层状钙钛矿钴氧化物的制备及其作为燃料电池阴极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(简称SOFC)被称为第四代燃料电池,是目前国际公认具有发电效率高,能量密度大;燃料使用面广,余热利用价值高的燃料电池。但是,SOFC在高温下(800—1000℃)运行会带来一系列的问题,如电池封接困难、寿命短、造价高等,极大的限制了SOFC的推广和使用。因此,研究工作温度为500—800℃中温固体氧化物燃料电池(ITSOFC)变成为了发展的必然趋势。阴极材料是ITSOFC的重要组成部分,随着使用温度的降低,将导致传统阴极材料的极化电阻增大、电导率降低等一系列问题,电池的性能也会大大降低。因此,寻找新的能在中温(500—800℃)条件下工作的阴极材料对于发展SOFC中温化尤为重要。
     本论文采用溶胶—凝胶法合成制备了具有层状钙钛矿结构的ITSOFC阴极材料YBa_(1-x)Ca_xCo_2O_(5+δ)(x=0~0.3),系统地研究了样品体系的晶体结构、热膨胀性能和电输运性能,Ca~(2+)的Ba位掺杂对晶体结构、电输运性能和热膨胀性能的影响,还考察了阴极材料与电解质材料的高温粘附性和它的催化活性。研究发现,所制样品体系在1100℃高温烧结后具有3×1×1型层状钙钛矿结构,属四方晶型,空间群为P_4/mmm。Ca~(2+)的Ba位掺杂明显地改变YBa_(1-x)Ca_xCo_2O_(5+δ)的热膨胀性能,随着X的增大,掺杂样品在200℃—800℃内的热膨胀系数逐渐减小,其中YBa_(0.7)Ca_(0.3)Co_2O_(5+δ)与电解质材料8YSZ的热膨胀系数较为接近,说明它与电解质材料8YSZ有良好的匹配性;YBa_(1-x)Ca_xCx_2O_(5+δ)(x=0~0.3)体系在高温下具有较高的导电率,YBa_(0.7)Ca_(0.3)Co_2O_(5+δ)在800℃时的导电率较高约为41.33Scm~(-1);掺杂样品在中低温下(室温—450℃)的Ln(σT)与1/T近似呈直线关系,其电输运机制符合半导体小极化子模型。另外YBa_(0.7)Ca_(0.3)Co_2O_(5+δ)与8YSZ电解质间的高温粘附性能较好,在820℃左右时,阴极材料与电解质之间的界面电阻很小约为4.86Ω·cm~2,说明该阴极材料具有较高的催化活性,有利于ITSOFC的正常工作。
As the fourth generation fuel cell,SOFC(Solid Oxide Fuel Cell) has many advantages which are internationally recognized,such as high power efficiency,high energy density,much fuel can be used and high value of waste heat utilization. However,SOFC operating at high temperatures will bring about a series of problems, such as sealing cell difficultly,short life,high cost and so on.These problems limit the popularization and application of SOFC greatly.Therefore,it is the obvious trend to research on solid oxide fuel cell(ITSOFC) which is operating at temperatures of 500—800℃.The cathode material is an important part of ITSOFC.It will lead to increase the polarization resistance and reduce the electrical conductivity of traditional cathode material with lowering of temperature.So,it is very important to search for the new kind of cathode material that can be operated at temperatures of 500—800℃.
     In this thesis,the cathode material YBa_(1-x)Ca_xCo_2O_(5+δ)(x=0~0.3) of ITSOFC was synthesized by a sol-gel method.We studied the properties such as the cell parameters, thermal expansion and electrical conductivity of samples(x=0).Then,we also investigate the high-temperature adhesion between the cathode material,and catalytic activity.The structures of the compounds were investigated by XRD,the result show that all structures of the samples belongs to the 3×1×1 tetragonal structure with space group of P_4/mmm at a temperature of 1100℃.We have studied the thermal expansion of samples(x=0~0.3),and find that the thermal expansion decreases gradually with increasing of Ca~(2+) content.In the temperature of 800℃,the x=0.3 samples has the smallest liner thermal expansion coefficient,which is similar to 8YSZ's.All of the samples(x=0~0.3) have good electrical properties,and the samples of YBa_(0.7)Ca_(0.3)Co_2O_(5+δ) have relatively high electrical conductivity in the temperature of 800℃,it is about 41.33Scm~(-1).The electrical conductivity of samples was found to obey the small polaron hopping mechanism and increase obviously at temperatures of 15—450℃.In addition,the material of YBa_(0.7)Ca_(0.3)Co_2O_(5+δ) has a good high-temperature adhesion.In the temperature of 820℃,the interfacial resistance is about 4.86Ω·cm~2,it show that this cathode material is of better catalytic activity,and is beneficial to normal operation of ITSOFC.
