矿难后创伤后应激障碍流行病学及神经影像学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分矿难后2个月及10个月创伤后应激障碍的发生率及相关因素研究
     目的调查矿难后2个月及10个月创伤后应激障碍(posttraumatic stress disorder,PTSD)的发生率及相关因素。
     方法矿难后2个月,首先采用创伤后应激障碍清单(PTSD Checklist-Civilian Version,PCL-C)调查矿难幸存者PTSD的发生率。随后按照PCL-C评分,选取48名幸存者(包括24名重性PTSD患者及24名非PTSD对照)进行包括矿难前后一般情况、PTSD症状、焦虑抑郁状况、艾森克人格问卷(EPQ)及韦氏记忆等详细评估。矿难后10个月进行随访。
     结果矿难后2个月,所有112名生还矿工中有104名(92.9%)接受了调查,矿难后2个月PTSD的发生率为50%;分别选取的24名重性PTSD患者和非PTSD(Non-PTSD)对照在PTSD症状分析、焦虑抑郁、个性及记忆功能方面都有显著的差别;逐步回归分析显示状态焦虑、矿难后恢复上班情况、Beck抑郁问卷(BDI)总分、神经质、矿难发生时所在位置、井下工龄进入回归方程。矿难后10个月,随访到了112名幸存者中的85名,符合PTSD诊断标准的占30.6%;上述48名幸存者中有18名PTSD患者、23名Non-PTSD对照接受随访,与矿难后2个月相比,PTSD患者在PTSD症状、焦虑症状、及韦氏记忆方面有明显改善,抑郁症状无显著差别;逐步回归分析显示,状态焦虑改善、矿难后恢复上班情况、积极应对、情感平衡、井下工龄是PTSD症状减轻的因素。
     结论矿难后PTSD的发病率高、症状严重,对幸存矿工的心理及职业影响很大,需要及时干预与治疗。状态焦虑、矿难后恢复上班晚、BDI、神经质、矿难发生时所在位置最危险、井下工龄短是PTSD发生的危险因素。积极应对是PTSD恢复的积极因素之一。
     第二部分矿难后2个月及10个月创伤后应激障碍的脑功能及脑结构研究
     目的以前大多数创伤后应激障碍的脑功能、脑结构影像研究是针对长期的慢性病人。本研究探索急性重性PTSD(矿难后2个月)的脑功能和脑结构特点,研究在PTSD神经环路发挥重要作用的脑机制。矿难后10个月进行随访,探讨PTSD脑结构及脑功能的变化并进行纵向比较。
     方法第一部分中选取的24名急性重性PTSD患者和24名对照者作为研究对象。接受3项脑功能检查,包括情绪识数stroop、症状激发任务及症状激发的短期记忆提取任务,3项功能任务为区间设计,每一任务是5分12秒。随后为三维成像(3D)及弥散张量成像(DTI)检查。所有受试检查完成后,研究小组为其提供心理及药物干预。矿难后10个月,所有PTSD患者接受第二次脑功能及脑结构检查。以上结构及功能影像数据都通过统计参数图(statistical parametric mapping,SPM2)软件来处理。
     结果(1)情绪识数stroop:矿难后2个月,PTSD患者相比对照者,双侧前扣带回、右侧额下回、左侧颞上回等脑区激活下降;矿难后10个月,PTSD患者相比对照者,左侧额叶内侧回、右侧额中回、右侧扣带回及左侧海马旁回激活增强;PTSD患者矿难后10个月与矿难后2个月前后配对比较,矿难后10个月PTSD患者双侧额上回、双侧额中回、右侧扣带回及左侧海马旁回激活增强。(2)症状激发任务:矿难后2个月,PTSD患者相比对照者,右侧前扣带回、左侧额下回及双侧额中回等部位激活下降,左侧海马旁回激活增强;矿难后10个月,PTSD患者相比对照者,右侧颞上回(BA38)激活增强,右侧颞上回(BA22)、右侧岛叶等脑区激活下降;PTSD患者矿难后10个月与矿难后2个月前后配对比较,矿难后10个月PTSD患者右侧扣带回激活下降。(3)症状激发的短时提取任务:矿难后2个月,PTSD患者相比对照者,右侧额下回、右侧额中回、左侧枕中回等脑区激活下降;矿难后10个月,PTSD患者相比对照者,右侧额下回及右侧额中回等脑区激活下降;PTSD患者矿难后10个月与矿难后2个月进行配对比较,右侧海马旁回及双侧颞上回激活下降。(4)矿难后2个月,短时记忆提取任务相比症状激发任务,右侧海马旁回激活下降;矿难后10个月,短时记忆提取任务相比症状激发任务,左侧海马旁回激活下降。(5)矿难后2个月,脑形态学显示PTSD患者左侧额中回灰质密度低于对照组;矿难后10个月,PTSD患者双侧海马旁回及右侧额中回灰质密度低于对照组;PTSD患者矿难后10个月与矿难后2个月进行配对比较,右侧海马旁回、左侧扣带回、左侧额下回、左侧额叶内侧回、左侧岛叶等脑区灰质密度增高。(6)矿难后2个月,DTI结果显示,PTSD患者左侧前扣带回、右侧扣带回、左侧胼胝体下回、右侧额中回及左侧海马旁回等脑区FA值高于对照组。
     结论研究结果表明,PTSD急性期已存在脑功能、脑结构改变及记忆功能损害。主要的脑区在前额叶及海马部位。通过纵向比较可以看出PTSD患者脑功能及脑结构也发生了变化,一些脑区功能恢复,而有些脑区功能未恢复甚至功能进一步下降。创伤对于PTSD患者的影响是长期的。
PartⅠPrevalence and risk factors for posttraumatic stressdisorder among survivors from a Hunan coal miningaccident after two and ten months
     Objective The study ascertained the prevalence of posttraumaticstress disorder (PTSD) among survivors from a Hunan coal miningaccident after two and ten months. Factors related to PTSD were alsoconsidered.
     Methods To estimate the prevalence of PTSD, the miners weresurveyed through use of the PTSD Checklist-Civilian Version (PCL-C)after two months of the coal mining accident. According the rating ofPCL-C, 24 acute severe PTSD patients and 24 Non-PTSD subjects wereevaluated through the use of Clinician Associated PTSD scale (CAPS),Impact of Event Scale-Revised (IES-R), State-Trait Anxiety Inventory(STAI), Beck Depression Inventory(BDI), Eysenck PersonalityQuestionnaire (EPQ), Wechsler memory Scale -Revised (WMS-R) anddetailed instances before and after the accident. After ten months of theaccident, the surviors were surveyed again.
     Results one hundred and four (92.9%) of the 112 survivors weresurveyed. The current prevalence rate among survivors from the coalmining accident was 50%. There were significant difference of PTSD symptoms, anxiety and depression, personality, and memory performancebetween the chosen 24 severe PTSD patients and 24 Non-PTSD controls.State anxiety, when to renew the work, BDI, EPQ-Neurorticism, wherewere they when accident happening, and length services are predictors ofPTSD. After ten months of the accident, 85 survivors were evaluated, inwhich 30.6 percent surviors still met the criterion of PTSD. In theabove-mentioned 48 miners, 18 PTSD patients and 23 Non-PTSDcontrols received the second evaluation. Compared with 2 months afterthe accident, PTSD symptoms, anxiety, as well as memory performanceimproved clearly, while the depressive symptoms had no significantdifference. We found that state anxiety, when to renew the work, positivecoping, emotional balance and length services were the factors of PTSDsymptoms healing.
