汽车底盘关键子系统的稳定性分析与集成控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对汽车使用性能要求越来越高,通过控制汽车的侧向运动、垂向运动和纵向运动来提高汽车的操纵性、乘坐舒适性和制动性能的汽车主动控制技术成为汽车工程领域的研究热点。主动悬架系统(ASS)能根据路面状况调整悬架的阻尼或弹簧刚度从而提高汽车的平顺性;电动助力转向系统(EPS)根据不同车速提供不同助力力矩改善汽车的操纵性能;防抱死制动系统(ABS)通过防止汽车车轮在制动过程中抱死改善汽车的制动性能。然而,在研究这些主动控制系统时大多数文献只是注重其控制特性,而对控制系统本身的稳定性问题涉及甚少。在实际的EPS、ASS和ABS等汽车主动控制系统中,由于系统的非线性、外部环境的复杂性造成的不确定性以及系统本身时滞等因素,常常导致控制系统不稳定而影响系统的实际功能,因此在研究汽车主动控制系统的特性的同时,保证设计的控制系统的稳定应引起足够重视。同时,在设计单个主动控制系统时,往往是按照各自不同的性能指标进行设计的,而不同系统间往往存在的动力学耦合关系造成整车系统并不一定具有良好的综合性能。因此本文为了进一步提高汽车的综合性能,在研究控制子系统稳定性的基础上,基于改善各控制子系统性能,提高整车综合性能,进行底盘系统集成控制研究显然也是十分必要的。
     本文从汽车动力学系统理论分析角度出发,结合现代控制理论,对底盘关键子系统及其集成控制系统的控制特性、子系统的时滞稳定性进行了研究,将CAN总线技术应用到集成控制系统中,保证了良好的通讯性能和系统抗干扰性能。具体主要包括以下内容:
     (1)首先回顾了底盘主动控制三大关键子系统(EPS、ABS和ASS)的研究现状。随后对控制系统稳定性问题的必要性和研究现状作了介绍,并分析了底盘集成控制的研究背景、研究现状等问题,最后给出了本文的主要研究内容和创新点。
     (2)以半车为研究对象,对EPS、ABS、ASS分别建模的基础上,采用不同控制算法,进行各子控制系统设计并在MATLAB/SIMULINK平台进行仿真计算和控制特性分析。
     (3)针对控制子系统中普遍存在的时滞对系统稳定性的影响,本文采用参数依赖的自由权矩阵的方法和LMI方法导出了时滞系统一个新的鲁棒稳定的充分条件,并通过该稳定性条件对主动悬架控制系统和电动助力转向系统进行了基于时滞分析的系统稳定性评价,由于该稳定性条件和传统的稳定性准则相比具有更小的保守性,使控制子系统的鲁棒稳定性得到更好的保证。
     (4)为改善整车动力学特性,提高汽车的综合性能,对底盘两系统集成控制就进行了仿真研究。首先在建立整车系统动力学模型的基础上,确定全局控制指标,设计了H∞鲁棒控制器,对EPS系统与ASS系统进行了集中式集成控制;然后针对集中式集成控制存在的问题,在控制体系结构上作了进一步改进,在分析ABS、EPS子系统运动耦合关系的基础上,设计出各子系统控制器和集成系统控制器,对ABS与EPS系统进行分层集散控制。结果表明:汽车综合性能得到改善,而且集散控制相比集中式集成控制,具有建模简单,控制器设计的复杂程度低,集成控制系统稳定性高,具有开放性等优点。
     (5)基于LabVIEW平台进行了ABS与EPS系统硬件在环试验。通过设计ABS、EPS系统及集成控制器LabVIEW程序,采用PXI硬件系统进行了ABS与EPS两系统的硬件在环试验,进一步验证集成控制策略的有效性。
     (6)在设计CAN通讯系统的基础上,基于ARM7平台,进行了ABS和EPS集成控制器的开发,并进行实车道路试验。试验结果表明:基于CAN通讯的集成系统工作稳定,抗干扰能力强,集成控制策略正确有效,汽车底盘综合性能获得提高。
     (7)总结了全文的研究内容,对下一步的研究提出一些建议。
In order to further enhance the overall performance of vehicle, active control technology of vehicle chassis through controlling lateral movement, vertical movement, and vertical movement of the vehicle to improve vehicle handling, ride comfort and braking performance is a research focus of vehicle dynamics in recent years. Suspension damping or spring stiffness are adjusted in active suspension system (ASS) according to road conditions to improve vehicle ride comfort; It provide different torque in electric power steering system (EPS) depending on different vehicle speed to improve handling performance; It prevent wheel car lock in anti-lock braking system (ABS) during braking to improve the vehicle braking performance; However, most of the literature focus only on the control characteristics of the active chassis control systems while the stability of the control system itself involves little. In fact, because of nonlinearity or uncertainties caused by the complexity of external environment and time delay of the system itself in EPS, ASS, and ABS, it lead to the control system instability and affect the normal function of the system. Therefore, it should be paid close attention ensuring the stability of the control system while studying the control characteristics of active control systems. Meanwhile, it often meet its different performance indicators in the designing of a single active chassis control system, but in integrated control system the vehicle does not necessarily have good overall performance because of dynamics coupling between systems. Therefore in order to further improve the overall performance of vehicles, it necessary to study integrated control of chassis systems in order to improve chassis dynamics coupling on the basis of studying stability of vehicle chassis control subsystems.
