反渗透海水淡化系统阀控余压能量回收装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反渗透海水(和高浓度苦咸水)淡化系统中,高压浓盐水的余压能量回收装置按工作原理可分为离心式和正位移式两种类型。离心式又称为水力透平式,其能量回收效率相对较低(30%~50%)。正位移式能量回收效率高达90%以上,目前在淡化市场上被较多采用,也成为研究的重点和热点。
    本文工作中设计和研究的阀控余压能量回收装置(VC-ERD)即采用正位移式原理,利用阀和水压缸来实现能量交换。论文首次提出了研究VC-ERD的工艺流程,并建立了相应的实验装置、阀门控制系统和计算机数据采集系统等。实验流程包括两个水平放置的由有机玻璃制作的水压缸,长度为1米,内径为50mm,最高工作压力1.0MPa。另外,实验流程中还包括一个高压离心泵、一个低压离心泵和两个贮罐,以及安装在水压缸端部的阀门和系统管件等。采用PLC和光电开关相结合的方式来实现阀门的程序控制。开发了与手动操作、单缸操作、双缸操作和两个单缸耦合操作过程相对应的阀门控制方案。
    首次对不同控制方案下VC-ERD的动态特性进行了测试和分析。结果表明,过程等待时间为0秒时,无论单缸操作或双缸操作都存在部分高压盐水与泄压盐水之间的串水(或称短路)问题。对本实验装置而言,当等待时间为1.5秒时,串水问题可得到解决。此时对单缸操作而言,高压盐水、低压海水的流量和压力均呈矩形波的变化规律;增压海水的流量变化与高压盐水的流量变化相似,但其压力始终保持不变。对双缸操作而言,高压盐水、低压海水和增压海水的流量均呈周期性向下波动的变化;高压盐水、低压海水的压力呈周期性向上波动的变化,而增压海水的压力则保持在一个稳定的水平上。与双缸操作相比,两个单缸耦合操作时流量和压力的变化频率降低约一半左右。水压缸端部压力在上述三种控制方案下都呈矩形波的变化。
    在实验工况下对装置能量传递效率的研究结果表明:阀控余压能量回收装置的容积效率可近似为100%;压力效率与盐水压力呈正比的变化关系,与海水压力呈反比的变化关系;当盐水压力约为0.9MPa时,压力效率为90%。研究结果还表明该类型能量回收装置用于海水或苦咸水淡化时,能量传递效率达将在90%以上。论文同时也对活塞惯性距离、过程循环频率及装置在工作过程中的阻力分布等问题进行了研究和讨论。
    
    论文首次建立了水压缸运行中高压浓盐水和原料海水混合的模拟方法。通过流体力学模拟计算,对水压缸中浓盐水与原料海水的混合段长度及其影响因素系统研究的结果表明:增加盐水入口管直径与水压缸直径之比或增大盐水入口流速均能增加混合长度;形成的混合长度随着累积时间的增加而增大,降低了水压缸的容积利用率;提高海水排出浓度或降低系统的回收率均会提高容积利用率;增加水压缸长度有利于大幅度提高容积利用率。
    论文首次提出了VC-ERD的设计步骤,并完成天津市1000吨/天反渗透海水淡化示范工程用VC-ERD的技术方案设计。
Hydraulic energy recovery device for application in the reverse osmosis desalination system can be clasified into two categories by their working principle, the centrifugal type and the positive displacement type. The centrifugal type, also named hydraulic turbine type has an efficiency between 30% and 50%. The efficiency of the positive displacement type which is more used in desalination plants now is as high as 90% or above. It has become a research focus of this field.
     The valve-controlled energy recovery device (VC-ERD) designed in our research project is of the positive displacement type. It uses valves and cylinders to accomplish the energy exchange process. The flow diagram to test the VC-ERD was given for the first time. Corresponding experimental apparatus with valve controlling system and data acquisition system was set up. Two cyclinders made of organic glass with a length of 1000mm, internal diameter of 50mm were included in the experimental diagram. A high pressure centrifugal pump and a low pressure centrifugal pump were used to supply water from two corresponding tanks. The programmable logic controller (PLC) combining the photoelectric switches was used to control the movements of the valves sequentially. The controlling schemes of the manual operation, the single-cylinder operation, the double-cylinder operation, and two single-cylinder coupling operation were developed respectively.
