用户名: 密码: 验证码:
中温固体氧化物燃料电池的研制与电极过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对经典柠檬酸法进行了改进,并采用改进的柠檬酸法合成出可以用于负载型La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ)(LSGM)薄膜制备的电解质超细粉料;系统考察了阳极基底电导率、微观孔结构等随LSGM掺入量不同而发生变化的规律及烧结方法、基底组成等对负载型LSGM薄膜质量的影响;采用分步烧结工艺制备出具有一定输出性能带SDC夹层的LSGM薄膜型中温固体氧化物燃料电池(SOFC)单电池。为了彻底避免高温下LSGM与NiO发生有害反应,首次采用浸渍阳极催化剂的方法,制备出高性能的阳极负载LSGM薄膜型(电解质薄膜厚度为15μm,LSM-YSZ作阴极)中温SOFC单电池,并用电化学、EDX等方法对电池开路电位偏低的原因、各种电池材料间的化学相容性等进行了研究。采用交流阻抗、极化、循环伏安等电化学方法对SSC-SDC、SSC-LSGM复合阴极的电化学性质进行了考察;系统地研究了Ag-SSC-SDC复合阴极的电化学性质随Ag粉种类、掺入量变化的规律。在此基础上,研制出20 wt%普通Ag-SSC-SDC高活性中温SOFC复合阴极。此外,本文还对BSCF电导率随SrO掺杂量、温度、环境氧分压变化的规律及其作为SOFC阴极材料的电化学活性、存在的问题等进行了研究;对Fe、Mg、Nd、Ga、Nd和Ga掺杂SrTiO_3的电导率随掺杂元素种类、温度、环境氧分压变化的规律及其作为中温SOFC抗积炭阳极材料的活性、存在问题可能的解决方案等进行了研究。
Traditional citric acid method (Pechini method) was modified and Mg0.2 O3-δ(LSGM) ultra-fine powder was synthesized by the improved citric acid method at relatively low temperature for the preparation of anode supported LSGM thin film. The effects of compositions of NiO-LSGM substrates on the electrical conductivity, the microstructure parameters of the reduced substrates were investigated. A LSGM thin film based SOFC single cell with an SDC interlayer prepared by step sintering procedures was fabricated and a relatively low output performance was achieved, hi order to prohibit the occurrence of the severe reaction between LSGM and NiO at high temperature, for the first time in the world, a SOFC with an impregnated anode, 15 um thick LSGM electrolyte and LSM-YSZ composite cathode was fabricated and tested, showing a high output performance (The maximum output power density reached to above 800 mW/cm2 at 800癈 when H2 was used as fuel and air as oxidant). The causes for the relatively low open circuit potent
    ial and the chemical compatibility of the cell materials at high temperatures were also elucidated by EDX and electrochemical methods. The electrical conductivity of SSC-SDC, SSC-LSGM composite cathode and the dependence of the electrochemical properties of Ag-SSC-SDC composite cathode upon the kind of Ag powder, the ratio of the Ag powder, temperature and environmental oxygen partial pressure were systematically studied. Following these work, a high activity cathode of 20 wt% normal Ag-SSC-SDC was developed. The effects of SrO doping level, temperature and oxygen partial pressure on the electrochemical conductivity of BSCF, the electrochemical activity of BSCF as cathode in an SOFC and related problems were discussed. The electrical conductivities of Fe, Mg, Nb, Ga doped SrTiO3 and Nb, Ga co-doped SrTiO3 were measured at various temperatures and oxygen partial pressures and the activities of these doped SrTiO3 as carbon tolerant
    
    
    anode materials, problems and possible routes to deal with these problems were also researched.
引文
[1] Nguyen Q. Minh. Ceramic fuel cells. J. Am. Ceram. Soc., 1993, 76(3). 563-588.
    [2] N.Q. Minh, T. Takahashi. Science and technology of ceramic fuel cells. Elsevier. 1995.
    [3] EG&G Services Parsons, Inc., Fuel Cell Handbook (Fifth Edition). U.S. department of energy, Office of fossil energy, National energy technology laboratory. October 2000.
    [4] Baukje de Poer. SOFC Anode-Hydrogen oxidation at porous nickel and nickel/yttria-stabilised zirconia cermet electrodes. Netherlands, 1998.