     In this paper, based on vehicle dynamics theory combined with modern robust control theory vehicle chassis control systems and it’s integrated control system has been studied. To ensure a good communication performance and system performance controller area network is carried out to integrated control system. It includes the following specifically:
     Firstly, in this paper mathematical model is established for electric power steering system (EPS)、anti-lock braking system(ABS) and active suspension system(ASS) based on semi-car model respectively, different control methods were adopted for controller design of subsystems, the simulation research was carried out.
     Secondly, It has been shown that the parameter-dependent stability condition is of less conservativeness than quadratic stability condition which requires a common Lyapunov function for the entire uncertain domain. the control system robust performance was evaluated and conservatism was analyzed for active suspension system. The results show that robustness of vehicle active suspension system was better guaranteed with a smaller conservatism.
     Thirdly, an integrated chassis control system was designed in two different control structure respectively: (ⅰ) The mathematical model of vehicle systems was established, then a global optimal control targets is determined, EPS and ASS were centralized to integrate control. (ⅱ) Take controllers designed for subsystems(EPS\ABS)as bottom controllers, upper coordinated controller was designed based on deeply analyzing the influences among EPS and ABS, upper controller was a decision-making controller, sensor signals were transmitted to upper controller through CAN bus; Simulation results show that vehicle synthesis performance is improved.
     Finally, Hard in Loop experiment was carried out based on LabVIEW development platform for integrated control system and real vehicle test was carried out based on integrated controllers’development of ABS and EPS using ARM7 and protel software. The result of real vehicle test and HIL(Hard-in-Loop) experiment proves that the integrated control logic we put forward is correct and feasible. It could not only apparently improve the performance of braking stability, but making steering portable as well.
引文
[1]肖生发,冯樱,刘洋.电动助力转向系统助力特性的研究[J].湖北汽车工业学院学报,2001(3):36-37.
    [2]林逸,施国标.汽车电动助力转向技术的发展现状与趋势[J].公路交通科技,2001(3):79-83.
    [3]冯樱,肖生发,罗永革.汽车电子控制式电动助力转向系统的发展.湖北汽车工业学院学报,2001(1):4-8.
    [4] T. Nakayama,E. Suda,The Present and future of electric power steering[J]. Int. J. of Vehicle Design,1994,15(5):243-254.
    [5]林逸,施国标,邹常林.电动助力转向系统控制测量的研究[J].汽车技术,2003(3):8-11.
    [6] Ackerman J,Odenthal D. Control of Electrical Power Assist Systems:H∞Design Torque Estimation and Structural Stability(C). JSAE Review,2001 (22):238-243.
    [7] Chabaan Rakan C, Wang Le Yi. Control of Electrical Power Assist Systems: H∞Design Torque Estimation and Structural Stability[J]. SAE Review 2001(22):435-444
    [8]赵治国,余卓平,孙泽昌.电动助力转向系统H∞鲁棒控制研究[J].汽车工程,2005,27 (6):730– 735.