     Dynamic characteristics of the unit under different controlling schemes were measured and analyzed for the first time. The experimental results indicate that there always exists colluding problem between the high pressure (HP) concentrate and the depressed concentrate, whether it is under single-cylinder or double-cylinder operation with the standing time remaining zero seconds. In our experiments, the colluding problem can be dealt with successfully when standing time of the process is 1.5 seconds. At this time, for the single-cylinder operation, the flow and the pressure curves of the HP concentrate and the low pressure (LP) seawater vary like a rectangular wave. The flow rate variation of the pressurized seawater is similar to that of the HP concentrate, while its pressure keeps constant mostly. For the double-cylinder operation, the flow curves of the HP concentrate, the LP seawater and the pressurized seawater present a downward variation periodically, while their
    
    
    pressure curves show an upward variation periodically for the former two and a horizontal linear variation for the later. Comparing to the double-cylinder operation, the changing frequencies of the flow and the pressure curves of the HP concentrate, the LP seawater and the pressurized seawater reduce to about a half under the two single-cylinder coupling operation. Pressure curves of the cylinder end show a rectangular wave variation under the three controlling schemes mentioned above.
     Studies on the energy transfer efficiency of the unit under the experimental conditions indicate that the volumetric efficiency of the VC-ERD keeps 100% mostly, the pressure of the concentrate has a positive effect and that of the seawater a negative effect on the hydraulic efficiency. The hydraulic efficiency will be 90% when the concentrate pressure gets to 0.9 MPa. It is believed that the energy transfer efficiency is sure to be over 90% when the VC-ERD is used in seawater or brackish water reverse osmosis desalination processes. Other aspects such as the slip distance of the piston, the cyclic frequency and the pressure differential distributions of the process were studied and discussed at the same time.
     The method to simulate the mixing processes in the cylinder between the high pressure concentrate and the seawater feed was established for the first time. The mixing length in the cylinder which is the basic data for the design of the fluid piston, and its influencing factors were studied and analyzed through the fluid dynamis analog calculation. It has been found that the mixing length can be added by increasing the diameter ratio or the concentrat
引文
王世昌主编,海水淡化工程,北京:化学工业出版社,2003,73-77
    时均,袁权等主编,膜科学技术,北京:化学工业出版社,2001,247-248
    Bart Van der Bruggen, Desalination by distillation and by reverse osmosis—trends towards the future, Membrane Technology, 2003 (2): 6-9
    Hisham El-Dessouky, Hisham Ettouney, MSF developments may reduce desalination costs, Water and Wastewater International, 2000, 15(3):20-21
    Van der B, Bart, Vandecasteele, et al, Distillation vs. membrane filtration: overview of process evolutions in seawater desalination, Desalination, 2002,143:207-218
    刘茉娥等编著,膜分离技术,北京:化学工业出版社,2000,189-192
    Nobuya F, Toshitaka T, Atsuo K, et al, New Economical RO Desalination System by a Recovery Ratio of 60%, San Diego Proceedings, San Diego: International Desalination Association, 1999
    Totaro Goto, Yoshio Taniguchi, Keiichi Ohta, etc. Progress in SWRO Technology in Japan. Desalination & Water Reuse, 2001, 11(1):31-36
    Kurihara, Masaru, Yamamura, et al; Jinno, Synichirou , Operation and reliability of very high-recovery seawater desalination technologies by brine conversion two-stage RO desalination system, Desalination, 2001,138:191-199
    Redondo, J.A., Improve RO system performance and reduce operating cost with FILMTEC fouling-resistant (FR) elements, Desalination, 1999,126: 249-259
    Takeshi Matsuura. Progress in membrane science and technology for seawater desalination — a review. Desalination,2001,134:47-54