     Conclusion The current prevalence rate of PTSD among survivorsfrom coal mining accident is high. The mining accident had made greatinfluence on victims, and psychological or medication interventions werenecessary. There were lots of risk factors of the prevalence of PTSD, andpositive coping may be a benefit factor of PTSD recovery.
     PartⅡThe brain functional and structural mechanism incoal mining survivors with PTSD after two and ten months
     Objective Functional and structural neuroimaging studies havelargely been performed in patients with longstanding chronicposttraumatic stress disorder (PTSD). We sought to characterize the brain responses and structure of patients with acute severe PTSD, andinvestigate the neurocircuit of PTSD. All subjects would be reevaluatedat ten months after the coal mining accident for the longitudinalobservations.
     Methods 24 individuals with acute severe PTSD resulting from themining accident and 24 subjects exposed to the mining accident withoutPTSD underwent functional magnetic resonance imaging (fMRI) whileperforming the emotional counting stroop, the symptom provocation andtrauma related short-term memory recall paradigms. All three functionaltasks were block designs. The duration of every series was 5 minutes and12 seconds. 3 dimension imaging (3D) and diffusion tensor magneticresonance imaging (DTI) examinations were followed. After fMRI andMRI tests were finished, we offered to them free psychological andmedication therapy. All the subjects were reassessed and diagnosed forPTSD symptoms at the ten months from the mining accident, and thePTSD patients who were diagnosed for the first time received fMRI andMRI tests for the second time. The data of structural and functional MRIwere dealt with statistical parametric mapping (SPM2) software.
     Results (1) During the emotional counting stroop, PTSD subjectsshowed diminished responses in bilateral anterior cingulate gyrus, rightinferior frontal gyrus, left superior temporal gyrus and etc, compared withNon-PTSD controls at the two months after the accident. PTSD subjectsshowed enhanced responses in left medial frontal gyrus, right middlefrontal gyrus, right cingulate gyrus, left parahippocampal gyrus comparedwith Non-PTSD controls at ten months after the accident. When PTSDsubjects at ten months were compared with at two months by paired t-test,bilateral superior frontal gyrus, bilateral middle frontal gyrus, rightcingulate gyrus, left parahippocampal gyrus had enhanced responses.
     (2) During symptom provocation paradigm, PTSD subjects showeddiminished responses in right anterior cingulate gyrus, left inferior frontalgyrus and bilateral middle frontal gyrus, and enhanced leftparahippocampal gyrus response compared with Non-PTSD controls attwo months after the accident. PTSD subjects showed enhanced rightsuperior temporal (BA 38) response and diminished responses in rightsuperior temporal gyrus (BA 22), right insula compared with Non-PTSDsubjects at ten months after the accident. By paried t-test, PTSD patientsat ten months showed diminished right cingulate gyrus responsecompared with PTSD patients at two months. (3) During the short-termmemory recall paradigm, PTSD group showed diminished responses inright inferior frontal gyrus, right middle frontal and left middle occipitalgyrus in comparison with controls at two months. PTSD group showeddiminished responses in right inferior frontal gyrus and right middlefrontal gyrus compared with Non-PTSD subjects at ten months. By pariedt-test, PTSD subjects at ten months showed diminished rightparahippocampus gyrus and bilateral superior temporal gyrus comparedwith PTSD patients at two months. (4) PTSD group exhibited diminishedright parahippocampal gyrus response during the memory recall task ascompared to the symptom provocation task at two months. PTSD groupexhibited diminished left parahippocampal gyrus response during thememory recall task as compared to the symptom provocation task at tenmonths. (5) The brain morphologic showed that the Gray Matter Density(GMD) of left middle frontal gyrus was significantly lower than thecontrols at two months. The brain morphologic showed that the GrayMatter Density (GMD) of bilateral parahippocampal and right middlefrontal gyrus were significantly lower than the controls at ten months.The brain morphologic showed that the Gray Matter Density (GMD) ofright parahippocampal, left cingulate gyrus, left inferior frontal gyrus, left medial frontal gyrus, left middle temporal gyrus, left inferior temporal,left insula and left inferior parietal lobule were significantly higher than attwo months. (6) The DTI results showed PTSD patients at two monthshad significantly higher fractional anisotropy values in the left anteriorcingulate gyrus, right posterior cingulate gyrus, left subcorpus callosum,right middle frontal gyrus, and left parahippocampal gyrus.
     Conclusions Our findings suggest that neurophysiologicalalterations, memory performance deficit have developed in acute severePTSD. By longitudinal research, we found the brain function andstructure made changes. Some brain regions recovered, but some didn't.In all, the brain areas such as frontal lobe and hippocampus mayimportantly contribute to the PTSD neurocircurity. Additionally, therewere some ambivalent results in the present study and need futureresearch and interpretation. Tranma influenced PTSD patientschronically.
引文
[1] American Psychiatric Association. Diagnostic and Statistical Manual for Mental Disorders, 4th ed. American Psychiatric Press, 2000. Washington, DC (Text revision).
    [2] Kessler HS, Kilpatrick DG, Dansky BS, et al. Posttraumatic stress disorder in the national comorbidity Survey. Arch Gen Psychiatry, 1995. 52: 1048-1055.
    [3] Hull AM. Neuroimaging findings in post traumatic stress disorder: Systematic review. Bri J Psychiatry, 2002. 181: 102-110.
    [4] Lanius RA, Williamson PC, Bluhm RL, et al. Functional connectivity of dissociative responses in posttraumatic stress disorder: a functional magnetic resonance imaging investigation. Biol Psychiatry, 2005. 57:873-884.
    [5] Shin LM, Rauch AL, Pitman RK. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann. N.Y. Acad. Sci. 2006. 1071:67-79
    [6] Davis M, Whalen PJ. The amygdala: vigilance and emotion. Mol. Psychiatry, 2001. 6: 13-34.
    [7] Morris, JS, Ohman A, Dolan BJ. Conscious and unconscious emotional learning in the human amygdala. Nature, 1998. 393: 467-470.
    [8] Whalen PJ, Rauch SL, Etcoff NL, et al. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J. Neurosci, 1998. 18:411-418.
    [9] Ledoux JE. Emotion circuits in the brain. Annu. Rev. Neurosci, 2000. 23: 155-184.
    [10]Orr SP, Metzger LJ, Lasko NB, et al. De novo conditioning in traumaexposed individuals with and without posttraumatic stress disorder. J. Abnorm. Psychol, 2000. 109: 290-298.
    [11]Peri T, Ben-Shakhar G, Orr SP, et al. Psychophysiologic assessment of aversive conditioning in posttraumatic stress disorder. Biol. Psychiatry, 2000. 47: 512-519.
    [12]Aggleton JP, Burton MJ, Passingham RE. Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res, 1980. 190: 347-368.
    [13]Chiba T, Kayahara T, Nakano K. Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res, 2001. 888: 83-101.
    [14]Ghashghaei HT, Barbas H. Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience, 2002.115:1261-1279.
    [15]Stefanaccl L, Amaral DG. Some observations on cortical inputs to the macaque monkey amygdala: an anterograde tracing study. J. Comp. Neurol. 2002. 451:301-323.
    [16]Milad MR, Quirk GJ. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature, 2002. 420: 70-74.
    [17]Morgan MA, Romanski LM, Ledoux JE. Extinction of emotional learning: contribution ofmedial prefrontal cortex. Neurosci. Lett, 1993. 163: 109-113.
