含碱金属与碱土金属氢化物的双氢键体系的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双氢键是氢键的一种,特殊之处在于其非传统的质子受体,一个带有负电荷的氢原子。一些双氢键的强度与常规氢键的强度相当,这使得双氢键能够影响物质的结构、相关体系的反应性及选择性,因而在催化反应、晶体工程以及储氢材料等领域具有潜在的应用价值。本论文针对这种特殊的氢键作用,采用多种理论研究方法对含有H…H作用的复合物体系的性质及其本质进行了详细地研究。论文中所研究的构型和分析结果将有助于加深对双氢键本质的了解。主要内容包括以下五个方面:
     (1)在MP2/6-311++G(d,p)水平下对C_2H_(4-n)Cl_n…MgH_2(n = 0,1,2,3)体系进行了研究。根据优化的结构该体系可分为三组:L构型只包含CH…H作用,相互作用能在0.5 ~ 2.0 kcal/mol的范围;F和S构型表示体系呈五元环和六元环构型,其同时包含了CH…H和HMg…Cl作用,相互作用能在3.4 ~ 5.9 kcal/mol左右。所有复合物体系内的质子供体C–H键长较单体时明显变长,并伴随C–H伸缩振动的红移现象。乙烯分子上Cl原子取代数目的增加,对H…H作用体系的几何结构、频率、相互作用能以及C–H的σ*反键轨道电子占据数都产生了重要影响。采用分子中原子理论(AIM)和自然键轨道理论(NBO)方法对C_2H_(4-n)Cl_n…MgH_2(n = 0,1,2,3)体系进行了分析,通过对比几何结构数据以及AIM拓扑数据,考察了环状结构对双氢键体系的影响。利用NBO分析解释了其中的环状结构内存在的与常规氢键相反的电荷转移方向。研究中所发现的新连接形式(六元和五元环状构型)将有助于加深对双氢键本质的了解。
     (2)采用从头算MP2方法,在aug-cc-PVTZ基组水平上对由CH_4,C_2H_4,C_2H_2以及其氯代衍生物和MgH_2分子形成的C–H…H作用体系进行了研究。研究了它们的几何结构、伸缩振动频率和相互作用能等性质。结果表明双氢键的强度按照如下质子供体顺序递增:C(sp~3)–H < C(sp~2)–H< C(sp)–H。对于含有相同C原子杂化类型的复合物体系,Cl原子取代数目增加增强了C–H…H作用强度。对于大部分环状结构,质子受体Mg?H键的键长变化以及频率变化都明显大于质子供体C–H键的相应变化值。NBO分析表明环状结构中除H…H作用以外同时具有的Mg…Cl作用引起了额外的电荷转移,使得总的电荷转移方向不同于传统氢键中的结果。AIM分析考察了H…H键临界点处的电子密度拓扑性质,结果突出了C–H…H双氢键的静电作用本质。
     (3)在MP2/6-311++G(d,p)水平下对C_2H_(4-n)Cl_n…NaH(n = 0,1,2,3)体系进行了详细的理论研究。根据优化出的几何构型将C_2H_(4-n)Cl_n…NaH体系分为三组进行讨论:L构型只包含CH…H作用;F和S代表同时包含了CH…H和HNa…Cl作用的五元和六元环构型。分析了复合物结构、相互作用能、电子密度拓扑数据与H…H作用距离之间的关系。AIM分析证明了C_2H_(4-n)Cl_n…NaH体系中H…H作用的静电作用本质,同时根据反映键强度的电子密度ρ值进一步分析环状构型对H…H作用的影响。通过NBO分析综合考虑了C-H和H-Na键的σ成键轨道和σ*反键轨道上电子占据数变化对键长的影响,并进一步分析了分子间独特的双通道电荷转移特征。
     (4)在MP2/6-311++G(d,p)水平下对MH…HC_2Cl_3 (M=Li, Na, K)体系进行了细致的研究。L构型只包含CH…H作用;F和S构型代表包含了CH…H和HM…Cl作用的五元和六元环构型。分析了质子供体分子相同的情况下,不同的质子受体分子对体系双氢键的影响。质子受体分子电负性按照Li、Na、K规律递减,而相同构型下的MH…HC_2Cl_3复合物体系的H…H距离、相互作用能、电荷转移大小、电子密度拓扑性质等随该电负性顺序发生了递减或递增的变化。同时运用AIM分析和NBO分析对复合物体系双氢键的性质进行了讨论,进一步分析了分子间独特的电荷转移特征。
     (5)采用密度泛函B3LYP方法以及6-31++G(d,p)和6-311++G(3df,2p)基组,研究了CaH_2…HY(Y = C_2H, C_2HCl, HC_2BeH,CN, NC)体系的几何结构、双氢键的相互作用能和电子密度拓扑性质等。从优化所得的CaH_2…HY体系结构来看,B3LYP/6-31++G(d,p)方法计算所得体系中的CaH_2分子呈线型结构,而B3LYP/6-311++G(3df,2p)方法优化得到了一个非常明显的弯曲结构。基于不同的CaH_2分子结构,两种方法计算得到的CaH_2…HY体系H…H间距离、相互作用能以及分子间电荷转移量等结果非常接近。结果表明CaH_2分子结构的差异性对CaH_2…HY体系双氢键的性质影响微乎其微。通过NBO分析考察了Ca-H和H-Y片段的轨道间相互作用以及不同基组水平下的CaH_2分子电子结构特征的不同。另外,采用分子中的原子(AIM)方法分别对各复合物体系中相关键临界点处的电子密度拓扑性质进行了分析,结果证明了CaH_2…HY体系中H…H相互作用的静电作用本质。
Dihydrogen bonding is an unconventional hydrogen bonding. It has strength and directionality comparable with those found in classical hydrogen bonding. Consequently, it can influence structure, reactivity and selectivity in solution and solid state, finding thus potential utilities in catalysis, crystal engineering, and materials chemistry. The theoretical studies were performed on the structures, interactions and properties of some representative systems containing dihydrogen bond and other interactions in this thesis. The results obtained on new structures and intermolecular interactions may be valuable for improving our understanding of the nature of intermolecular interaction, and enriching our knowledge of dihydrogen bonds and other weak intermolecular interactions.