引文
[1]刘凤君.高效环保的燃料电池发电系统及其应用[M].北京:机械工业出版社,2005:45-52
    [2]刘建国,孙公权.燃料电池概述[J].物理,2004,33(2):79-84
    [3]李杨,魏敦崧,潘卫国.燃料电池发展现状与应用前景[J].能源技术,2001,22(4):158-161
    [4]靳智平.燃料电池发电技术在我国电力系统的应用[J].电力学报,2004,19(1):4-11
    [5]Dan Rastler.Opportunities and challenges for fuel cell in the evolving energy enterprise[J].Fuel Cells Bulletin,2000,3(19):7-11
    [6]Shuo-Jen Lee,Fang-Bor Weng.Recent R&D and future prospects of fuel cell technology in Taiwa[J].Fuel Cells Bulletin,2002,5(41):8-11
    [7]Jay B.Benziger,M.Barclay Satterfield,Warren H.J.Hogarth.The power performance curve for engineering analysis of fuel cells[J].Journal of Power Sources,2006,155:272-285
    [8]Chunshan Song.Fuel processing for low-temperature and high-temperature fuel cells Challenges,and opportunities for sustainable development in the 21st century[J].Catalysis Today,2002,77:17-49
    [9]Joseph M.King,Michael J.O'Day.Applying fuel cell experience to sustainable power products[J].Journal of Power Sources,2000,86:16-22
    [10]Ferdinand Panik.Link Fuel Cell Technology with Environmental Strategy:The Plug power Story[J].Journal of Power Sources,1996,6:270-277
    [11]Ferdinand Panik.Fuel cell for vehicle applications in cars-bringing the future closer[J].Journal of Power Sources,1998,71:36-38
    [12]张志明.燃料电池的演化及发展探析[J].技术与创新管理,2005,26(3):81-84
    [13]倪萌,梁国熙.碱性燃料电池研究进展[J].电池,2004,34(5):364-365
    [14]黄镇江编著,刘凤军改编.燃料电池及其应用[M].北京:电子工业出版社,2005:67-84
    [15]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[M].北京:科学出版社,2004:22-30
    [16]J.A.迪安.兰氏化学手册[M].尚久方译.北京:科学出版社,1991:15-21
    [17]衣宝廉.燃料电池——原理、技术、应用[M].北京:化学工业出版社,2003:5-6
    [18]许世森,程健.燃料电池发电系统[M].北京:中国电力出版社,2006:225-230
    [19]段枣树.新型阴极材料BSCF在ITSOFC中的应用[D].北京:化学工业出版,2006:11-15
    [20]黄镇江编著,刘凤军改编.燃料电池及其应用[M].北京:电子工业出版社,2005:7-14
    [21]李瑛,王林山.燃料电池[M].北京:冶金工业出版社,2000:122-132
    [22]隋智通,隋升,罗冬梅.燃料电池及其应用[M].北京:冶金工业出版社,2004:27-35
    [23]李英,土林山.燃料电池[M].北京:冶金工业出版社,2000:47-51
    [24]拉米尼,詹姆斯,迪克斯等.燃料电池系统:原理·设计·应用[M].北京:科学出版社,2006:22-30
    [25]J.M.Ralph,A.C.Schoeler and M.Krumpelt.Materials Development for Lower Temperature Solid Oxide Fuel Cells[J].J.Mater.Sci.2001,36:1161-1172
    [26]Z.Shao,S.M.Haile.A high-performance cathode for the next generation of solid oxide fuel cells[J].Nature.2004,431:170-173
    [27]K.T.Lee,A.Manthiram.Characterization of Nd_(0.6)Sr_(0.4)Co_(1-y)Fe_yO_(3-δ) cathode materials for intermediate temperature solid oxide fuel cells[J].Solid State Ionics.2005,176:1521-1527
    [28]马文会,谢刚,陈秀华.固体氧化物燃料电池复合掺杂材料研究进展[J].功能材料,2001,32(5):449-452
    [29]Chiodelli G.,Lupotto P.Experimental approach to the impedance spectroscopy technique[J].J Electrochem Soc.2005,38:2703-2711
    [30]Badwdl S P S.Stability of solid oxide fuel cell components[J].Solid State Ionics,2001,143(1):39-46
    [31]张德新,岳慧敏.固体氧化物燃料电池与电解质材料[J].武汉理工大学学报,2003,27(3):407-411
    [32]CHI E O,KWON YU,HUR NH.Crystal chemistry of layered manganites La_(1.4)Sr_(1.6)Mn_2O_7(Ln=La,Pr,Nd,Sm,Eu,and Gd[J].Bull Korean Chem Soc.2006,21:259-263