    [9]陈龙,袁朝春,江浩斌.基于μ综合鲁棒控制的EPS车辆操纵稳定性研究[J].汽车工程,2008,30 (6):705-712.
    [10]郭孔辉,丁海涛,刘漂.汽车ABS混合仿真试验台的开发与研究[J].中国机械工程,2000,11(12):1417-1421.
    [11]王德平,郭孔辉.车辆动力学稳定性控制的控制原理与控制策略研究[J].机械工程学报,2000,36(3):97-99.
    [12]郭孔辉,丁海涛.轮胎附着极限下差动制动对汽车横摆力矩的影响[J].汽车工程,2002,24(2):101-104.
    [13]郭孔辉,王会义.模糊控制方法在汽车防抱制动系统中的应用[J].汽车技术,2000(3):7-10.
    [14]郭孔辉,刘漂,丁海涛.汽车防抱制动系统的液压特性[J].吉林工业大学学报(自然科学版),1999,29(4):1-5.
    [15]王会义,高博,宋健.汽车ABS电磁阀动作响应测试与分析[J].汽车工程,2002,24(l):29-31.
    [16]厉朴,宋健,于良耀. ABS轮速信号抗干扰处理方法[J].汽车技术,2001(5):15-17.
    [17]李永,宋健.基于制动器耗散的ABS实验方法研究[J].公路交通科技,2004,21(3):91-95.
    [18]厉朴,宋健,于良耀.汽车防抱制动系统轮速信号异点剔出预处理方法[J].公路交通科技,2004,21(3):91-95.
    [19]吴浩硅,许季,刘绍辉.汽车防抱制动系统制动时的车速计算[J].华南理工大学学报(自然科学版),2002,30(2):76-78.
    [20]吴浩硅,刘绍辉.汽车ABS制动轮缸压力函数的试验研究[J].机床与液压,2001,3:25-26.
    [21]吴浩硅,周全,廖俊.汽车ABS制动过程车速的一种测量方法[J].机电工程技术,2005,34(4):90-92.
    [22]吴浩硅,廖俊,周全.客车ABS制动的车速分析与试验[J].机床与液压,2005(9):101-103.
    [23]吴浩硅,赵克刚,范刚,等.附着系数-滑移率曲线的测定[J].华南理工大学学报(自然科学版),2001,29(9):20-22.
    [24]郑伟峰,刘国福.国内ABS发展现状[J].汽车电器,2005(11):35-28.
    [25]李春明.汽车底盘电控技术[M].北京:机械工业出版社,2004.
    [26]鲁植雄编.汽车ABS、ASR和ESP维修图解[M].北京:电子工业出版社,2006.
    [27] J.W.Douglas,T.C. Schafer. The Chrysler sure brake:The first production four wheel anti-skid system[C]. SAE Paper 710248,1971.
    [28] H. Tan,M. Tomizuka. A discrete-time robust vehicle traction controller Design[C]. In Proc Amer. Contr. Conf, Pittsburgh,PA,1989(3):1053-1058.
    [29] H. Tan,M. Tomizuka. Discrete-time controller design for robust vehicle traction[J]. IEEE Contr. Sysf. 1990(4):107-113.
    [30] R. Fling,R.Fenton. A describing function approach to antiskid design[J]. IEEE Trans Vehicle Tech. 1981,30(8):134-144.
    [31] Jeffery R. Layne,Kevin M.Passino,Stephen Yurkovich. Fuzzy Learning Control for Antiskid Braking System[J]. IEEE Transactions on Control System Technology,1993,(2):363-369.
    [32]孙求理,张洪欣.主动悬架的发展和技术现状[J].世界汽车,1996(5):4-6.
    [33]陈无畏,等.汽车悬架的主动控制研究及发展[J].安徽工学院学报,1993,12(增刊):81-84.
    [34] Junishi E. Development of the semi-active Suspension System Based on the Sky-hook Damper Theory[C]. SAE paper 940863,1994.
    [35]陈龙,李德超.车辆半主动悬架自适应模糊控制[J].农业机械学报,2001,32(6):1-4.