     There are five main aspects included in this thesis:
     (1) The dihydrogen-bonded complexes of ethylene and its chlorine derivatives with magnesium hydride have been systematically investigated at the MP2/6-311++G(d,p) level. The studied complexes are divided into three groups based on the optimized structures. The most stable complexes with interaction energies between 3.4 and 5.9 kcal/mol present circular structures enclosed by CH…H and HMg…Cl bonds. The other linear structures with interaction energies between 0.5 and 2.0 kcal/mol are stabilized by only CH…H dihydrogen bond. All investigated complexes exhibit slight elongation of C–H bond accompanied by a red shift of C–H stretching frequency. With increasing chlorine atoms on ethylene, the geometries, frequencies, interaction energies, and the electron density in the C–Hσ* antibonding orbital of the complexes all increase or decrease gradually. The nature of the electrostatic interaction in this type of dihydrogen bond has also been unveiled by means of the atoms in molecules (AIM) and natural bond orbital (NBO) analysis. The effect of ring structures on the dihydrogen bonding systems has been considered by comparing the geometric data and AIM parameters. Moreover, the calculated direction of net charge transfer of ring structure complexes is contrary to the previous found in dihydrogen bonded systems.
     (2) The C–H…H dihydrogen-bonded complexes of methane, ethylene, acetylene, and their derivatives with magnesium hydride have been systematically investigated at the MP2/aug-cc-PVTZ level. The results confirm that the strength of dihydrogen bonding increases in the following order of proton donors: C(sp~3)–H < C(sp~2)–H< C(sp)–H and chlorine substituents enhance the C–H…H interaction. For the majority complexes with cyclic type of structure, the bond length variations and red-shifts of Mg-H proton-accepting bond are more sensitive than the corresponding value of C-H proton-donating bond. The nature of the electrostatic interaction in these C–H…H dihydrogen bond has also been unveiled by means of the atoms in molecules (AIM) analysis. The natural bond orbital (NBO) analysis suggests that the charge transfer in cyclic complexes have dual-channel character. The direction of net charge transfer of cyclic complexes is contrary to the previous found in dihydrogen bonded systems.