    [18]Quirk GJ, Russo GK, Barron JL et al. The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J. Neurosci, 2000. 20: 6225- 6231.
    [19]Rothbaum BO, Kozak MJ, Foa EB, et al. Posttraumatic stress disorder in rape victims: autonomic habituation to auditory stimuli. J. Trauma. Stress, 2001. 14: 283-293.
    [20] Corcoran KA, Maren S. Hippocampal inactivation disrupts contextual retrieval of fear memory after extinction. J. Neurosci, 2001. 21: 1720-1726.
    [21]Eichenbaum H. A cortical-hippocampal system for declarative memory. Nat. Rev. Neurosci, 2000. 1: 41-50.
    [22]Schacter DL. The cognitive neuroscience of memory: perspectives from neuroimaging research. Philos. Trans. R. Soc. Lond. B. Biol. Sci, 1997. 352: 1689-1695.
    [23]Dolcos F, Labar KS, Cabeza R. Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron, 2004. 42: 855-863.
    [24]Mcgaugh JL. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu. Rev. Neurosci, 2004. 27: 1-28.
    [25]Sapolsky RM, Uno H, Rebert CS, et al. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J. Neurosci, 1990. 10: 2897-2902.
    [26]Uno H, Tarara R, Else JG, et al. Hippocampal damage associated with prolonged and fatal stress in primates. J. Neurosci, 1989. 9: 1705-1711.
    [27]Watanabe Y, Gould E, Mcewen BS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res, 1992. 588: 341- 345.
    [28]Layton B, Krikorian R. Memory mechanisms in posttraumatic stress disorder. J. Neuropsychiatry Clin. Neurosci, 2002.14: 254-261.
    [29]Elzinga BM, Bremner JD. Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)? J. Affect. Disord, 2002. 70: 1-17.
    [30]Hamner MB, Lorberbaum JP, George MS. Potential role of the anterior cingulate cortex in PTSD: review and hypothesis. Depress. Anxiety, 1999. 9: 1-14.
    [31]Matsuoka Y, Yamawaki S, Inagaki M et al. A volumetric study of amygdala in cancer survivors with intrusive recollections. Biol. Psychiatry, 2003. 54: 736-743.
    [32]Rauch SL, Vanderkolk BA, Fisler RE, et al. A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Arch. Gen. Psychiatry, 1996. 53: 380- 387.
    [33] Shin LM, Orr SP, Carson MA, et al. Regional cerebral blood flow in amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Arch. Gen. Psychiatry, 2004. 61: 168- 176.
    [34]Driessen M, Beblo T, Mertens M, et al. Posttraumatic stress disorder and fMRI activation patterns of traumatic memory in patients with borderline personality disorder. Biol. Psychiatry, 2004. 55: 603-611.
    [35]Liberzon I, Taylor SF, Amdur R, et al. Brain activation in PTSD in response to trauma-related stimuli. Biol. Psychiatry, 1999. 45: 817-826.
    [36]Pisstota A, Feans O, Frenandze M, et al. Neurofunctional correlates of posttraumatic stress disorder: a PET symptom provocation study. Eur. Arch. Psychiatry Clin. Neurosci, 2002. 252: 68-75.
    [37]Hendler T, Rotshtein P, Yeshurun Y, et al. Sensing the invisible: differential sensitivity of visual cortex and amygdala to traumatic context. Neuroimage, 2003. 19: 587-600.
    [38]Shin LM, Mcnally RJ, Kosslyn SM, et al. A positron emission tomographic study of symptom provocation in PTSD. Ann. N.Y. Acad. Sci, 1997. 821: 521-523.
    [39]Protopopescu X, Pan H, Tuescher O, et al. Differential time courses and specificity of amygdala activity in posttraumatic stress disorder subjects and normal control subjects. Biol. Psychiatry, 2005. 57: 464-473.
    [40]Bremner JD, Vermetten E, Schmahl C, et al. Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychol. Med, 2005. 35: 791-806.
    [41]Rauch SL, Whalen PJ, Shin LM, et al. Exaggerated amygdala response masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biol. Psychiatry, 2000. 47: 769-776.
    [42]Shin LM, Wright CI, Cannistraro PA, et al. A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch Gen Psychiatry, 2005. 62:273-281.
    [43]Willlams LM, Kemp AH, Felmingham KL, et al. Trauma modulates amygdala and medial prefrontal responses to consciously attended fear. Neuroimage, 2006. 29: 347-357.
    [44]Bryant RA, Felmingham KL, Kemp AH, et al. Neural networks of information processing in posttraumatic stress disorder: a functional magnetic resonance imaging study. Biol. Psychiatry, 2005. 58: 111-118.
    [45]Semple, WE, Goyer PF, Mccormick R, et al. Higher brain blood flow at amygdala and lower frontal cortex blood flow in PTSD patients with comorbid cocaine and alcohol abuse compared with normals. Psychiatry, 2000. 63: 65-74.
    [46] Armony JL, Corbo V, Clement MH et al. Amygdala response in patients with acute PTSD to masked and unmasked emotional facial expressions. Am. J. Psychiatry, 2005. 162: 1961-1963.
    [47]Ferdrikson M, Furmark T. Amygdaloid regional cerebral blood flow and subjective fear during symptom provocation in anxiety disorders. Ann. N.Y. Acad. Sci, 2003. 985: 341-347.
    [48]Gilboa A, Shalev AY, Laor L, et al. Functional connectivity of the prefrontal cortex and the amygdala in posttraumatic stress disorder. Biol. Psychiatry. 2004, 55: 263-272.
    [49]Lanius RA, Willlims PC, Densmore M, et al. Neural correlates of traumatic memories in posttraumatic stress disorder: a functional MRI investigation. Am. J. Psychiatry, 2001. 158: 1920-1922.
    [50] Shin LM, Mcnally RJ, Kosslyn SM, et al. Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD: a PET investigation. Am. J. Psychiatry, 1999.156: 575-584.
    [51]Bremner JD, Innis RB, Ng CK, et al. Positron emission tomography measurement of cerebral metabolic correlates of yohimbine administration in combat-related posttraumatic stress disorder. Arch. Gen. Psychiatry, 1997. 54: 246-254.
    [52]Bremner JD, Staib LH, Kalouper D, et al. Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: a positron emission tomography study. Biol. Psychiatry, 1999. 45: 806-816.
    [53]Bremner JD, Narayan M, Staib LH, et al. Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. Am. J. Psychiatry, 1999. 156: 1787-1795.
    [54]Carrion VG, Weems CF, Eliez S, et al. Attenuation of frontal asymmetry in pediatric posttraumatic stress disorder. Biol. Psychiatry, 2001. 50: 943-951.
    [55]De Bellis MD, Keshavan MS, Shifflett K, et al. Brain structures in pediatric maltreatment-related posttraumatic stress disorder: a sociodemographically matched study. Biol. Psychiatry, 2002. 52: 1066-1078.
    [56]Fennema-Notestine C, Stein MB, Kennedy CM, et al. Brain morphometry in female victims of intimate partner violence with and without posttraumatic stress disorder. Biol. Psychiatry, 2002. 52: 1089-1101.
    [57]Rauch SL, Shin LM, Segal E, et al. Selectively reduced regional cortical volumes in post-traumatic stress disorder. Neuroreport, 2003.14: 913-916.
    [58]Yamasue H, Kasai K, Iwanami A, et al. Voxel-based analysis of MRI reveals anterior cingulate gray-matter volume reduction in posttraumatic stress disorder due to terrorism. Proc. Natl. Acad. Sci. USA, 2003.100: 9039-9043.
