Angew. Chem. Int. Ed. 45 (2006) 6869.
    [6] Z.J. Luo, D.D. Fan, X.L. Liu, H.Y. Mao, C.F. Yao, Z.Y. Deng, J. Power Sources 189 (2009) 16.
    [7] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407 (2000) 496.
    [8] A.S. Arico, P.G. Bruce, B. Scrosati, J.M. Tarason, W.V. Schalkwijk, Nat. Mater. 4 (2005) 366.
    [9] J. Chen, L.N. Xu,W.Y. Li, X.L. Gou, Adv. Mater. 17 (2005) 582.
    [10] K.T. Nam, D.W. Kim, P.J. Yoo, C.Y. Chiang, N. Meethong, P.T. Hammond, Y.M. Chiang, A.M. Belcher, Science 312 (2006) 885.
    [11] W.Y. Li, L.N. Xu, J. Chen, Adv. Funct. Mater. 15 (2005) 851.
    [12] N. Dimov, S. Kugino, M. Yoshio, Electrochim. Acta 48 (2003) 1579.
    [13] Z.S. Wen, J. Yang, B.F. Wang, K. Wang, Electrochem. Commun. 5 (2003) 165.
    [14] T. Hasegawa, S.R. Mukai, Y. Shirato, H. Tamon, Carbon 42 (2004) 2573.
    [15] X.H. Huang, J.P. Tu, C.Q. Zhang, J.Y. Xiang, Electrochem. Commun. 9 (2007) 1184.
    [16] P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon, Nat. Mater. 5 (2006) 567.
    [17] C.Z. Wu, P. Yin, X. Zhu, C.Z. Ouyang, Y. Xie, J. Phys. Chem. B 110 (2006) 17806.
    [18] L. Tabernal, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon, Nat. Mater. 5 (2006) 567.
    [19] C.K. Chan, H.L. Peng, G. Liu, K.Mcilwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nature Nano Tech. 3 (2008) 31.
    [20] L.F. Cui, R. Ruffo, C.K. Chan, H.L. Peng, Y. Cui, Nano Lett. 9 (2009) 491.
    [21] SAFT, French Patent 1 490 725, 1966.
    [22] J.P. Gabano, V. Dechenaux, G. Gerbier, J. Jammet, J. Electrochem. Soc. 114 (1972) 459.
    [23] R. Jasinski, B. Burrows, J. Electrochem. Soc. 116 (1969) 422.
    [24] D. Linden, Handbook of Batteries, New York, 1995.
    [25] A. Attewell, P. Tattershall, in: Proceedings of the 29th Power Sources Symposium of the Electrochemical Society, Pennington, New Jersey. 1980, pp. 53–56.
    [26] L.W. Langrish, in: Proceedings of the 29th Power Sources Symposium of the PSC Publication Committee, Red Bank, New Jersey, 1969, pp. 67–69.
    [27] D. Linden, N. Wilburn, E. Brooks, in: Proceedings of the 8th International Power Sources Symposium, Paper no. 20, Brighton, 1972.
    [28] R.J. Jasinski, Electroanal. Chem. 26 (1970) 189.
    [29] J.P. Gabano, V.L. Dechenaux, G.M. Gerbier, J. Jammett, J. Electrochem. Soc. 114 (1972) 489.
    [30] A.J. Cuesta, D.D. Bump, in: B. Owens, N. Margalit (Eds.), The Electrochemical Society, Princeton, New Jersey, 1980, pp. 95–100.
    [31] A.M. Bredland, T.G. Messing, J.W. Paulson, New Jersey, 1980, pp. 82–85.
    [32] M. Armand, in: W. Van Goll (Ed.), New Electrode Materials in Fast Ion Transports in Solids, Amsterdam, Holland, 1973.
    [33] B.C.H. Steele, in:W. Van Goll (Ed.), Chemical diffusion in Fast Ion Transports in Solids, Amsterdam, Holland, 1973.
    [34] P. Poizot, S. Laruelle, S. Grugeon, J.-M. Tarascon, J. Electrochem. Soc. 149 (2) (2002) A1212.
    [35] S. Grugeon, S. Laruelle, L. Dupont, J.-M. Tarascon, Solid State Sci. 5 (2003) 895.
    [36] J.-S. Chung, H.-J. Sohn, J. Power Sources 108 (2002) 226.
    [37] J.-S. Chung, H.-J. Sohn, J. Power Sources 112 (2002) 671.
    [38] S.C. Han, H.S. Kim, M.S. Song, P.S. Lee, J.Y. Lee, H.J. Ahn, J. Alloys Compounds 349 (2003) 290.
    [39] S.C. Han, H.S. Kim, M.S. Song, J.H. Kim, H.J. Ahn, J.Y. Lee, J. Alloys Compounds 351 (2003) 273.
    [40] S.C. Han, H.S. Kim, M.S. Song, J.H. Kim, H.J. Ahn, J.Y. Lee, J. Alloys Compounds 361 (2003) 247.
    [41] R. Jasinski, B. Burrows, J. Electrochem. Soc. 116 (1969) 422.
    [42] A. Débart, L. Dupont , R. Patrice, J.-M. Tarascon, Solid State Sciences 8 (2006) 640–651
    [43] Haolan Xu, Wenzhong Wang, Wei Zhu, Lin Zhou, Nanotechnology 17 (2006) 3649.
    [44] K. Tezuka et al,Solid State Sciences 9 (2007) 95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700