     (3) The dihydrogen-bonded complexes of ethylene and its chlorine derivatives with sodium hydride have been systematically investigated at the MP2/6-311++G(d,p) level. The studied complexes are divided into three groups (including Linear, Five- and Six-membered cyclic structures) based on the optimized structures. The structural, energetic and topological parameters are presented and analyzed in terms of their possible correlation with the interaction energies and the intermolecular H…H distances. The nature of the electrostatic interaction in this type of dihydrogen bond has also been unveiled by means of the atoms in molecules (AIM) and natural bond orbital (NBO) analysis. The effect of ring structure on the dihydrogen bonding systems has been considered by comparing to corresponding linear structure. NBO analysis suggests that the EDT in cyclic structures have dual-channel character.
     (4) The properties of the dihydrogen-bonded (DHB) complexes MH…HC2Cl3 (M=Li, Na, K) were calculated by the MP2/6-311++G(d,p) method. The studied complexes are divided into three groups (including Linear, Five- and Six-membered cyclic structures) based on the optimized structures. For the same optimized structure, if the acceptors listed in order of increasing proton-accepting ability are LiH < NaH < KH. It is undoubted that such observations are related with the gradually decreasing of electronegativity for Li, Na and K. The nature of the electrostatic interaction in this type of dihydrogen bond has also been unveiled by means of the atoms in molecules (AIM) and natural bond orbital (NBO) analysis. The effect of ring structure on the dihydrogen bonding systems has been considered by comparing to corresponding linear structure.
     (5) The B3LYP/6-31++G(d,p) and B3LYP/6-311++G(3df,2p) calculations are carried out to investigate the structures and properties of dihydrogen-bonded CaH_2…HY (Y = C_2H, C_2Cl, C_2BeH,CN, and NC) complexes. Our calculations revealed two possible structures for CaH_2 in CaH_2…HY complexes: linear (I) and bent (II). The bond lengths, interaction energies, and strength for H…H interactions obtained by both B3LYP/6-31++G(d,p) and B3LYP/6-311++G(3df, 2p) methods are quite close to each other. The inverse ratio correlation indicates interaction energy decrease with the increase of the electron density at Ca–H bond critical point. The AIM results point out that for all of Ca–H…H–Y interactions considered here the Laplacian of the electron density at H…H bond critical point are positive indicating the electrostatic nature in these Ca–H…H–Y dihydrogen bond systems.
引文
[1] JEFFREY G A. An introduction to hydrogen bonding [M]. Oxford University Press New York:, 1997.
    [2] STEINER T. The Hydrogen Bond in the Solid State [J]. Angew Chem Int Ed, 2002, 41(1): 48-76.
    [3] DESIRAJU G R. Hydrogen Bridges in Crystal Engineering:? Interactions without Borders [J]. Acc Chem Res, 2002, 35(7): 565-573.
    [4] ETTER M C, MACDONALD J C, BERNSTEIN J. Graph-set analysis of hydrogen-bond patterns in organic crystals [J]. Acta Crystallographica Section B, 1990, 46(2): 256-262.
    [5] BERKELBACH T C, LEE H S, TUCKERMAN M E. Concerted Hydrogen-Bond Dynamics in the Transport Mechanism of the Hydrated Proton: A First-Principles Molecular Dynamics Study [J]. Phys Rev Lett, 2009, 103(23): 238302.
    [6] COWAN M L, BRUNER B D, HUSE N, et al. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O [J]. Nature, 2005, 434(7030): 199-202.