    [59]Woodward SH, Kalouper D, Streeter CC, et al. Decreased anterior cingulate volume in combat-related PTSD. Biol. Psychiatry, 2006. 59: 582-587.
    [60]Corbo V, Clement MH, Armony JL, et al. Size versus shape differences: contrasting voxel-based and volumetric analyses of the anterior cingulate cortex in individuals with acute posttraumatic stress disorder. Biol. Psychiatry, 2005. 58: 119-124.
    [61]De Bellis MD, Keshavan MS, Spencer S, et al. N-Acetylaspartate concentration in the anterior cingulate of maltreated children and adolescents with PTSD. Am. J. Psychiatry, 2000. 157:1175-1177.
    [62]De Bellis MD, Keshavan MS, Harenski KA. Anterior cingulated N-acetylaspartate/creatine ratios during clonidine treatment in a maltreated child with posttraumatic stress disorder. J. Child. Adolesc. Psychopharmacol, 2001. 11: 311-316.
    [63]Seedat S, Videen JS, Kennedy CM, et al. Single voxel proton magnetic resonance spectroscopy in women with and without intimate partner violence related posttraumatic stress disorder. Psychiatry Res.: Neuroimaging, 2005.139: 249-258.
    [64]Bremner JD, Innis RB, Southwick SM, et al. Decreased benzodiazepine receptor binding in prefrontal cortex in combat-related posttraumatic stress disorder. Am. J. Psychiatry, 2000. 157: 1120-1126.
    [65]Dujita M, Southwick SM, Denucci CC, et al. Central type benzodiazepine receptors in Gulf War veterans with posttraumatic stress disorder. Biol. Psychiatry, 2004. 56: 95-100.
    [66]Britton JC, Phan KL, Taylor SF, et al. Corticolimbic blood flow in posttraumatic stress disorder during script-driven imagery. Biol. Psychiatry, 2005. 57: 832-840.
    [67]Lindauer RJ, Booij J, Hareaken JB, et al. Cerebral blood flow changes during script-driven imagery in police officers with posttraumatic stress disorder. Biol. Psychiatry, 2004. 56: 853-861.
    [68]Lauis RA, Williams PC, Hopper J, et al. Recall of emotional states in posttraumatic stress disorder: an fMRI investigation. Biol. Psychiatry, 2003. 53: 204-210.
    [69]Yang P, Wu MT, Hsu CC, et al. Evidence of early neurobiological alternations in adolescents with posttraumatic stress disorder: a functional MRI study. Neurosci. Lett, 2004. 370: 13-18.
    [70]Bremner JD, Vermetten E, Vythilingam M, et al. Neural correlates of the classic color and emotional stroop inwomen with abuse-related posttraumatic stress disorder. Biol. Psychiatry, 2004. 55: 612-620.
    [71]Shin LM, Whalen PJ, Pitman RK, et al. An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biol. Psychiatry, 2001. 50: 932-942.
    [72]Bremner JD, Vythilingam M, Vermetten E, et al. Neural correlates of declarative memory for emotionally valenced words in women with posttraumatic stress disorder related to early childhood sexual abuse. Biol. Psychiatry. 2003, 53: 879-889.
    [73]Fernadez M, Pissiota A, Frans O, et al. Brain function in a patient with torture related post-traumatic stress disorder before and after fluoxetine treatment: a positron emission tomography provocation study. Neurosci. Lett, 2001. 297:101-104.
    [74]Seedat S, Warwick SJ, Vanheerden B, et al. Single photon emission computed tomography in posttraumatic stress disorder before and after treatment with a selective serotonin reuptake inhibitor. J. Affect. Disord. 2004, 80: 45-53.
    [75]Shin LM, Kosslyn SM, Mcnally RJ, et al. Visual imagery and perception in posttraumatic stress disorder. A positron emission tomographic investigation. Arch. Gen. Psychiatry, 1997. 54: 233-241.
    [76]Sachinvala N, Kling A, Suffin S, et al. Increased regional cerebral perfusion by 99m Tchexamethyl propylene amine oxime single photon emission computed tomography in post-traumatic stress disorder. Mil. Med, 2000. 165: 473-479.
    [77]Zubieta JK, Chinitz JA, Lombardi U, et al. Medial frontal cortex involvement in PTSD symptoms: a SPECT study. J. Psychiatr. Res, 1999. 33: 259-264.
    [78]Lanius R, Williams P, Boksman K, et al. Brain activation during scriptdriven imagery induced dissociative responses in PTSD: a functional magnetic resonance imaging investigation. Biol. Psychiatry, 2002. 52: 305-311.
    [79]Lanius RA, Williams PC, Densmore M, et al.. The nature of traumatic memories: a 4-T fMRI functional connectivity analysis. Am. J. Psychiatry, 2004. 160:1-9.
    [80]Lanius RA, Williams PC, Bluhm RL, et al. Functional connectivity of dissociative responses in posttraumatic stress disorder: a functional magnetic resonance imaging investigation. Biol. Psychiatry, 2005. 57: 873-884.
    [81]Shaw ME, Strother SC, Mcfarlane AC, et al. Abnormal functional connectivity in posttraumatic stress disorder. Neuroimage, 2002. 15: 661-674.
    [82]Williams LM, Kemp AH, Felmingham K, et al. Trauma modulates amygdale and medial prefrontal responses to consciously attended fear. Neuroimage 2006. 29:347-357
    [83]Protopopescu X, Pan H, Tuescher O, et al. Differential time courses and specificity of amygdale activity in posttraumatic stress disorder subjects and normal control subjects. Biol Psychiatry 2005. 57:464-473.
    [84]Gilboa A,Shalev AY,Laor L, et al.Functional Connectivity of the prefrontal cortex and the amygdala in posttraumatic stress disorder. Biological Psychiatry. 2004. 55:263-272.
    [85]Yehuda R, Golier JA, Tischler L, et al. Hippocampal volume in aging combat veterans with and without posttraumatic stress disorder: relation to risk and resilience factors. Journal of psychiatric research, 2007. 41:435-445
    [86]Bremner JD, Vythilingham M, Vermetten E, et al. MRI and PET study of deficits in hippocampal structure and function inwomen with childhood sexual abuse and posttraumatic stress disorder. Am. J. Psychiatry, 2003. 160: 924—932.
    [87]Gurvits TV, Shenton ME, Hokama H, et al. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol. Psychiatry, 1996.40: 1091-1099.
    [88]Gilbertson MW, Shenton ME, Ciszewski A, et al. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat. Neurosci, 2002. 5: 1242-1247.
    [89]Bremner JD, Randall P, Scott TM, et al. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am. J. Psychiatry, 1995. 152: 973-981.
    [90]Bremner JD, Pandall P, Vermetten E, et al. Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse—a preliminary report. Biol. Psychiatry, 1997.41:23-32.
    [91] Stein MB, Koverola C, Hanna C, et al. Hippocampal volume inwomen victimized by childhood sexual abuse. Psychol. Med, 1997. 27: 951-959.
    [92]Villarreal G, Hamilton DA, Petropoulos H, et al. Reduced hippocampal volume and total white matter volume in posttraumatic stress disorder. Biol. Psychiatry, 2002. 52: 119-125.
    [93]Wignall EL, Dickson JM, Vaughan et al. Smaller hippocampal volume in patients with recent-onset posttraumatic stress disorder. Biol. Psychiatry, 2004. 56: 832-836.