    [33]Fukui T.,Ohara S.,Naito M.,et al.Performance and stability of SOFC anode fabricated from NiO-YSZ composite particles[J].Power Sources,2002,110(1):91-95
    [34]Dong X.F.,Wang Y.J.,Lin W.M,Study on solid oxide fuel cell(SOFC)with 10%Cu-Ce_(0.15)Zr_(0.85)O_2 as anode[J].Chinese Journal of Power Sources.2004,28(1):26-28
    [35]Fang X.X.,Zhu G.Y.,Xia C.R.,et al.Synthesis and properties of Ni-SDC cermets for IT-SOFC anode by co-precipitation[J].Solid State Ionics.2004,168(12):31-36
    [36]Shung-Ik L.Vohs,J.M.,Gorte,R.J.A study of SOFC anodes based on Cu-Ni and Cu-Co bimetallics in CeO_2-YSZ[J].Journal of the Electrochemical Society.2004,151(9):A1319-A1323
    [36]Shung-Ik L.Vohs,J.M.,Gorte,R.J,A study of SOFC anodes based on Cu-Ni and Cu-Co bimetallics in CeO2-YSZ[J].Journal of the Electrochemical Society,2004,151(9):A1319-A1323
    [37]Kolodiazhnyi T.,Petric A..The applicability of Sr-deficient n-type SrTiO_3 for SOFC anodes[J].Journal of Electroceramics.2005,15(1):5-11
    [38]Sfeir J.,Van herle J.,McEvoy A.J..Stability of calcium substituted lanthanum chromites used as SOFC anodes for methane oxidation[J].Journal of the European Ceramic Society.1999,19(6-7):897-902
    [39]Tomita N.,Namikawa T.,Yamazaki Y..A flexible alloy-wire interconnection for planar SOFC cathode[J].Denki Kagaku,1994,62(7):638-639
    [40]Bredesen R.,Kofstad P..Oxidation of Cr and Cr+0.5%Ce in oxidising and carbon containing atmospheres[J].Second European Solid Oxide Fuel Cell Forum Proceedings,1996,2(2):567-576
    [41]Yang Z.G.,Hardy J.S.,Walker M.S.,et al.Structure and conductivity of thermally grown scales on ferritic Fe-Cr-Mn steel for SOFC interconnect applications[J].Journal of the Electrochemical Society.2004,151(11):A1825-A1831
    [42]Meulenberg W.A.,Gil A.,Wessel E.,et al.Corrosion and interdiffusion in a Ni/Fe-Cr-Al couple used for the anode side of multi-layered interconnector for SOFC applications[J].Oxidation of Metals.2002,57(1-2):1-12
    [43]夏正才,唐超群.La_(1-x)Sr_xMnO_3阴极材料的导电机理研究[J].物理学报,1999,48(8):1518-1522
    [44]李标荣.电子陶瓷工艺原理[M].湖北:华中工学院出版社,1986:55-60
    [45]马文会,谢刚,陈秀华.固体氧化物燃料电池复合掺杂材料研究进展[J].功能材料,2001,32(5):449-452
    [46]冯波.过渡金属氧化物SDC基ITSOFC阳极材料的制备及性能研究[D].长春:吉林大学,2004年7月,7-9
    [47]吕振刚,郭瑞松.钙钛矿型中温固体氧化物燃料电池阴极材料[J].中国陶瓷,2004,40(2):18-20
    [48]S.P.Jiang,Acomparison of O_2 reduction reactions on porous(La,Sr)MnO_3and(La,Sr)(Co,Fe)O_3 electrodes[J].Solid State Ionics(2002):1-2
    [49]冯波.过渡金属氧化物SDC基ITSOFC阳极材料的制备及性能研究[D].天津:天津大学,2005年12月,17-19
    [50]M.Godickemerer,K.Sasaki,L.J.Gaukler,1.Riese.Characterization of GdBaCo_2O_(5+δ) cathode for IT-SOFCs[J].SolidStateIonics,86-88(1996) 691
    [51]刘艳微.含钴燃料电池阴极材料的电导弛豫研究[D].哈尔滨:哈尔滨工业大学,2006,9-11
    [52]高建峰.中温固体氧化物燃料电池阴极材料及电极过程研究[D].合肥:中国科学技术大学,2003,9-15
    [53]谢晓峰.《催化作用基础》[M].吉林大学化学系催“化作用基础”编写组编,科学出版社,1980,292-296
    [54]J.S.Stephen,M.Cheistopher.Eletrical properties of iron substituted Ln_(6.4-x)Sr_(1.6+x)Cu_8O_(20±δ).Mater[J].Lett,2002,52(7):594-597.