    [36]董波.主动悬架最优控制整车模型的研究[J].汽车工程,2002,24(5):422-425.
    [37]张庙康,胡海岩.车辆悬架振动控制系统研究的进展[J].振动、测试与诊断,1997,17(1):7-15.
    [38] Palmeri P.S. et al. H-infinity Control for Lancia Thema Full Active Suspension System[C]. SAE paper 950583,1995.
    [39] Moran A, Nagia M. Analysis and Design of Active Suspension by H-inf Robust control Theory[J]. JSME Int. J. SeriesⅢ,1992,35(3):427-437.
    [40] Moran A,Nagia M,Hayase M. Design of Active Suspension with H-inf preview control[J] Proc. Int Sym. on Advanced Vehicle Control,Aachen,Germary,1996:215-232.
    [41]余强,郑慕桥.汽车悬架控制技术的发展[J].汽车技术,1994(9):1-6.
    [42] Yamashita M,Fujimori K,Hayakawa K,et al. Application of H∞control to Active Suspension Systems[C]. Proc. of IFAC 12th Word Congress,1993,(3):143-146.
    [43] Wang J,Wilson D A. Application of Generalized H2 Synthesis to Active Suspension Systems[J]. Proc. of the Amer. Ctrl. Conf,2001:2664-2669.
    [44] Gaspar P,Szaszi I. Design of robust controllers for active vehicle suspension using the mixedμsynthesis[J]. Vehicle System Dynamics,2003,40 (4):193-228.
    [45]陈虹,赵桂军,孙鹏远,等. H2和H∞主动悬架统一的理论框架与比较[J].汽车工程, 2003,25 (1):1-6.
    [46]李克强,董珂.多自由度车辆模型主动悬架及鲁棒控制[J].汽车工程,2003,25 (1):7-11.
    [47] Yuhara N,Horiuehi S. A robust adaptive rear wheel steering control system for handling improvement of four-wheel steering vehicles[J]. Vehicle System Dynamics,1992 20(SuP):666-680.
    [48] Esmailzadeh E,Goodarzi A,Vossoughi G R. Optimal yaw moment control law for improved vehicle handling[J]. Mechaltronics,2003,13(7):659-675.
    [49] Zhou K,Doyle J C,Glover K. Robust and optimal control[M]. Prentice-Hall,1996.
    [50] Bulgio G,Zegelar P. Integrated vehicle control using steering and brakes[J]. International Journal of control,2006,79(5):534-541.
    [51] Liaw D C,hung W C. A feedback linearization design for the control of vehicle lateral dynamics[J]. Nonlinear Dynamics,2008,52(4):313-329.
    [52] Ono E,Hosoe S,Tuan H D,et.al. Bifurcation in vehicle dynamics and robust front wheel Steering control[J]. IEEE Transactions on Control System Technology,1998,6(3):412-420.
    [53] Mammar S,Koenig D. Vehicle handling improvement by active steering[J]. Vehicle System Dynamies,2002,38(3):211-242.
    [54] Park J H. H∞direct yaw-moment control with brakes for robust performance and stability of vehicles[J]. International Journal of JSME,44(2):404-413.
    [55] Hu H Y,Wu Z Q. Investigation on stability and Possible chaotic motions in the controlled wheel suspension system[J]. Vehicle System Dynamics,1992,21(5) :269-296.
    [56] Hu H Y,Wu Z Q. Stability and Hopf bifurcation of four-wheel-steering vehicles involving driver’s delay[J]. Nonlinear Dynamics,2000,22(4):361-374.
    [57]张文丰,翁建生,胡海岩.时滞对车辆悬架“天棚”阻尼控制的影响[J].振动工程学报,1999,12(4):486-491.
    [58]王增才,杨秀建.高维汽车侧向动力学系统的分岔与失稳分析[J].农业机械学报,2008,39(12):45-50.
    [59]王增才,杨秀建.汽车稳态转向失稳的最近分岔点实时追踪[J].农业机械学报,2009,40(1):20-25.
    [60]杨秀建,王增才,路玉峰.极限工况下汽车稳定性的最优保性能控制.农业机械学报,2008,39(6):38-41.