    [5] 衣宝廉.燃料电池—高效、环境友好的发电方式.化学工业出版社,2000.
    [6] 江义,李文钊,王世忠.高温固体氧化物燃料电池进展.化学进展,1997,9(4).387-396.
    [7] 江义.固体氧化物燃料电池最新发展动态.电化学,1998,4(4).353-360.
    [8] Harumi Yokokawa, Natsuko Sakai, Teruhisa Horita and Katsuhiko Yamaji. Recent developments in solid oxide fuel cell materials. Fuel cells, 2001, 1(2). 117-131.
    [9] Mark C. Williams. Status and market applications for the solid oxide fuel cell in the U.S. -A new direction. SOFC Ⅶ-Proceedings of the seventh international symposium. The electrochemical society, INC. 2001. 3-7.
    [10] D. Stover, R. Henne, P. Otschik, H. Schichl. Recent developments of SOFC technology in Germany. SOFC Ⅶ-Proceedings of the seventh international symposium. The electrochemical society, INC. 2001.38-49.
    [11] Gilles Lequeux. Status of the european SOFC programme. SOFC Ⅶ-Proceedings of the seventh international symposium. The electrochemical society, INC. 2001.14-27.
    [12] T. Takayama and M. Suzuki. Curren status of SOFC R&D program at NEDO. SOFC Ⅶ-Proceedings of the seventh international symposium. The electrochemical society, INC. 2001.8-13.
    [13] E. Ponthieu. Status of SOFC development in Europe. SOFC Ⅶ-Proceedings of the sixth international symposium. The electrochemical society, INC. 1999. 19-27.
    [14] 李瑛,王林山.燃料电池.北京,冶金工业出版社,2000.227-235,258-266.
    [15] 江义.固体氧化物燃料电池材料.新能源材料.天津大学出版社,2000.205-221
    [16] Tatsumi Ishihara. Current status of intermediate temperature solid oxide fuel cell. 2001, 36(7). 483-485.
    [17] 王零森.二氧化锆陶瓷(一).陶瓷工程,1997,31(1).40-44.
    [18] 王零森.氧化锆陶瓷(二).陶瓷工程,1997,31(2).43-50.
    [19] 王常珍.体电解质和化学传感器.冶金工业出版社,2000.
    [20] H. Yokokawa. Phase diagrams and thermodynamic properties of zirconia based ceramics. Key engineering materials vols., 1998, 153-154. 37-74.
    [21] Hideaki Inaba, Hiroaki Tagawa. Ceria-based solid electrolyte. Solid state ionics, 1996, 83. 1-16.
    [22] Zhongliang Zhan, Ting-Lian Wen, Hengyong Tu, and Zhi-Yi Lu. AC impedance investigation of samarium doped ceria. Journal of the electrochemical society, 2001, 148(5). A427-A432.
    [23] Mogens Mogensen, Nigel M. Sammes, Geoff. A Tompsett. Physical, chemical and electrochemical properties of pure and doped celia. Solid state ionics, 2000, 129. 63-94.
    [24] Hideaki Inaba, Toshifumi Nakajima, Hroaki Tagawa. Sintering behaviors of ceriaa and gadolinia-doped ceria. Solid state ionics, 1998, 106. 263-268.
    [25] Toshiyoki Mori, Takayasu Ikegami, and Hiroshi Yamamura. Application of a crystallographic index for improvement of the electrolytic properties of the CeO_2-Sm_2O_3 system. Journal of the electrochemical society, 1999, 146(12). 4380-4385.
    [26] Tastsumi Ishihara, Hideaki Matsuda and Yusaku Takita. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J. Am. Chem. Soc., 1994, 116. 3801-3803.
    [27] P.R. Slater, J.T.S. Irvine, T. Ishihara, Y. Takita. The Structure of the oxide ion conductor La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(2.83) by powder neutron diffraction. Solid State Ionics, 1998, 107. 319-323.
    [28] Peng-nian, Huang and Anthony Petric. Superoxygen ion conductivity of lanthanum gallate doped with strontium and magnesium. J. Eleetrochem. Soc., 1996, 143(5). 1644-1648.