    [55]Shao Z P,Haile S M.Ionic conductivity of yttriumdoped zirconial and the "composite effect"[J].Nature,2004,43(9):170-173.
    [56]李艳,吕喆,黄喜强等.掺银的Sm_(0.5)Sr_(0.5)CoO_3中温固体氧化物燃料电池复合阴极材料的制备与性能研究[J].中国稀土学报,2004,5(22):660-664
    [57]Chang C L,Lee T,Huang T.Oxygen reduction mechanism and performance of YBa_2Cu_3O_(7-δ)as a cathode material in a high temperature solid oxide fuel cell[J].Solid State Noble metal all cermets cathode for reduced-temperature SOFCs.SolidElectrochem,1998,2(5):291-298.
    [58]E.P.Murray,M.J.Sever,S.A.Bamett Study of solid electrolyte polarization Noble metal all cermets cathode for reduced-temperature SOFCs[J].Solid State Ionics,148(2002)27-34
    [59]黄文华,温廷琏.中温固体氧化物燃料电池材料Ln_(0.6)Sr_(0.4)Co_(1-x)Fe_xO_(3-δ)的合成和性能表征[J].无机材料学报,2002,17(4):13-15
    [60]符晓铭,唐春,唐业平等.固体氧化物燃料电池阴极材料La_(1-x)Sr_xMnO_3研究[J].清华大学学报(自然科学版),1998,38(5):80-83
    [61]B.Zhu,X.T.Yang,J.Xu,Z.G Zhu,S.J.Ji,M.T.Sun,J.C.Sun.Innovative low temperature SOFCs and advanced materials[J].Power Sources,2003,118(2):47-53.
    [62]Mogens Mogensen,Steen Skaarup.Kinetic and geometric aspects of solid oxide fuel cell eleetrodes[J].Solid state Ionics,1996,86-88:1151-1160
    [63]江金国.固体氧化物燃料电池材料的研究进展[J].现代技术陶瓷,2003,(95):14-18
    [64]刘旭俐.固体氧化物燃料电池材料的研究进展[J].硅酸盐通报,2001,(1):24-29
    [65]毛宗强.燃料电池[M].化学工业出版社,2004,376-408
    [66]WALLER D,LANE J A,KILNER J A,et al.The effect of thermal treatment on the resistance of LSCF electrodes on gadolinia doped ceria electrolytes[J].Solid State Ionics,2006,86(8):767-772.
    [67]贺天民,丛立功,纪媛等.用柠檬酸—硝酸盐合成La_(0.8)Sr_(0.2)Ga_(0.85)Mg_(0.15)O_(3-δ)及其性能[J].硅酸盐学报,2003,31(9):907-912
    [68]黄贤良,赵海雷,吴卫江等.固体氧化物燃料电池阳极材料的研究进展[J].硅酸盐学报,2005,23(11):1407-1413
    [69]高阳.中温固体氧化物燃料电池阴极材料的制备及研究[D].长春:吉林大学,2006年6月,21-24
    [70]黄应龙,贺天民,纪媛等.新型固体电解质的制备及性能研究[J].中国稀土学报,2004,22(1):113-118
    [71]任永利.新型钙钛矿La_(1.4)Sr_(1.6)Mn_2O_7阴极材料的制备和性能研究[D].贵阳:贵州大学,2008年7月,28-29
    [72]Tu HY,Takeda Y,Imanishi N,et al.Ln_(1-x)Sr_xCoO_3(Ln=Sm,Dy) for the electrode of solid oxide fuel cells[J].Solid State Ionics,1997,100:283-286.