    [61] Van Zanten A. Evolution of Electronic Control System for Improving the Vehicle Dynamic Behavior[C].In Proceedings of AVEC'02,2002.
    [62] Hac A,Bodie M. Improvements in vehicle handling through integrated control[J]. Int. J. of Vehicle Design,2002,29(2):23-50.
    [63] Freuchte,R D,Karmel A,Rillings J. Integrated Vehicle Control[C]. IEEE Vehicular Technology,conf. 2,1989:868-877.
    [64] Abe,M Roll. Moment Distribution Control in Active Suspension for Improvement of Limit Performance of Vehicle Handling[C]. Proc. of AVEC’92,1992:378-383.
    [65] Gillespie T D. Fundamentals of Vehicle Dynamics[M]. SAE Inc.,1992.
    [66] Gordon T J. Vehicle Dynamics Lecture Notes[M]. University of Michigan,2004.
    [67] Cooke R,Crolla D,Abe M.Combined Ride and Handling Modelling of a Vehicle with Active Suspension[C]. Proc. of AVEC’96,pp.1037-1056,1996.
    [68] Cooke R,Crolla,D. Modelling Combined Ride and Handling Manoeuvres for a Vehicle with Slow-active Suspension[J]. Vehicle System Dynamics,1997,27(5):457-476.
    [69] Cooper N,Manning W,Crolla D,et al. Study of the Integration of Roll Control and Torque Distribution[C]. In Proc. of AVEC’04,pp.513-518,2004.
    [70] Manning W,Crolla D,Brown M.,et al. Co-ordination of chassis subsystems for vehicle motion control[C]. In Proc. of AVEC'2000.
    [71] Yokoya Y,Kizu R.,Kawaguchi,H,et al. Integrated Control System between ActiveControl Suspension and Four Wheel Steering for the 1989 CELICA[C]. SAE paper 90148,1990.
    [72] Kawakami H,Sato H,Tabata M. Development of Integrated System Between Active Control Suspension,Active 4WS,TRC and ABS[C]. SAE paper920271,1992.
    [73]王启瑞,刘立强,陈无畏.基于随机次优控制的汽车电动助力转向与主动悬架集成控制.中国机械工程[J]. 2005,16(8):743-747.
    [74]王启瑞,朱婉玲,陈无畏,等.汽车半主动悬架集成优化仿真研究[J].合肥工业大学学报(自然科学版),2001,24(6):146-152.
    [75]初长宝,陈无畏.汽车底盘系统分层式协调控制[J].机械工程学报,2008,44(2):157-162.
    [76]李君,喻凡.车辆转向制动ABS系统仿真研究[J].系统仿真学报,2001,13(6):789-793.
    [77]马岳峰,刘昭度,吴利军,等.基于ABS的ABS/ASR集成液压系统设计[J].液压与气动,2004(6):27-29.
    [78]程军,催继波,徐光辉等.车辆控制系统集成开发系统[J].汽车工程,22(2):109-114.
    [79] Gabriel Ll. Digital Networks In the Automotive Vehicle[M].
    [80] Tom Denton. Automobile Electrical and Electronic Systems[M],Buterworth- Heinemann,Apr2000:58~74
    [81] Hans-Jorg,Mathony. Network Architecture for CAN[C]. SAE 93000:77~104.
    [82]高青春.基于CAN/LIN总线的汽车通信网络设计[J].微机发展,2005(7):22~25.
    [83] SAE Vehicle Network for Multiplexing and Data Communications Standards Commitee,SAE J2057/4,"Class A Multiplexing Architecture Strategies”JUN93: 57~61.
    [84]余志生.汽车理论(第四版)[M].北京:机械工业出版社,2006.
    [85]庄继德.现代汽车轮胎技术[M].北京:北京理工大学出版社,2001.
    [86]庄继德.汽车电子系统工程[M].北京:机械工业出版社,1997.
    [87]达飞鹏,宋文忠.基于模糊神经网络滑模控制器的一类非线性系统自适应控制[J].中国电机工程学报,2002,22(5):78-83.