    Redondo, J.A., Lanzarote IV, a new concept for two-pass SWRO at low O&M cost using the new high-flow FILMTEC SW30-380, Desalination,2001,138:231-236
    Gamal Khedr, M., Development of reverse osmosis desalination membranes composition and configuration: Future prospects, Desalination,2003,153: 295-304
    Redondo, J.A.; Casa?as, A., Designing seawater RO for clean and fouling RO feed. Desalination experiences with the FilmTec
    
    
    SW30HR-380 and SW30HR-320 elements — technical—economic review, Desalination,2001,134: 83-92
    Redondo J A, Lomax I, Y2K generation FILMTEC RO membranes combined with new pretreatment techniques to treat raw water with high fouling potential: summary of experience, Desalination, 2001,136:287-306
    Mark W,Schierach M K, Improved performance and cost reduction of RO seawater system using UF pretreatment, Desalination, 2001, 135: 61-68
    Gründisch A, Schneider B P, Optimising energy consumption in SWRO systems with brine concentrators, Desalination, 2001,138:223-229
    Taniguchi, Masahide, Kurihara,et al, Behavior of a reverse osmosis plant adopting a brine conversion two-stage process and its computer simulation, Journal of Membrane Science, 2001,183:249-257
    Kurihara, Masaru, Yamamura, et al, High recovery / high pressure membranes for brine conversion SWRO process development and its performance data, Desalination, 1999,125:9-15
    K. Kallenberg, Brine conversion (BCS) enhances SWRO desalination case history, operating data, novel design features, San Diego Proceeding, San Diego :International Desalination Association, 1999, II,101-107
    M. Kurihara, et al. Brine Conversion Two Stage System, Madrid Proceedings, Madrid: International Desalination Association, 1997
    Irving Moch,Jr., I. Moch. The case for and feasibility of very high recovery seawater reverse osmosis plants. Desalination & Water Reuse,2000,10(3):44-51
    van Hoof, S.C.J.M.; Minnery, J.G.; Mack, B., Dead-end ultrafiltration as alternative pre-treatment to reverse osmosis in seawater desalination: a case study, Desalination,2001,139: 161-168
    A. Brehant, V. Binnelye, M. Perez. Comparison of MF/UF pretreatment with conventional filtration prior to RO membrane for surface seawater desalination. Desalination,2002,144:353-360
    Hoof S C J M,Minnery J G,Mack B,Dead-end Ultrafiltration as pretreatment to seawater RO, Desalination & Water Reuse,2001,11(3):44-48
    T. Goto,et al. MF Membrane Pretreatment for SWRO, San Diego Proceedings, San Diego: International Desalination Association, 1999
    
    Abdul-Kareem Al-Sofi, Mohammad , Seawater desalination — SWCC experience and vision,Desalination, 2001,135:121-139
    Al-Sofi, Mohammad A K, Hassan, et al, Optimization of hybridized seawater desalination process, Desalination, 2000,131:147-156
    Hassan A M, Farooque A M, Jamaluddin A T M, et al, A demonstration plant based on the new NF—SWRO process, Desalination, 2000,131:157-171
    A. M. Hassan, M. AK. Al-sofi, A. Al-Amoudi, etc. A new approach to membrane & thermal seawater desalination processes using nanofiltration membranes (part1), Desalination & Water Reuse, 1998, 8(1):53-59
    A. M. Hassan, M. AK. Al-sofi, A. Al-Amoudi, etc. A new approach to membrane & thermal seawater desalination processes using nanofiltration membranes (part2), Desalination & Water Reuse, 1998, 8(2):39-45
    徐暄阔,王世昌,反渗透淡化系统余压水力能量回收装置的研究进展,水处理技术,2002,28(2):63-66
    Zahid Amhad[美], 膜技术、水化学和工业应用,北京:化学工业出版社,1999
    G.G. Pique, Breakthroughs allow seawater desalination for less than $0.50/m3, EDS Newsletter Issue 16, September 2002,9-11
    王越,徐世昌,王世昌,国外反渗透淡化系统余压回收技术研究概况,化工进展,2002,21(11):868-871
    WANGYue, WANG Shichang, XU Shichang, HYDRAULIC ENERGY RECOVERY FOR SWRO DESALINATION PLANTS,化工学报,2003,54(6):878-879
    王越,苏保卫,徐世昌等,海水反渗透淡化技术最新研究动态,膜科学与技术,2003
    刘茉娥等编著,膜分离技术应用手册,北京:化学工业出版社,2001,60-66
    R Rautenbach著,王乐夫译,膜工艺—组件和装置设计基础,北京:化学工业出版社,1998,152-160
    Osamah M. Al-Hawaj, The work exchanger for reverse osmosis plants. Desalination, 2003,157: 23-27