    [29] Pengnan Huang,Alesh Horky and Anthony Petric. Interracial reaction between nickel oxide and lanthanum gallate during sintering and its effect on conductivity. J. Am. Ceram. Soc., 1999, 82(9). 2402-2406.
    [30] Xingge Zhang, Satashi Ohara, Hajime Okawa, Radenka Maric, Takehisa Fukui. Interactions of a La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ) electrolyte with Fe_2O_3, Co_2O_3 and NiO anode materials. Solid State Ionies, 2001,
    
    139. 145-152.
    [31] Keqin Huang, Robin S. Tichy and John B. Goodenough. Superior perovskite oxide-ion conductor; Strontium-and Magnesium-doped LaGaO_3: Ⅰ, Phase relationships and electrical properties. J. Am. Ceram. Soc., 1998, 81(10). 2565-2575.
    [32] Keqin Huang, Robin S. Tichy and John B. Goodenough. Superior perovskite oxide-ion conductor; Strontium-and Magnesium-doped LaGaO_3: Ⅱ, ac impedance spectroscopy. J. Am. Ceram. Soc., 1998, 81(10). 2576-2580.
    [33] Keqin Huang, Robin S. Tichy and John B. Goodenough. Superior perovskite oxide-ion conductor; Strontium-and Magnesium-doped LaGaO_3: Ⅲ, Performance tests of single ceramic fuel cells, J. Am. Ceram. Soc., 1998, 81(10). 2581-2585.
    [34] Nigel M. Sammes, F. Micheal Keppeler, Helfried N(?)fe, and Fritz Aldinger, Mechanical properties of solid-state-synthesized strontium-and magnesium-doped lanthanum Gallate. J. Am. Ceram. Soc., 1998, 81(12). 3104-3108.
    [35] Hideko Hayashi, Motohiro Suzuki, Hideaki Inaba. Thermal expansion of Sr-and Mg-doped LaGaO_3. Solid State lonics, 2000, 128. 131-139.
    [36] Jin-Ho Kim, Han-Ill Yoo. Patial electronic conductivity and electrolytic domain of La_(0.9)Sr)(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ). Solid State Ionics, 2001, 140. 105-113.
    [37] Cassidy M., Lindsay G., Kendall K. The reduction of nickel-zirconia cermet anodes and the effects on supported thin electrolytes. Journal of Power Sources, 1996, 61(1-2). 189-192
    [39] Fukudome H., Sameshima S., Hirata Y. Processing and characterization of anode materials for solid oxide fuel cells. Journal of Ceramic Processing Research, 2001, 2(4). 160-164.
    [40] Kawashima T., Hishinuma M. Thermal properties of porous Ni/YSZ particulate composites at high temperatures. Materials Transactions Jim, 1996, 37(9). 1518-1524
    [41] Koide H., Someya Y., Yoshida T., Maruyama T. Properties of Ni/YSZ cermet as anode for SOFC. Solid State Ionics, 2000, 132(3-4). 253-260.
    [42] Bieberle A., Gauckler L. J. Reaction mechanism of Ni pattern anodes for solid oxide fuel cells. Solid State Ionics, 2000, 135(1-4). 337-345.
    [43] Sammes,N M., Brown M., Brown I. W. M. Synthesis and properties of dense nickel and cobalt zirconia cermet anodes for solid oxide fuel cells. Journal of Materials Science, 1996, 31 (22). 6069-6072.
    [44] Steele B. C. H. Survey of materials selection for ceramic fuel cells.2. Cathodes and anodes. Solid State Ionics, 1996, 86(8). 1223-1234
    [45] H. Kim, C. Lu, W.L. Worrell, J.M. Vohs, and R.J. Gorte. Cu-Ni cermet anodes for direct oxidation of methane in solid oxde fuel cells. J. Electroehem. Soc., 2002, 149(3). A247-A250.
    [46] Stephen J. Skinner. Recent advances in perovskite-type materials for SOFC cathodes. Fuel Cell Bulletin, 2001, 33.6-12.
    [47] Stephen J. Skinner. Recent advances in perovskite-type materials for solid oxide fuel cell cathodes. International Journal of Inorganic Materials, 2001, 3. 113-121.
    [48] A.Mitterdorfer, L.J.Gauclder. La_2Zr_2O_7 formation and oxygen reduction kinetics of the La_(0.8)Sr_(0.15)MnO_3, O_2(g)|YSZ system. Solid State Ionics, 1998, 111. 185-218.