    [88] V Kolmanovskii,A Myshkis. Introduction to the Theory and Applications of Functional Differential Equations[M]. Kluwer Dordrecht,The Netherlands,1999.
    [89] X Li,C E Souza. Delay-dependent robust stability and stabilization of uncertain linear delay systems:A linear matrix inequality approach[J]. IEEE Trans. Automat. Control,1997,42(2): 1144-1148.
    [90] C E Souza,X Li. Delay-dependent robust H∞control of uncertain linear state-delayed systems[J]. Automatica,1999,44(5):1313–1321.
    [91] P Park. A delay-dependent stability criterion for systems with uncertain time-invariant delays[J]. IEEE Trans. Automat. Control,1999,44 (4) :876-877.
    [92] Y S Moon,P Park,W H Kwon,et al. Delay-dependent robust stabilization of uncertain state-delayed systems[J]. Inter. J. Control,2001,74(4):1447-1455.
    [93] Y Xia,Y Jia. Robust stability function of state delayed systems with polytopic type uncertainties via parameter-dependent Lyapunov functions[J]. Inter. J. Control,2002,75(6): 1427–1434.
    [94] E Fridman , U Shaked. Parameter-dependent stability and stabilization of uncertain time-delay systems[J]. IEEE Trans. Automat. Control,2003,48 (5):861–866.
    [95] H Gao,C Wang. Comments and further results on A descriptor system approach to H∞control of linear time-delay systems[J]. IEEE Trans. Automat. Control,2003,48 (3) 520–525.
    [96] Y He,M Wu,J H She,et al. Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays[J]. Systems Control,2004,51 (1):57–65.
    [97] Y He,M Wu,J H She,et al. Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties[J]. IEEE Trans. Automat. Control,2004,49 (5):828–832.
    [98] C Hua,X Guan,P Shi. Robust backstepping control for a class of time-delayed systems[J]. IEEE Trans. Automatic. Control,2009 ,50 (6):894–899.
    [99] S Xu,J Lam. Improved delay-dependent stability criteria for time-delay system[J]. IEEE Trans. Automat. Control ,2005,50 (3):384-387.
    [100] Y He,Q G Wang,L Xie,et al. Further improvement of free-weighting matrices technique for systems with time-varying delay[J]. IEEE Trans. Automat. Control,2007,52 (2):293-299.
    [101] E Feron,P Apkarian,P Gahinet. Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions[J]. IEEE Trans. Automat. Control,1996,41 (7):1041–1046.
    [102] D Peaucelle,D Arzelier,J Bachelier,et al. A new robust D-stability condition for real convex polytopic uncertainty[J]. Systems Control Lett.,2001, 40 (2):21–30.
    [103] C Lin,Q G Wang,T H Lee. Less conservative D-stability test for polytopic systems using linearly parameter-dependent Lyapunov function[J]. IEEE Proc.-Control Theory Appl, 2006,53 (2):665-670.
    [104] H Gao,P Shi,J Wang. Parameter-dependent robust stability of uncertain time-delaysystems[J]. J. Comput. Appl. Math.,2007 (7):336-343.
    [105] C Lin,Q G Wang,T H Lee. A less conservative robust stability test for linear uncertain time-delay systems[J]. IEEE Trans. Autom. Control,2006,51 (1):87-91.
    [106] Palkovics L,Venhovens P J Th. Investigation on stability and Possible chaotic motions in the controlled wheel suspension system[J]. Vehicle System Dynamics,1992,21(5):269-296.
    [107] Y He,Q G Wang,C. Lin,et al. Delay-range-dependent stability for systems with time-varying delay[J]. Automatica ,2007,43 (2):371– 376.
    [108]周立功,等. ARM嵌入式系统基础教程[M].北京:北京航空航天大学出版社,2005.
    [109]秦明辉.基于ARM的汽车防抱死制动系统设计[D].合肥:合肥工业大学硕士学位论文,2008.
    [110] Dave Crolla,喻凡.车辆动力学及其控制[M].北京:人民交通出版社,2004.
    [111] Gu K,Niculescu S. Survey on recent results in the stability and control of time-delay systems. Journal of Dynamic Systems[M]. Measurement and Control,2003,25(6):158-165.