    [7] KUMAUCHI M, KALEDHONKAR S, PHILIP A F, et al. A Conserved Helical Capping Hydrogen Bond in PAS Domains Controls Signaling Kinetics in the Superfamily Prototype Photoactive Yellow Protein [J]. J Am Chem Soc, 2010, 132(44): 15820-15830.
    [8] KOLANO C, HELBING J, KOZINSKI M, et al. Watching hydrogen-bond dynamics in a [bgr]-turn by transient two-dimensional infrared spectroscopy [J]. Nature, 2006, 444(7118): 469-472.
    [9] SIEGFRIED N A, KIERZEK R, BEVILACQUA P C. Role of Unsatisfied Hydrogen Bond Acceptors in RNA Energetics and Specificity [J]. J Am Chem Soc, 2010, 132(15): 5342-5344.
    [10] KETEN S, BUEHLER M J. Asymptotic Strength Limit of Hydrogen-BondAssemblies in Proteins at Vanishing Pulling Rates [J]. Phys Rev Lett, 2008, 100(19): 198301.
    [11] JEFFREY G A, SAENGER W. Hydrogen bonding in biological structures [M]. Springer-Verlag Berlin:, 1991.
    [12] LIPPINCOTT E R, SCHROEDER R. One-Dimensional Model of the Hydrogen Bond [J]. The Journal of Chemical Physics, 1955, 23(6): 1099-1106.
    [13] PAULING L. The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry [M]. Cornell University Press, 1989.
    [14] CALHORDA M J. Weak hydrogen bonds: theoretical studies [J]. Chem Commun, 2000, (10): 801-809.
    [15] SCHEINER S. Hydrogen bonding: a theoretical perspective [M]. Oxford University Press, USA, 1997.
    [16] GILLI P, PRETTO L, BERTOLASI V, et al. Predicting Hydrogen-Bond Strengths from Acid?Base Molecular Properties. The pKa Slide Rule: Toward the Solution of a Long-Lasting Problem [J]. Acc Chem Res, 2008, 42(1): 33-44.
    [17] SPEK A. Structure validation in chemical crystallography [J]. Acta Crystallographica Section D, 2009, 65(2): 148-155.
    [18] ZHAO G J, HAN K-L. Site-Specific Solvation of the Photoexcited Protochlorophyllide a in Methanol: Formation of the Hydrogen-Bonded Intermediate State Induced by Hydrogen-Bond Strengthening [J]. Biophys J, 2008, 94(1): 38-46.
    [19] KANNAPPAN K, WERBLOWSKY T L, RIM K T, et al. An Experimental and Theoretical Study of the Formation of Nanostructures of Self-Assembled Cyanuric Acid through Hydrogen Bond Networks on Graphite [J]. The Journal of Physical Chemistry B, 2007, 111(24): 6634-6642.
    [20] LITWINIENKO G, DILABIO G A, MULDER P, et al. Intramolecular and Intermolecular Hydrogen Bond Formation by Some Ortho-Substituted Phenols: Some Surprising Results from an Experimental and Theoretical Investigation [J].The Journal of Physical Chemistry A, 2009, 113(22): 6275-6288.
    [21] TSUZUKI S, TOKUDA H, MIKAMI M. Theoretical analysis of the hydrogen bond of imidazolium C2-H with anions [J]. PCCP, 2007, 9(34): 4780-4784.
    [22] ALKORTA I, ELGUERO J. Non-conventional hydrogen bonds [J]. Chem Soc Rev, 1998, 27(2): 163-170.
    [23] DESIRAJU G R. The C?H···O Hydrogen Bond: Structural Implications and Supramolecular Design [J]. Acc Chem Res, 1996, 29(9): 441-449.
    [24] PLATTS J A, HOWARD S T, WOZNIAK K. Quantum chemical evidence for C-H C hydrogen bonding [J]. Chem Commun, 1996, (1): 63-64.
    [25] ROZAS I, ALKORTA I, ELGUERO J. Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors [J]. J Am Chem Soc, 2000, 122(45): 11154-11161.