    [73]刘晓梅,李坤,刘江.La_(1-x)Sr_xMnO_3阴极材料的制备及性能[J].吉林大学自然科学学报,1999,4:44-46
    [74]王新伟.稀磁性半导体Co_xTi_(1-x)O_2的制备、微结构和磁性的研究[D].兰州:兰州大学,2005年6月,34-37
    [75]Qiu L,Ichikawa T,Hirano A.Ln_(1-x)Sr_xCo_(1-y)Fe_yO_3(Ln=Pr,Nd,Gd,x=0.2,0.3) for the electrodes of solid state fuel cell[J].Solid state Ionics,2003,15(8):55-65.
    [76]Skinner S J.Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes[J].International Journal of Inorganic Materials,2001,3:113-121.
    [77]唐先敏,钱晓良,孙尧卿.湿化学法制备钙铁矿型La_(1-x)Sr_xMnO_3的电学性能及其晶体学研究[J],华中理工大学学报,1994,22(9):51-56
    [78]Tu H Y,Takeda Y,Imanishi N,et al.Ln_(0.4)Sr_(0.6)Co_(0.8) Fe_(0.2)O_(3-s)(Ln=La,Pr,Nd,Sm,Gd) for the electrode in solid oxide fuel cells[J].Solid State Ionics,1999,117:277-281.
    [79]Bauerle J E.Study of solid electrolyte polarization by a complex ad—mittance method[J].J. Phys.chem.solids,1969,30(12):2657-2670.
    [80]Kazakevicius E,D.indune A,Kanepe Z,et al.Impedance spectra of Li_(1.3) Sc_(0.15) Y_(0.15) Ti_(1.7)(PO_4)_3 solid electrolyte ceramics in a broad frequency range[J].Solid State Ionics,2005,176:1743.1746.
    [81]Liu Z G,Lu z,Huang X Q,et al.Formation and characterization of PrGa_(0.9)Mg_(0.1)O_3synthesized by a citric acid method[J].Journal of Alloys and compounds,2005,393:274-278.
    [82]Tadokoro S K,Porfirio T C,Muccillo R,et al.Synthesis,sintering and impedance spectroscopy of 8mol%yttria-doped ceriasolid electrolyte[J].Journal of Power Sources,2004,130:15-21.
    [83]Matsui T,Inabab M,Mineshige A,et al.Electrochemical properties of ceria-based oxides for use in intermediate-temperature SOFCs[J].Solid State lonics,2005,7.8:647.654
    [84]简家文,杨邦朝,张益康.交流阻抗谱测试技术在固体电阻电解质氧传感器研究中的应用[J].功能材料,2004,35(4):464-466
    [85]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002,23-29
    [86]王常珍.固体电解质和化学传感器[M].北京:冶金工业出版社,2000,46-48
    [87]Sakaki Y,Takeda Y,Kato A.Ln_(1-x)Sr_xMnO_3(Ln=Pr,Nd,Sm and Gd) as the cathode material for solid oxide fuel cells[J].Solid State Ionics,1999,118:187-194.
    [88]夏定国,魏秋明,朱时珍等.高温固体氧化物燃料电池中的阴极材料[J].中国稀土学报,1994,12(3):258-263.
    [89]Tishihara,Sammes N M,Yamamoto O.Electrolytes,in "High temperature solid oxide fuel cells:fundamentals,design and applications"[M].Singhal S C Elsevier,2003,167-194.
    [90]Reichenbach H M,An H M,McGinn P J.Combinatorial synthesis and characterization of mixed metal oxides for soot combustion[J].Applied Catalysis B:Environmental,2003,44:347-354.
    [91]D.Akahoshi and Y.Ueda.Oxygen Nonstoichiometry,Structures,and Physical Properties of YBaCo_2O_(5+x)(0.00≤x≤0.52)[J].Journal of Solid State Chemistry,2001,156:355-363
    [92]Mukasyan A S,Costello C,Sherlock K P,et al,Perovskite membranes by aqueous combustion synthesis:synthesis and operties[J].Separation and Purification Technology,2001,25:117-126.
    [93]毛宗强,谢晓峰等.燃料电池[M].北京:化学工业出版社,2004,287-289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700