    [49] A. Ahmad-Khanlou, F. Tietz, I. C. Vinke, D. Strver. Electrochemical and microstmctural study of SOFC cathodes based on La_(0.65)Sr_(0.3)MnO_3 and Pr_(0.65)Sr_(0.3)MnO_3. SOFC Ⅶ-Proceedings of the seventh international symposium. The electrochemical society, INC. 2001. 476-484.
    [50] Janusz Nowotny and Mieczyslaw Rekas. Defect chemistry of (La, Sr)MnO_3. & Am. Ceram. Soc., 1998, 81(1). 67-80.
    [51] Hee Y. Lee, Woo S. Cho, and Seung M. Oh. Active Reaction sites for oxygen reduction in La0.9Sr0.1MnO3?YSZ electrodes. J. Eiectrochem. Soc., 1995, 142(8). 2659-2664.
    [52]. Junixhiro Mizusaki, Naoya Mori, Hiroshi Takai, Yuki Yonemura, Hidehiro Minamiue, et. al. Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides la_(1-x)Sr_xMnO_(3+d). Solid State Ionies, 2000, 129. 163-177.
    [53] K. Choy, W. Bai, S. Charojrochkul, B.C.H. Steele. The development of intermediate temperature solid oxide fuel cells for the next millennium. Journal of Power Sources, 1998, 71. 361-369
    [54] J.P.P. Huijsmans, F.P.E van Berkel, G.M. Christie. Intermediate temperature SOFC-a Promise for 21st century. Journal of Power Sources, 1998, 71. 107-110.
    [55] E. Perry Murray, T. Tsal & S. A. Barnett. A direct-methane fuel cell with a ceria-based anode. Nature, 1999, 400(12). 649-651.
    [56] Keqin Huang, Jen-Hau Wan, and John B. Goodenough. Increasing power density of LSGM-based solid oxide fuel cells using new anode materials. J. Electrochem. Sot., 2001, 148(7). A788-A794.
    
    
    [57] Keqin Huang, Man Feng, and John B. Goodenough. Electrode performance test on single ceramic fuel cells using as electrolyte Sr-and Mg-doped LaGaO_3. J. Electrochem. Soc., 1997, 144(10). 3620-3624.
    [58] Tasumi Ishihara, Miho Honda, Takaaki Shibayama, Hiroaki Minami, Hiroyasu Nishiguchi, and Yusaku Takita. Intermediate temperature solid oxide fuel cells using a new LaGaO_3 based oxide ion conductor. J. Eleetrochem. Soc., 1998, 145(9). 3177-3183
    [59] Man Feng, John B. Goodenough, Keqin Huang, Christopher Milliken. Fuel cells with doped lanthanum gallate electrode. Journal of Power Sources, 1996, 63.47-51.
    [60] Changrong Xia, Fanglin Chen, and Meilin Liu. Reduced temperature solid oxide fuel cells fabricated by screen printing. Electrochemical and Solid State Letters, 2001, 4(5). A52-A54.
    [61] Seung Park, John M. Vohs &Raymond J. Gorte. Direct oxidation of hydrocarbon in a solid-oxide fuel cell. Nature, 2000, 404(16). 265-267.
    [62] S. Ohara, R. Maric, X. Zhang, K. Mukai, T Fukui, H. Yoshida, T. Inagaki, K. Mium. High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrode, I. Ni-SDC cermet anode. Journal of Power Sources, 2000, 86. 455-458.
    [63] Eguchi,K., Kunisa,Y., Kayano,M., Sekizawa,K., Yano, S., Arai,H. Power generation characteristics of solid oxide fuel cell with internal steam reforming of methane. Denki Kagaku, 1996, 64(6). 596-601.
    [64] Jiang, Y., Virkar, A.V. A high performance, anode-supported solid oxide fuel cell operating on direct alcohol. J. Electrochem. Soc., 2001, 148(7). A706-A709.
    [65] Ishihara T., Shibayama T., Honda,M., Nishiguchi H., Takita Y. Intermediate temperature solid oxide fuel cells using LaGaO_3 electrolyte Ⅱ. Improvement of oxide ion conductivity and power density by doping Fe for Ga site ofLaGaO_3. J. Electrochem. Soc., 2000, 147(4). 1332-1347.