    [94]Winter H, Me E. Hippocampal volume in adult burn patients with and without posttraumatic stress disorder. Am. J. Psychiatry, 2004.161: 2194—2200.
    [95]Brown S, Freeman T, Kimbell T, et al. In vivo proton magnetic resonance spectroscopy of the medial temporal lobes of former prisoners of war with and without posttraumatic stress disorder. J. Neuropsychiatry Clin. Neurosci, 2003. 15: 367-370.
    [96]Freeman TW, Cardwell D, Karson CN, et al. In vivo proton magnetic resonance spectroscopy of the medial temporal lobes of subjects with combatrelated posttraumatic stress disorder. Magn. Reson. Med, 1998. 40: 66-71.
    [97]Mohankrishnan Menon P, Nasrallah HA, Lyons JA, et al. Singlevoxel proton MR spectroscopy of right versus left hippocampi in PTSD. Psychiatry Res, 2003.123: 101-108.
    [98]Schuff N, Neylan TC, Lenoci MA, et al. Decreased hippocampal N-acetylaspartate in the absence of atrophy in posttraumatic stress disorder. Biol.Psychiatry, 2001. 50: 952-959.
    [99]Villarreal G, Petropoulos H, Hamilton DA, et al. Proton magnetic resonance spectroscopy of the hippocampus and occipital white matter in PTSD: preliminary results. Can. J. Psychiatry, 2002. 47: 666-670.
    [100] Vermetten E, Vythilingham M, Southwick SM, et al. Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol. Psychiatry. 2003, 54: 693-702.
    [101] Debellis MD, Keshavan MS, Clark DB, et al. A.E. Bennett Research Award. Developmental traumatology. Part II: Brain development. Biol. Psychiatry, 1999. 45: 1271-1284.
    [102] Goloer JA, Yehuda R, Desanti S, et al. Absence of hippocampal volume differences in survivors of the Nazi Holocaust with and without posttraumatic stress disorder. Psychiatry Res, 2005.139: 53-64.
    [103] Pederson CL, Maurer SH, Kaminski PL, et al. Hippocampal volume and memory performance in a community-based sample of women with posttraumatic stress disorder secondary to child abuse. J. Trauma. Stress, 2004. 17: 37-40.
    [104] Bonne O, Brandes D, Gilboa A, et al. Longitudinal MRI study of hippocampal volume in trauma survivors with PTSD. Am. J. Psychiatry, 2001. 158: 1248-1251.
    [105] De Bellis MD, Hall J, Boring AM, et al. A pilot longitudinal study of hippocampal volumes in pediatric maltreatment-related posttraumatic stress disorder. Biol. Psychiatry, 2001. 50: 305-309.
    [106] Shin LM, Shin PS, Heckers S, et al. Hippocampal function in posttraumatic stress disorder. Hippocampus, 2004. 14: 292-300.
    [107] Osuch EA, Benson B, Geraci M, et al. Regional cerebral blood flow correlated with flashback intensity in patients with posttraumatic stress disorder. Biol. Psychiatry, 2001. 50: 246-253.
    [108] Isaac CL, Cushway D, Jones GV: Is posttraumatic stress disorder associated with specific deficits in episodic memory? Clin Psychol Rev, 2006. 28: 939-955.
    [109] McEwen BS. Protective and damaging effects of stress mediators: central role of the brain. Prog Brain Res, 2000. 122: 25-34.
    [110] McLeod DS, Koenen KC, Meyer JM, et al. Genetic and environmental influences on the relationship among combat exposure, posttraumatic stress disorder symptoms, and alcohol use. Journal of Traumatic Stress. 2001.14: 259-275.
    [111] Blanchard EB, Jones-Alexander J, Buckley TC, et al. Psychometric properties of the PTSD Checklist (PCL). Behav Res Ther, 1996;34:669-673.
    [112] WeathersFW, Litz BT, Herman DS, et al. The PTSD checklist: reliability, validity, and diagnostic utility. Presented at the annual meeting of the international society for traumatic stress studies, San Antonio, Tex, Oct 24-27, 1993.
    [113] First MB,Gibbon M,Spizer RL,et al(周茹英,胡峻梅译).Structured clinical interview for DSM-Ⅳ axis disorders(research version).四川大学华西医学中心附属第一医院心理卫生研究所.2001.
    [114] Blake DD, Weathers FW, Nagy LM, et al. The development of a clinician-administered PTSD scale. J Trauma Stress, 1995.8:75-90.
    [115] Kessler RC, Sonnega A, Beomet E, et al. Posttranmatic stress disorder in the national comorbidity survey. Arch Gen Psychiatry, 1995.52:1048-1060.
    [116] Norris FH, Friedman MJ, Watson PJ, et al. 60,000 disaster victims speak. Part Ⅰ. An empirical review of the empirical literature, 1981-2001. Psychiatry, 2002. 65:207-239.
    [117] Wagner D, Heinrichs M, Ehlert U. Prevalence of sympotoms of posttraumatic stress in German professional firefighters. Am J Psychiatry, 1998. 155:1727-1732.
    [118] Nemeroff CB, Bremner JD, Foa EB, et al. Posttraumatic stress disorder: a state-of-science review. J Psychiatr Res, 2006.40:1-21.
    [119] Galea s, Aherm J, Resnick H, et al. Psychological sequelae of the September 11 terrorist attacks in New York City. New Engl J Med, 2002. 346-982-987.
    [120] Breslau N, Davis GC, Andreski P, et al. Traumatic events and posttraumatic stress disorder in an urban population of young adults. Arch Gen Psychiatry, 1991. 48: 216-222.
    [121] 汪向东,姜经纬.创伤后应激障碍的流行病学特点及危险因素.中华流行病学杂志,2002.23:334-337
    [122] 侯彩兰,李凌江.创伤后应激障碍和人格特征的关系.中国心理卫生杂志,2006.20:256-258.
    [123] Noback CR, Strominger NL, Demarest RJ. The human nervous system. Philadelphia: Williams and Wilkins, 1996.
    [124] Morgan MA, LeDoux JE. Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behav Neurosci 1995. 109: 681-688.
    [125] Maren S, Quick GJ. Neuronal signaling of fear memory. Nat Rev Neurosci, 2004.5: 844-852.
    [126] Vogt BA, Gabriel M, editors. Neurobiology of cingulated cortex and limbic thalamus: a comprehensive handbook: Brikhauser; 1993.
    [127] Carmichael ST, Price JL. Limbic connections of the orbital and medial prefrontal cortex in Macaque monkeys. J Comparative Neurology, 1995. 363:615-641.
    [128] Frysztak RJ, Neafsey EJ. The effect of medial frontal cortex lesions on cardiovascular conditioned emotional responses in the rat. Brain Res, 1994. 643:181-193.
    [129] Sesack SR, Pickel VM. Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbeos septi and on dopamine neurons in the ventral tegrnental area. J Comparative Neurology, 1992. 320: 145-160.
    [130] Neafsey EJ, Terreberry RR, Hurley KM, Rutt KG, Frysztak RJ. Anterior cingulate cortex in rodents: connections, visceral control functions and implications for emotion. In: Vogt BA, Gabriel M,editors. Neurobiology of cingulate cortex and limbic thalamus. Boston: Birkhauser; 1993. 206-223.
    [131] Critchley HD, Melmed RN, Featherstone E, Mathia CJ, Dolan RJ. Volitional control of autonomic arousal: a functional magnetic resonance study. NeuroImage, 2002. 16:909-919.