    [26] ALKORTA I, ELGUERO J. Carbenes and Silylenes as Hydrogen Bond Acceptors [J]. The Journal of Physical Chemistry, 1996, 100(50): 19367-19370.
    [27] TANG T H, HU W J, YAN D Y, et al. A quantum chemical study on selected [pi]-type hydrogen-bonded systems [J]. Journal of Molecular Structure: THEOCHEM, 1990, 207(3-4): 319-326.
    [28] ALKORTA I, ELGUERO J, FOCES-FOCES C. Dihydrogen bonds (A-H···H-B) [J]. Chem Commun, 1996, (14): 1633-1634.
    [29] LIU Q, HOFFMANN R. Theoretical Aspects of a Novel Mode of Hydrogen-Hydrogen Bonding [J]. J Am Chem Soc, 1995, 117(40): 10108-10112.
    [30] RAMOS M, ALKORTA I, ELGUERO J, et al. Theoretical Study of the Influence of Electric Fields on Hydrogen-Bonded Acid?Base Complexes [J]. The Journal of Physical Chemistry A, 1997, 101(50): 9791-9800.
    [31] BLANCO F, SOLIMANNEJAD M, ALKORTA I, et al. Inverse hydrogen bonds between XeH2 and hydride and fluoride derivatives of Li, Be, Na and Mg [J]. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta, 2008, 121(3): 181-186.
    [32] ROZAS I, ALKORTA I, ELGUERO J. Inverse Hydrogen-Bonded Complexes[J]. The Journal of Physical Chemistry A, 1997, 101(23): 4236-4244.
    [33] ALKORTA I, ELGUERO J, SOLIMANNEJAD M. Dihydrogen bond cooperativity in (HCCBeH)n clusters [J]. The Journal of Chemical Physics, 2008, 129(6): 064115.
    [34] SINGH P C, PATWARI G N. Proton Affinity Correlations between Hydrogen and Dihydrogen Bond Acceptors [J]. The Journal of Physical Chemistry A, 2007, 111(16): 3178-3183.
    [35] OLIVEIRA B, ARA JO R, RAMOS M. Multiple proton donors on BeH2···2HCl trimolecular dihydrogen-bonded complex: some theoretical insights [J]. Struct Chem, 2008, 19(4): 665-670.
    [36] OLIVEIRA B, ARA JO R, RAMOS M. The (H-δ···H+δ) charge transfer and the evaluation of the harmonic molecular properties of dihydrogen-bonded complexes formed by BeH2···HX with X = F, Cl, CN, and CCH [J]. Struct Chem, 2008, 19(2): 185-189.
    [37] ZHAO G J, HAN K L. Novel infrared spectra for intermolecular dihydrogen bonding of the phenol-borane-trimethylamine complex in electronically excited state [J]. The Journal of Chemical Physics, 2007, 127(2): 024306.
    [38] AYLL N J A, GERVAUX C, SABO-ETIENNE S, et al. First NMR Observation of the Intermolecular Dynamic Proton Transfer Equilibrium between a Hydride and Coordinated Dihydrogen: ? (dppm)2HRuH···H?OR = [(dppm)2HRu(H2)]+(OR) [J]. Organometallics, 1997, 16(10): 2000-2002.
    [39] ORLOVA G, SCHEINER S, KAR T. Activation and Cleavage of H?R Bonds through Intermolecular H...H Bonding upon Reaction of Proton Donors HR with 18-Electron Transition Metal Hydrides [J]. The Journal of Physical Chemistry A, 1999, 103(4): 514-520.
    [40] SHUBINA E S, BELKOVA N V, BAKHMUTOVA E V, et al. In situ IR and NMR study of the interactions between proton donors and the Re(I) hydride complex [{MeC(CH2PPh2)3}Re (CO)2H]. ReH...H bonding and proton-transfer pathways [J]. Inorg Chim Acta, 1998, 280(1-2): 302-307.