    [66] Ishihara T., Shibayama T., Honda M., Nishiguchi H., Takita Y. Solid oxide fuel cell using Co doped La(Sr)Ga(Mg)O_3 perovskite oxide with notably high power density at intermediate temperature. Chemical Communications, 1999, 13. 1227-1228
    [67] Ishihara, T., Shimose, K.; Kudo, T., Nishiguchi, H., Akbay, T., Takita, Y. Preparation of yttria-stabilized zirconia thin films on strontium-doped LaMnO3 cathode substrates via electrophoretic deposition for solid oxide fuel cells. J. Am. Ceram. Soc., 2000, 83(8). 1921-1927.
    [68] Abudula A., Ihara M., Komiyama ,H., Yamada K. Oxidation mechanism and effective anode thickness of SOFC for dry methane fuel. Solid State Ionics, 1996, 86(8). 1203-1209
    [69] S. H. Chun and T. Z. Xin. Anode micro model of solid oxide fuel cell. J. Electochem. Soc., 2001, 148(4). A388-A394
    [70] Xinge Zhang, Satoshi Ohara, Hong Chen, Takchisa Fukui. Conversion of methane to syngas in a solid oxide fuel cell with Ni-SDC anode and LSGM electrolyte. Fuel, 2002, 81. 989-996.
    [71] W. Lehnert, J. Meusinger, F. Thom. Modelling of gas transport phenomena in SOFC anodes. Journal of Power Sources, 2000,87. 57-63.
    [72] A. Bieberle, L. J. Ganckler. Modeling, simulations and experiments in the Ni, H_2-H_2O|YSZ system. SOFC Ⅵ-Proceedings of the sixth international symposium. The electrochemical society, INC. 1999. 549-559.
    [73] C.-J. Wen, T. Masuyama, T. Yoshikawa, J. Otomo, H. Takahashi, K.Eguchi, K. Yamada. The effect of electrolytes in the nickel cermet on the anodic overpotential of SOFC. SOFC Ⅶ-Proceedings of the sixth international symposium. The electrochemical society, INC.2001. 671-677.
    [74] A. Bieberle, L. G. Gaucler. From model anode to cermet anode. SOFC Ⅶ-Proceedings of the sixth international symposium. The electrochemical society, INC.2001. 728-737.
    [75] Yi Jiang, Shizhong Wang, Yahong Zhang Jingwang Yah, and Wenzhao Li. Kinetic study of the formation of oxygen vacancy on lanthanum manganite electrodes. J. Electrochem. Soc,, 1998, 145(2). 373-378
    [76] S.P. Jiang. A comparison of O_2 reductonreactions on porous (La, Sr)MnO_3 and (La, Sr)(Co,Fe)O_3 electrodes. Solid State Ionics, 2002, 146. 1-22.
    [77] Yi Jiang, Shizhong Wang, Yahong Zhang, Jingwang Yah, Wenzhao Li. Electrical reductionof oxygen on a strontium doped lanthanum manganite electrode. Solid State Ionics, 1998, 110. 111-119
    [78] H. Fukunaga, M. Koyama, N. Takahashi, C. Wen, K. Yamada. Reaction model of dense Sm_(0.5)Sr_(0.5)CoO_3 as SOFC cathode. Solid State Ionics, 2000, 132. 279-285.
    [79] Michihisa Koyama, Chingjun Wen, Takuya Masuyama, Junichiro Otomo, Hiroshi Fukunaga, Koichi Yamada, Koichi Eguchi, and Hiroshi Takahashi. The mechanism of porous Sm_(0.5)Sr_(0.5)CoO_3 cathodes used in solid oxide fuel cells. J, Electrochem. Soc., 2001, 148(7). A795-A801
    [80] Svensson, A. M., Sunde, S., Nisancioglu, K. A mathematical model of the porous SOFC cathode. Solid State Ionics. 1996, 86(8). 1211-1216.
    [81] Fukunaga, H., Wen, C., Yamada, K. Change of three-phase-boundary length of La_(1-x)Sr_xMnO_(3-δ)yttria stabilized. Journal of the Ceramic Society of Japan, 1999, 107(3). 229-236

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700