    [132] van Veen V, Carter CS. The anterior cingulate as a conflict monitonfMRI and ERP studies. Physiology and Behavior, 2002. 77:477-82.
    [133] Hartley AA, Speer NK. Locating and fractionating working memory using functional neuroimaging: storage, maintenance, and executive functions. Microsc Res Tech, 2000. 51(l):45-53.
    [134] Lebron K, Milad MR, Quirk GJ. Delayed recall of fear extinction in rats with lesions of ventral medial prefrontal cortex. Learn Mem, 2004.11:544-548.
    [135] Milad MR, Rauch SL, Pitman RK, Quirk GJ. Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol, 2006. 73: 61-71.
    [136] Vogt BA, Finch DM, Olson CR. Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex, 1992. 2:435-443.
    [137] Hobson JA, Pace-Schott EF, Stickgold R. Consciousness: its vicissitudes in waking and sleep. In The New Cognitive Neurosciences. Edited by Gazzaniga M. Cambridge: MIT Press, 2000:1341-1354.
    [138] Pardo JV, Pardo PJ, Janer KW, Raichle ME. The anterior cingulated cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci U S A, 1990. 87:256-259.
    [139] McNally RJ, Kaspi SP, Riemann BC, Zeitlin SB. Selective processing of threat cues in posttraumatic stress disorder. J Abnorm Psychol, 1990. 99:398-402.
    [140] Bremner JD, Vythilingam M, Vermetten E, et al. Neural correlates of declarative memory for emotionally valenced words in women with posttraumatic stress disorder related to early childhood sexual abuse. Biol Psychiatry, 2003. 53:879-889.
    [141] Rauch SL, van der Kolk B. A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-drive imagery. Arch Gen Psychiatry, 1996. 53: 380-387.
    [142] Bremner JD, Staib LH, Kaloupek D, Southwick SM, Soufer R, Charney DS. Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: a positron emission tomography study. Biol Psychiatry, 1999.45: 806-816.
    [143] Pissiota A, Frans O, Fernandez M, et al. Neurofunctional correlates of posttraumatic stress disorder: a PET symptom provocation study. Eur Arch Psychiatry Clin Neurosci, 2002. 252: 68-75.
    [144] Squire LR. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev, 1992. 99: 195-231.
    [145] Buckner RL, Head D, Parker J, Fotenos AF, Marcus D, Morris JC, Snyder AZ. A unified approach for morphometric and functional data analysis in young, old and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage, 2004.23: 724-738.
    [146] Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev, 1991. 12: 118-134.
    [147] Brerrmer JD. Hypotheses and controversies related to effects of stress on the hippocampus: an argument for stress-induced damage to the hippocampus in patients with posttraumatic stress disorder. Hippocampus, 2001.11:75-81.
    [148] Niki K, Luo J. An f MRI study on the time-limited role of the medial temporal lobe in long-term topographical autobiographic memory. J Cogn Neurosci, 2002. 14: 500-507.
    [149] Sakamoto H, Fukuda R, Okuaki T, Rogers M, Kasai K, Machida T, Shirouzu I, Yamasue H, Akiyama T, Kato N. Parahippocampal activation evoked by masked traumatic images in posttraumatic stress disorder: a finctional MRI study. Neuroim, 2005.26: 813-821.
    [150] Davis M, Whalen PJ. The amygdala: vigilance and emotion. Mol Psychiatry, 2001.6: 13-34.
    [151] Ledoux JE. Emotion circuits in the brain. Annu Rev Neurosci, 2000. 23: 155-184.
    [152] Matsuoka Y, Yamawaki S, Inagaki M, Akechi T, Uchitomi Y. A volumetric study of amygdala in cancer survivors with intrusive recollections. Biol Psychiatry, 2003. 54: 736-743.
    [153] 李德军,包尚联,马林等.弥散张量成像(DTI)在中枢神经系统(CNS)中的应用.国外医学生物医学工程分册,2003.26(5):197-202.
    [154] Kim MJ, Lyoo IK, Kim SJ, et al. Disrupted white matter tract integrity of anterior cingulate in trauma surviors. Neuroreport, 2005. 1049-1053.
    [1] Breslau N. Epidemiological studies of trauma, posttraumatic stress disorder and other psychiatric disorders. Canada Journal of Psychiatry. 2002, 47: 923-931.
    [2] Krueger RF, McGue M, Lacono WG. The higher-order structure of common DSM mental disorders: internalization, externalization, and their connections to personality. Personality and individual differences. 2001, 30: 1245-1259.
    [3] Miller MW, Kaloupek DG, Dillon AL, et al. Externalizing and internalizing subtypes of combat-related PTSD: a replication and extension using the PSY-5 scales. Journal of Abnormal Psychology, 2004, 113(4): 636-645.
    [4] O'Toole BI, Marshall RP, Schureck RJ, et al. Risk factors for posttraumatic stress disorder in Australian Vietnam Veterans. Australian and New Zealand Journal of Psychiatry. 1998, 32: 21-31.
    [5] Bramsen I, Dirkzwager AJE, Van der Ploeg HM. Predeployment personality traits and exposure to trauma as predictors of posttraumatic stress symptoms: a prospective study of former peacekeepers. American Journal of Psychiatry, 2000, 157: 1115-1119.
    [6] Schnurr PP, Friedman MJ, Rosenberg SD. Premilitary MMPI scores as predictors of combat-related PTSD symptoms. American Journal of Psychiatry. 1993, 150:479-483.
    [7] Fauerbach JA, Lawrence JW, Schmidt CW, et al. Personality predictors of injury-ralated posttraumatic stress disorder. Journal of Nervous and Mental Disease. 2000,188:510-517.
    [8] Carlier IVE, Lamberts RD, Gersons BPR. Risk factors for posttraumatic stress symptomatology in police officers: a prospective analysis. Journal of Nervous and Mental Disrease. 1997,185:498-506.
    [9] Holeva V, Tarrier N. Personality and peritraumatic dissociation in the prediction of PTSD in victims of road traffic accidents. Journal of Psychosomatic Research. 2001, 51:687-692.
    [10]Bennett P, Owen RL, Koutsakis S, et al. Personality, social context and cognitive predictors of posttraumatic stress disorder in myocardial infarction patients. Psychology and Health. 2002,17:489-500.
    [11]McFarlane AC. Avoidance and intrusion in posttraumatic stress disorder. Journal of Nervous and Mental Disease.1992,180:439-445.
    [12]Breslau N, Davis GC, Andreski P, et al. Traumatic events and posttraumatic stress disorder in an urban population of young adults. Archives of Gereral Psychiatry. 1991:48:216-222.
    [13]Regehr C, Hill J, Glancy GD. Individual predictors of traumatic reactions in firefighters. Journal of Nervous and Mental Disease. 2000,188,:333—339.
    [14]Lonigan CJ, Shannon MP, Taylor CM, et al. Children exposed to disaster: II. Risk factors for the development of post-traumatic symptomatology. Journal of the American Academy of Child and Adolescent Psychiatry. 1994,33:94-105.
    [15]Lauterbach D, Vrana S. The relationship among personality variables, exposure to traumatic events, and severity of posttraumatic stress symptoms. Journal of Traumatic Stress. 2001,14:29-45.
    [16]Cheung Chung M, Dennis I, Easthope Y, et al. A multiple-indicator multiple-cause model for posttraumatic stress reactions :personality, coping and maladjustment._Psychosomatic Medicine. 2005,67:251-259
    [17]Miller MW. Personality and etiology and expression of PTSD: a three-factor model perspective. Clinical Psychiatry: Science and Practise. 2003,10:373-393.