    Irving Moch, Jr., Chip Harris, What Seawater Energy Recovery System Shoud I Use?-A Modern Comparative Study, Bahrain Proceedings, Bahrain: International Desalination Association, 2002
    
    G.G.Pique, New Device Shatters Seawater Conversion Conceptual Barriers, Water Conditioning and Purification,July,2000
    Mandil, M.A.; Farag, H.A.; Naim, M.M.; Attia, M.K., Feed salinity and cost-effectiveness of energy recovery in reverse osmosis desalination, Desalination,1998,120: 89-94
    范德明,工业泵选用手册(5),北京:化学工业出版社,1998,227-229
    Hajeeh, M.; Al-Othman, A.; El-Sayed, E., etc, On performance measures of reverse osmosis plants, Desalination,2002,144: 335-340
    Avlonitis, S.A., Operational water cost and productivity improvements for small-size RO desalination plants, Desalination, 2002,142: 295-304
    David J. Woodcock, I. Morgan White. The application of Pelton type impulse turbines for energy recovery on sea water reverse osmosis systems. Desalination,1981,39:447-458
    Alex Gruendisch, Re-Engineering of the Pelton Turbine for Seawater and Brackish Water Energy Recovery, Desalination & Water Reuse, 1999,9(3):16-23
    Boris Liberman, Igal Liberman. Starting procedure of high-pressure pump with de-rated motor for large-scale SWRO trains. Desalination,2000,132:293-298
    Kim, Seung-Hyun; Kim, Geon-Tae; Yim, Seong-Keun, etc, Application of energy efficient reverse osmosis system for seawater desalination, Desalination,2002,144: 361-365
    J. Lozier, E. Oklejas, M. Silbernagel. The Hydraulic TurboChatger: A New type of Device for the Reduction of Feed Pump Energy Consumption in Reverse osmosis System, Desalination,1989,75:71-83
    E. oklejas, The Hydraulic TurboCharger for interstage feed pressure boosting. Impact on membrane performance, permeate quality, and feed pimp energy consumption, Desalination,1992,88:289-300
    M. Silbernagel, T. Kuepper, E. Oklejas. Evaluation of a pressure boosting pump/turbine device for reverse osmosis energy recovery: Extended testing on a seawater desalination system. Desalination, 1992,88:311-319
    Takeshi Uchiyama, Michael Oklejas, Irving moch, Using a Hydraulic Turbocharger and Pelton Wheel for Energy Recovery in the Same Seawater Ro Plant, San Diego Proceedings, San Diego: International Desalination Association, 1999
    Eli Oklejas, Energy Efficiency Considerations for RO plants: A Method
    
    
    for Evaluation. Desalination & Water Reuse, 2002,11(4):26-34
    Eli Oklejas, Wil F. Pergande, Integration of advanced high-pressure pumps and energy recovery equipment yields reduced capital and operating costs of seawater RO systems. Desalination,2000,127:181-188
    The Hydraulic TurboChargerTM Technical and Operation Manual, Pump Engineering Inc.,1995
    Eli Oklejas, Jr., Method and Apparatus for Boosting Interstage Pressure in A Reverse Osmosis System, US Patent, No.: 6468431B1,2002
    Fayyaz Muddassir Mubeen, Duplex Stainless Steels, Desalination & Water Reuse,1999,9(3):42-49
    Scholl, Hans G., A pump-turbine combination for sea water desalination, World Pumps,2002(401):24-25
    W.T. Andrews, Wil F. Pergande, Gregory S. McTaggart. Energy performance enhancements of a 950m3/d seawater reverse osmosis unit in Grand Cayman, Desalination,2001,135:195-204
    W.T. Andrews, David S. Laker, A twelve-year history of large scale application of work-exchanger energy recovery technology. Desalination, 2001,138:201-206
    W.T. Andrews, Scott A. Shumway, Bryan Russell. Design of a 10000 cu-m/d Seawater Reverse Osmosis Plant on New Providence Island, The Bahamas. Madrid Proceedings, Madrid:International Desalination Association,1997
    W.T. Andrews, Scott A. Shumway. Design Study of a 20000 m3/day Seawater Reverse Osmosis Work Exchanger Energy Recovery System, San Diego Proceedings, San Diego: International Desalination Association, 1999,
    Scott A. Shumway, The work Exchanger for SWRO Energy Recovery, Desalination & Water Reuse, 1999,8(4)
    Leif J. Hauge. The pressure Exchanger, Desalination & Water Reuse, 1999,9(1):54-60