    [41] ORLOVA G, SCHEINER S. Intermolecular H···H Bonding and ProtonTransfer in Semisandwich Re and Ru Complexes [J]. The Journal of Physical Chemistry A, 1998, 102(25): 4813-4818.
    [42] CHU HEI S, XU Z, NG SIU M, et al. Protonation of [tpmRu(PPh3)2H]BF4 [tpm = Tris(pyrazolyl)methane]– Formation of Unusual Hydrogen-Bonded Species [J]. Eur J Inorg Chem, 2000, 2000(5): 993-1000.
    [43] AYLLON J, SABO-ETIENNE S, CHAUDRET B, et al. Modulation of quantum mechanical exchange couplings in transition metal hydrides rough hydrogen bonding [J]. Inorg Chim Acta, 1997, 259(1-2): 1-4.
    [44] AYLLON J A, SAYERS S F, SABO-ETIENNE S, et al. Proton Transfer in Aminocyclopentadienyl Ruthenium Hydride Complexes [J]. Organometallics, 1999, 18(20): 3981-3990.
    [45] CABALLERO A, A. JALON F. Three-centre dihydrogen bond with fast interchange between proton and hydride: a very active catalyst for D+-H2 exchange [J]. Chem Commun, 1998, (17): 1879-1880.
    [46] LEE J C, PERIS E, RHEINGOLD A L, et al. An Unusual Type of H.cntdot..cntdot..cntdot.H Interaction: Ir-H.cntdot..cntdot..cntdot.H-O and Ir-H.cntdot..cntdot..cntdot.H-N Hydrogen Bonding and Its Involvement in .sigma.-Bond Metathesis [J]. J Am Chem Soc, 1994, 116(24): 11014-11019.
    [47] PATEL B P, KAVALLIERATOS K, CRABTREE R H. Effects of dihydrogen bonding on fluxionality in ReH5(PPh3)2L [J]. J Organomet Chem, 1997, 528(1-2): 205-207.
    [48] HAACK K-J, HASHIGUCHI S, FUJII A, et al. The Catalyst Precursor, Catalyst, and Intermediate in the RuII-Promoted Asymmetric Hydrogen Transfer between Alcohols and Ketones [J]. Angewandte Chemie International Edition in English, 1997, 36(3): 285-288.
    [49]BOSQUE R, MASERAS F, EISENSTEIN O, et al. Site Preference Energetics, Fluxionality, and Intramolecular M?H···H?N Hydrogen Bonding in a Dodecahedral Transition Metal Polyhydride [J]. Inorg Chem, 1997, 36(24): 5505-5511.
    [50] ROZAS I, ALKORTA I, ELGUERO J. Field effects on dihydrogen bondedsystems [J]. Chem Phys Lett, 1997, 275(3-4): 423-428.
    [51] FERACIN S, BUERGI T, BAKHMUTOV V I, et al. Hydrogen/Hydrogen Exchange and Formation of Dihydrogen Derivatives of Rhenium Hydride Complexes in Acidic Solutions [J]. Organometallics, 1994, 13(11): 4194-4202.
    [52] HWANG J-W, CAMPBELL J P, KOZUBOWSKI J, et al. Topochemical Control in the Solid-State Conversion of Cyclotrigallazane into Nanocrystalline Gallium Nitride [J]. Chem Mater, 1995, 7(3): 517-525.
    [53] YAO W, CRABTREE R H. Anη1-Aldehyde Complex and the Role of Hydrogen Bonding in Its Conversion to anη1-Imine Complex [J]. Inorg Chem, 1996, 35(10): 3007-3011.
    [54] AIME S, CHIEROTTI M R, GOBETTO R, et al. Intramolecular hydrogen bonding in transition metal clusters: NMR evidence for an Os-H··H-S interaction in H([mu]-H)Os3(CO)10(HSR) (R=ethyl, cyclopentyl) [J]. Inorg Chim Acta, 2003, 351,251-255.
    [55] AIME S, GOBETTO R, VALLS E. Role of Os?H···H?N Interactions in Directing the Stereochemistry of Carbonyl Cluster Hydride Derivatives [J]. Organometallics, 1997, 16(24): 5140-5141.