    [18]Gibson LE, Holt JC, Fondacaro KM, et al. An examination of antecedent traumas and psychiatric comorbidity among male inmates with PTSD. Journal of Traumatic Stress. 1999,12:473-484.
    [19]Zlotnick C, Zimmerman M, Wolfsdorf BA et al. Gender differences in patients with posttraumatic stress disorder in a general psychiatric practice. American Journal of Psychiatry. 2001,158:1923-1925.
    [20]Verona E, Patrick CJ, Lang AR. A direct assessment of the role of state and trait negative emotion in aggressive behavior. Journal of Abnornal Psychiatry. 2002, 111:249-258.
    [1] Myers KM, Davis M. Behavioral and neural analysis of extinction. Neuron, 2002,36:567-584.
    [2] Pare D, Quirk G.J, Ledoux JE. New vistas on amygdala networks in conditioned fear. J Neurophysiol, 2004, 92:1-9.
    [3] LeDoux JE, Romanski LM, Xagorarts A. Indelibility of subcortical emotional memories. J Cogn Neurosci. 1989, 8:2517-2529.
    [4] Mogan MA, Romanski LM, LeDoux JE. Extinction of emotional learning: Contribution of medial prefrontal cortex. Neurosci Lett, 1993,163:109-113.
    [5] Gewirtz JC, Falls WA, Davis M. Normal conditioned inhibition and extinction of freezing and fear-potentiated startle following electrolytic lesions of medical prefrontal cortex in rats. Behav Neurosci, 1997, 111 :712-726.
    [6] Morrow BA, Elsworth JD, Rasmusson AM et al. The role of mesoprefrontal dopamine neurons in the acquisition and expression of conditioned fear in the rat. Neuroscience, 1999, 92:553-564
    [7] Quirk G.J, Russo G.K, Barron JL, et al. The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci, 2000, 20:6225-6231.
    [8] Milad MR, Quirk GJ. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature, 2002,420:70-74.
    [9] Herry C, Garcia R. Behavioral and paired-pulse facilitation analyses of long-lasting depression at excitatory synapses in the medial prefrontal cortex in mice. Behav. Brain Res, 2003, 146:89-96.
    [10]Barrett D, Shumake J, Jones D, et al. Metabolic mapping of mouse brain activity after extinction of a conditioned emotional response. J Neurosci, 2003, 23:5740-5749.
    [11]Repa JC, Muller J, Apergis J, et al. Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat Neurosci 2001, 4:734-731.
    [12]Falls WA, Miserendino MJ, Davis M. Extinction of fear-potentiated startle: Blockade by infusion of an NMD A antagonist into the amygdale. J Neurosci, 1992, 12:854-863.
    [13]Schafe GE, Atkins CM, Swank MW, et al. Activation of ERK/MAP kinase in the amygdale is required for memory consolidation of Pavlovvian fear conditioning. J Neurosci, 2000,20:8177-8187.
    [14]Ledgerwood L, Richardson R, Cranney J. Effects of D-cycloserine on extinction of conditioned freezing. Behav. Neurosci, 2003,117:341-349.
    [15]Rodrigues SM, Schafe G.E, LeDoux JE. Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J Neurosci, 2001,21:6889-6896.
    [16]Sotres-Bayon F, Bush DE, LeDoux JE. Emotional perseveration: an update on prefrontal-amygdala interactions in fear extinction. Learn. Mem, 2004, 11: 525-535.
    [17]Marsicano G, Wotjak CT, Azad SC, et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature, 2002,418:530-534.
    [18]Shumyatsky,G.P. Tsvetkov E, Malleret G, et al. Identification of a signaling network in lateral nucleus of amygdale important for inhibiting memory specifically related to learned fear. Cell, 2002, 111:905-918.
    [19]Grace AA, Rosenkranz JA. Regulation of conditioned responses of basolateral amygdale neurons. Physiol Behav, 2002, 77:489-493.
    [20]Rosenkranz JA, Moore H, Grace AA. The prefrontal cortex regulates lateral amygdale neuronal plasticity and responses to previously conditioned stimuli. J Neurosci, 2003,23:11054-11064.
    [21]Grace AA, Rosenkranz JA. Regulation of conditioned responses of basolateral amydala neurons. Physiol Behav, 2002, 77: 489-493.
    [22]Pare D, Quirk GJ, LeDoux JE. New vitas on amygdala networks in conditioned fear. J Neurophysiol, 2004, 92:1-9.
    [23]Quick GJ, Likhtlk E, Pelletier JG, et al. Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci, 2003,23:8800-8807.
    [24]Sotres-Bayon F, Bush D EA, LeDouxJE. Emotional perseveration: An update on prefrontal-amygdala interactions in fear extinction. Learning and Memory, 2004, 525-535.
    [25]Siegle GJ, Steinhauer SR, Thase ME, et al. Can't shake that feeling: event-related f MRI assessment of sustained amygdale activity in response to emotional information in depressed individuals. Biol Psychiatry, 2002, 51:693-707.
    [26]Drevets WC. Neuroimaging abnormalities in the amydala in mood disorders. Ann NY Acad Sci, 2003, 985:420-444.
    [27]Anand A, Shekhar A. Brain imaging studies in mood and anxiety disorders: special emphasis on the amygdale. Ann NY Acad Sci, 2003, 985:370-388.
    [28]Shin LM, Whalen PJ, Pitman PK, et al. An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biol Psychiatry, 2001, 50:932-942.
    [29]Corcoran KA, Maren S. Hippocampal inactivation disrupts contextual retrieval of fear memory after extinction. J Neurosci, 2001,21:1720-1726.
    [30]Hobin JA, Goosens KA, Maren S. Context-dependent neuronal activity in the lateral amygdala represents fear memories after extinction. J Neurosci, 2003, 23:8410-8416.
    [31]MarenS, QuirkGJ. Neuronal signaling of fear memory. Nature Reviews Neuroscience, 2004, 5:844-852.
    [1] Charney DS. Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress. American Journal of Psychiatry, 2004; 161:195-216.
    [2] LeDoux JE. Emotion circuits in the brain. Annual Review of Neuroscience, 2000; 23:155-184.
    [3] Hamner MB, Lorberbaum JP, George MS. Potential role of the anterior cingulate cortex in PTSD: review and hypothesis. Depress Anxiety,1999; 9:1-14.
    [4] Bremner JD. Functional neuroanatomical correlates of traumatic stress revisited 7 years later, this time with data. Psychopharmacological Bulletin, 2003;37:6-25.
    [5] Rothbaum BO, Davis M. Applying learning principles to the treatment of post-trauma reactions. Annales of the New York Academy of Sciences, 2003; 1008:112-121.
    [6] Wald J, Taylor. Preliminary research on the efficacy of virtual reality exposure therapy to treat driving phobia. Cyberpsychological Behaviour, 2003; 6:459-465.
    [7] Taylor S, Thordason DS, Maxfield L,et al. Comparative efficacy, speed and adverse effects of three PTSD treatments: exposure therapy, EMDR, and relaxation training. Journal of Consulting and Clinical Psychology, 2003; 71:330-338.
    [8] van Minnen A, Wessel I, Dijkstra T, et al. Changes in PTSD patients' narratives during prolonged exposure therapy: a replication and extension. Journal of Traumatic Stress, 2002; 15:255-258.