    [112]王启瑞,陈无畏,等.汽车电动助力转向系统的H∞控制研究[J].汽车工程,2004,26(5): 609~612.
    [113] Jun Wang,D A Wilson,G D Halikias. Robust-Performance control of decoupled active suspension systems based on LMI method[C]. Proceedings of the American Control Conference,Arlington,2001.
    [114]吴旭东,解学书. H∞鲁棒控制中的加权阵选择[J] .清华大学学报,1997,36(1):27-30.
    [115]杨乐平,李海涛,等. LabVIEW程序设计与应用(第二版)[M].北京:电子工业出版社,2005.
    [116] National Instruments Corporation.NI PXI-8195/8196 User Manual. March 2005 Edition Part.Number 371445A-01.
    [117] National Instruments Corporation.SCB-68 68-Pin Shield Connector Block User Manual. Dec 2002Edition Part.Number 320745B-01.
    [118]初长宝.汽车底盘系统分层式协调控制研究[D].合肥:合肥工业大学博士学位论文,2008.
    [119]刘俊.基于快速控制原型的电动助力转向控制系统研究[D].合肥:合肥工业大学博士学位论文,2009.
    [120]唐国元.车辆防抱死制动系统及制动稳定性控制策略的仿真研究[D].武汉:华中科技大学博士学位论文,2005.
    [121] J Wallaschek. Dynamics of nonlinear automobile shock absorbers[J]. Int J of Nonlinear Mechanics,1990,25 (2/3):299-308.
    [122] K Wolfgang , K Andreas. Modeling and Nonlinear Control of an Electrohydraulic Closed-Ceter Power- Steering System[C]. Proceedings of the 40th IEEE Conference on Decision and Control and the European Control Conference 2005, Seville, Spain, December 12-15.
    [123] H Du, N Zhang. H∞control of active vehicle suspension with actuator time-delay[J]. Journal of sound and vibration,2007,30(1):236~252.
    [124]卢少波,李以农,赵树恩,冀杰.基于灰Fuzzy控制算法的车辆悬架与转向综合控制[J].系统仿真学报. 2009,21(7):1916-1920.
    [125]郑玲,李以农,魏俊生,邵建.基于磁流变阻尼器的汽车半主动悬架和电动助力转向系统协调控制[J].振动工程学报,2009,22(5):503-510.
    [126]卢少波,李以农,赵树恩,冀杰.基于动态表面理论的车辆制动与悬架协调控制[J].系统仿真学报,2008,20(23):6461-6465.
    [127]王箴.车身系统的CAN总线控制[J].汽车电器,2003(5):11~14.
    [128]程军,崔继波,苟凯英.车辆控制系统CAN总线通信的实施方法[J].汽车工程,2001,23(5):300~302.
    [129]鲍官军,计时鸣,张利,等. CAN总线技术、系统实现及发展趋势[J].浙江工业大学学报,2003,31(1):58-63.
    [130]侯树梅,王世震.汽车车身总线应用现状及发展趋势[J].汽车电器,2004(11):1~4.
    [131]周震.基于CAN总线的车身控制模块[D].南京,南京航空航天大学硕士学位论文,2005.
    [132] Lankes Stefan,Jabs Andreas,Bemmerl Thomas. Design and Performance of a CAN-based Connection-oriented Protocol for Real-time CORBA[J]. Journal of Systems and Software,2005,77(1):37-45.
    [133]陈学珍,陈旭武. CAN总线及应用[J] .电气传动自动化,2005(5):51~53.
    [134]李雅博,张俊智,卢青春.混合动力电动汽车车上CAN网络设计实时性分析[J].汽车工程.2005,27(1):16~19.
    [135]周泉. CAN的基本知识——背景概述与故障状态[J].汽车电器,2004(3):30~33.
    [136]朱正礼,任少云,殷承良,等. CAN总线系统在电动轿车上的应用[J].汽车工程,2003,2(4):380~382.
    [137]孙启启.基于干扰抑制的汽车电动助力转向与主动悬架系统的集成控制研究[D].合肥,合肥工业大学硕士学位论文,2006.
    [138]申铁龙著. H∞控制理论及应用.北京:清华大学出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700