    M.A. Darwish M. Abdel-jawad, Lief J. Hauge, A New dual-function device for optimal energy recovery and pumping for all capacities of RO systems. Desalination,1989,75:25-39
    Lief J. Hauge, The pressure exchanger — A key to substantial lower desalination cost. Desalination,1995,102:219-223
    Chip Harris, Energy recovery for membrane desalination. Desalination,1999,125:173-180
    
    John P. MacHarg, How to design and operate SWRO systems built around a new pressure exchanger devices. 2002 IDA Bahrain Proceedings, 2002
    John P. MacHarg, Exchanger Tests Verify 2.0kWh/m3 SWRO Energy Use, Desalination & Water Reuse,2001,11(1):42-45
    John P. MacHarg, The Evolution of SWRO Energy-Recovery System, Desalination & Water Reuse,2001,11(3)49-53
    G.G.Pique, Pressure exchange technology makes seawater desalination affordable, Water and Wastewater International,June,2003
    C.V. Vedavyasan, Cost Reduction of Desalinated Water by Creative Design, Bahrain Proceedings, Bahrain: International Desalination Association, 2002
    John P. MacHarg, Retro-fottong existing SWRO systems with a new energy recovery device, Desalination,2002,153:253-264
    Hauge Leif J. Pressure Exchanger for liquids. US Patent : 4887942, December 19,1989
    Drabl?s L, Aqualyng? — a new system for SWRO with pressure recuperation, Desalination,2001,139:149-153
    Drabl?s L, Experience on Operation of Aqualyng Pressure Recuperation SWRO Plants in Gran Canaria Since September 1999, Bahrain Proceedings, Bahrain: International Desalination Association, 2002
    P. Geisler, F.U. Hahnensrein, W. Krumm,etc. Pressure exchanger system for energy recovery in reverse osmosis plants. Desalination,1999,122:151-156
    P. Geisler, W. Krumm, T. Peters. Optimization of the energy demand of reverse osmosis with a pressure-exchanger system. Desalination, 1999,125:167-172
    P. Geisler, W. Krumm, T. Peters. Reduction of the energy demand for seawater RO with the pressure exchanger system PES, Desalination, 2001,135:205-210
    E. Johann Harzer, D. Pal Meszaros, N. Ottmar Christian. Arrangement for the changeover of liquids when transported by means of a three chamber feeder. US Patent,NO.:5078544,1992
    Willard Childs, Ali Dabiri. Hydraulic Driven RO Pump and Energy Recovery System, Desalination & Water Reuse,1999,9(2):21-29
    Willard D. Child, Ali E. Dabiri, Hilal A. Al-Hinai, etc. VARI-RO solar-powered desalting technology. Desalination,1999,125:155-166
    
    David Smith, Battery-powered desalter relies on unique pressure pump, Desalination & Water Reuse,2000,10(3):18-22
    Thomson, Murray; Miranda, Marcos S.; Infield, David. A small-scale seawater reverse-osmosis system with excellent energy efficiency over a wide operating range,Desalination,2003,153:229-236
    Colombo, D.; de Gerloni, M.; Reali, M., An energy-efficient submarine desalination plant, Desalination,1999,122:171-176
    Pacenti, Paolo; de Gerloni, Mario; Reali, Mario,etc, Submarine seawater reverse osmosis desalination system, Desalination,1999,126: 213-218
    Reali, M.; Bemporad, G.A., Energy-efficient schemes for seawater desalination, Desalination,1996,105:171
    Maratos, D.F., Technical feasibility of wavepower for seawater desalination using the hydro-ram (Hydram), Desalination,2003,153: 287-293
    Dave. A New device to Allow Wavepower to Be used to reduce the energy consumption of existing desalination plants. EDS Newsletter Issue 16, September 2002
    林斯清,张维润,海水淡化的现状与未来,水处理技术,2000,26(1):7-12
    解利昕,阮国岭,张耀江,反渗透海水淡化技术现状与展望,中国给水排水,2000,16(3):24-27
    扬涛,沧化18000吨/日反渗透高浓度苦咸水淡化工程,水处理技术,2002,28 (1):38-41
    樊雄,范先团等,山东长岛县反渗透海水淡化工程,水处理技术,2003,29(1):41-43
    阮国岭,宋吉国等,长海县反渗透海水淡化工程,海洋技术.2002,21(4):13-16
    邵刚编著,膜法水处理技术及工程实例,北京:化学工业出版社,2002,150-160
    江祖德,曹志锡,何少勇等,自由活塞式液压能量回收机的研制,中国机械工程,1995,6(4):49-52
    江祖德,王永兴,王兴华等,活塞式液压能量回收装置运转实验研究,浙江工业大学学报,1995,23(4):311-315
    江祖德,曹志锡,周士森等,一种新型液压能量回收装置的动力学研究,浙江工业大学学报,1997,25(2):100-106
    范德明,工业泵选用手册(2),北京:化学工业出版社,1998,72-74
    马登杰,基于反渗透技术的海水和苦咸水淡化设备的能量回收装置,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700