    [9] Maren S, Quick GJ. Neuronal signaling of fear memory. Natural Reviews of Neuroscience, 2004; 5:844-852.
    [10]Davis M, Whalen PJ. The amygdala: vigilance and emotion. Molecular Psychiatry, 2001 ; 6 :13-34.
    [11]Cheng DT, Knight DC, Smith CN, et al. Functional MRI of human amygdala activity during Pavlovian fear conditioning: stimulus processing versus response expression. Behavioral Neuroscience, 2003; 117:3-10
    [12]Knight DC, Smith CN, Cheng DT, et al. Amygdala and hippocampal activity during acquisition and extinction of human fear conditioning. Cognitive Affect Behavioral Neuroscience, 2004b; 4:317-325.
    [13]Knight DC, Cheng DT, Smith CN, et al. Neural substrates mediating human delay and trace fear conditioning. Journal of Neuroscience, 2004 a; 24: 218-228.
    [14]Grillon C, Ameli R. Conditioned inhibition of fear-potentiated startle and skin conductance in humans. Psychophysiology, 2001; 38:807-815.
    [15]Orr SP, Metzger LJ, Lasko NB, et al. De novo conditioning in trauma-exposed individuals with and without posttraumatic stress disorder. Journal of Abnormal Psychology, 2000; 109:290-298.
    [16]Fischer H, Anderso JL, Furmark T, et al. Fear conditioning and brain activity: a positron emission tomography study in humans. Behavioral Neuroscience, 2000; 114:671-680.
    [17]LeDoux JE, Romanski LM, Xagorarts A. Indelibility of subcortical emotional memories. Journal of Cognitive Neuroscience, 1989; 8:2517-2529.
    [18]Morgan MA, Romanski LM, LeDoux JE. Extinction of emotional learning :Contribution of medial prefrontal cortex. Neuroscience Letter, 1993; 163:109-113.
    [19]Gewirtz JC, Falls WA, Davis M. Normal conditioned inhibition and extinction of freezing and fear-potentiated startle following electrolytic lesions of medical prefrontal cortex in rats. Behavioral Neuroscience, 1997; 111 :712-726.
    [20]Sotres-Bayon F, Bush D EA, LeDouxJE. Emotional perseveration: An update on prefrontal-amygdala interactions in fear extinction. Learning and Memory, 2004, 525-535.
    [21]Morgan MA, Schulkin J, LeDoux JE. Ventral medial prefrontal cortex and emotional perseveration: the memory for prior extinction training. Behavioural Brain Research, 2003; 146:121-130.
    [22]Fernandez EE. Prefrontocortical dopamine loss in rats delays long-term extinction of contextual conditioned fear, and reduces social interaction without affecting short-term social interaction memory. Neuropsychopharmacology, 2003; 28:490-498.
    [23]Lebron K, Milad MR, Quick GJ. Delayed recall of fear extinction in rats with lesions of ventral medial prefrontal cortex. Learn Memory, 2004; 11:544-548.
    [24]Milad MR, Quick GJ. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature, 2002; 420:70-74.
    [25]Herry C, Mons N. Resistance to extinction is associated with impaired immediate early gene induction in medial prefrontal cortex and amygdale. European Journal of Neuroscience, 2004; 20: 781-790.
    [26]Milad MR, Vidal-Gonzalez I, Quick GJ. Electrical stimulation of medial prefrontal cortex reduces conditioned fear in a temporally specific manner. Behavioral Neuroscience, 2004; 118:389-395.
    [27]Vertes RP. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse, 2004; 51:32-58.
    [28]Barrett D, Shumake J, Jones D, et al. Metabolic mapping of mouse brain activity after extinction of a conditioned emotional response. Journal of Neuroscience, 2003; 23:5740-5749.
    [29]Lin CH, Yeh SH, LU HY, et al. The similarities and diversities of signal pathways leading to consolidation of conditioning and consolidation of extinction of fear memory. Journal of Neuroscience, 2003; 23:8310-8317.
    [30]Ledgerwood L, Richardson R, Cranney J. Effects of D-cycloserine on extinction of conditioned freezing. Behavioral Neuroscience, 2003; 117:341-349.
    [31]Bishop S, Duncan J, Brett M, et al. Prefrontal cortical function and anxiety : controlling attention to threat-related stimuli. Nature Neuroscience, 2004; 7:184-188.
    [32]Molchan SE, Sunderland T, Mclntosh AR, et al. A functional anatomical study of associative learing in humans. Proceedings of the National Academy of Sciences of the United States of American, 1994; 91:8122-8126.
    [33] Gottfried JA, Dolan RJ. Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value. Nature Neuroscience, 2004; 7:1144-1152.
    [34]Phelps EA, Delgado MR, Nearing KI, et al. Extinction learning in humans : role of amygdala and vmPFC. Neuron, 2004; 43:897-905.
    [35]Koenen KC, Driver KL, Oscar-Berman M, et al. Measures of prefrontal system dysfuntion in posttraumatic stress disorder. Brain Cognition, 2001; 45:64-78.
    [36]Raunch SL, Whalen PJ, Shin LM, et al. Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biological Psychiatry, 2000; 47:769-776.
    [37]Semple WE, Goyer PF, McCormick R, et al. Higher brain blood flow at amygdala and lower frontal cortex blood flow in PTSD patients with comorbid cocaine and alcohol compared with normals. Psychiatry, 2000; 63:65-74
    [38]Shin LM, Orr SP, Carson MA, et al. Regional cerebral blood flow in the amygdale and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Archives of General Psychiatry, 2004; 61:168-176.
    [39]Protopopescu X, Pan H, Tuescher O, et al. Differential time courses and specificity of amygdale activity in posttraumatic stress disorder subjects and normal control subjects. Biological Psychiatry, 2005; 57:464-473.
    [40]Bryant BA, Felmingham KL, Kemp AH, et al. Neural networks of information processing in posttraumatic stress disorder: a functional magnetic resonance imaging study. Biological Psychiatry, 2005; 58:111-118.
    [41]Rauch SL, van der Kolk BA, Fisler RE, et al. A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Archives of General Psychaitry, 1996; 53: 380-387.
    [42]Liberzon I, Taylor SF, Amdur R, et al. Brain activation in PTSD in response to trauma-ralated stimuli. Biological Psychiatry, 1999; 45: 817-826.
    [43]Williams LM, Kemp AH, Felmingham K, et al. Trauma modulates amygdale and medial prefrontal responses to consciously attended fear. Neuroimage 2006, 29:347-357
    [44]Britton JC, Phan Luan, Taylor SF, et al. Corticol imbic blood flow in posttraumatic stress disorder during script-driven imagery. Biological Psychiatry, 2005; 57:832-840.
    [45]Lanius RA, Williamson PC, Bluhm RL, et al. Functional connectivity of dissociative responses in posttraumatic stress disorder: a functional magnetic resonance imaging investigation. Biological Psychiatry,2005; 57:873-884.
    [46]Gilboa A, Shalev AY, Laor L, et al. Functional connectivity of yhe prefrontal cortex and the amygdale in posttraumatic stress disorder. Biological Psychiatry, 2004; 55:263-272.
    [47] Shin LM, Wright CI, Cannistraro PA, et al. A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Archives of general psychiatry, 2005; 62:273-281
    [48] Kitayama N, Quinn S, Bremner JD. Smaller volume of cingulated cortex in abuse-related posttraumatic stress disorder. Journal of affective disorders, 2006; 90: 171-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700