    [56] AIME S, F RRIZ M, GOBETTO R, et al. Coordination of an Imine Ligand on an Os3 Cluster Stabilized by Intramolecular Os?H···H?N Hydrogen Bonding [J]. Organometallics, 1999, 18(10): 2030-2032.
    [57] AIME S, F RRIZ M, GOBETTO R, et al. Coordination of Imines on Os3 Clusters: Effect of the Solvent in Addressing Isomer Formation [J]. Organometallics, 2000, 19(4): 707-710.
    [58] PALUSIAK M, GRABOWSKI S J. Are the O-H···H-C intramolecular systems of 2-cyclopropyl ethenol and its derivatives classified as dihydrogen bonds? Ab initio and DFT study [J]. Journal of Molecular Structure: THEOCHEM, 2004, 674(1-3): 147-152.
    [59] GR NDEMANN S, ULRICH S, LIMBACH H-H, et al. Solvent-Assisted Reversible Proton Transfer within an Intermolecular Dihydrogen Bond and Characterization of an Unstable Dihydrogen Complex [J]. Inorg Chem, 1999,38(11): 2550-2551.
    [60] CHU H S, LAU C P, WONG K Y, et al. Intramolecular N?H···H?Ru Proton?Hydride Interaction in Ruthenium Complexes with (2-(Dimethylamino)ethyl)cyclopentadienyl and (3-(Dimethylamino)propyl)cyclopentadienyl Ligands. Hydrogenation of CO2 to Formic Acid via the N?H···H?Ru Hydrogen-Bonded Complexes [J]. Organometallics, 1998, 17(13): 2768-2777.
    [61] CUSTELCEAN R, JACKSON J E. Topochemical Control of Covalent Bond Formation by Dihydrogen Bonding [J]. J Am Chem Soc, 1998, 120(49): 12935-12941.
    [62] MUSASHI Y, SAKAKI S. Theoretical Study of Ruthenium-Catalyzed Hydrogenation of Carbon Dioxide into Formic Acid. Reaction Mechanism Involving a New Type ofσ-Bond Metathesis [J]. J Am Chem Soc, 2000, 122(16): 3867-3877.
    [63] KANG X, MA L, FANG Z, et al. Promoted hydrogen release from ammonia borane by mechanically milling with magnesium hydride: a new destabilizing approach [J]. PCCP, 2009, 11(14): 2507-2513.
    [64] CUSTELCEAN R, JACKSON J E. Dihydrogen bonding: Structures, energetics, and dynamics [J]. Chem Rev, 2001, 101(7): 1963-1980.
    [65] PADILLA-MARTI?EZ I I, ROSALEZ-HOZ M D J, TLAHUEXT H, et al. Azolylborane adducts. Structural and conformational analysis by x-ray diffraction and NMR. Protic-hydric (C?Hδ+···-δ–H?B) and Protic-Fluoride (C?Hδ+···-δ–F?B) interactions [J]. Chem Ber, 1996, 129(4): 441-449.
    [66] ZACHARIASEN W H, MOONEY R C L. The Structure of the Hypophosphite Group as Determined from the Crystal Lattice of Ammonium Hypophosphite [J]. The Journal of Chemical Physics, 1934, 2(1): 34-37.
    [67] BURG A B. Enhancement of P-H Bonding in a Phosphine Monoborane [J]. Inorg Chem, 1964, 3(9): 1325-1327.
    [68] SALTIEL J, CURTIS H, METTS L, et al. Delayed Fluroescence and Phosphorescence of Aromatic Ketones in Solution [J]. J Am Chem Soc, 1970,92(2): 410-411.
    [69] RICHARDSON T, DE GALA S, CRABTREE R H, et al. Unconventional Hydrogen Bonds: Intermolecular B-H.cntdot..cntdot..cntdot.H-N Interactions [J]. J Am Chem Soc, 1995, 117(51): 12875-12876.
    [70] KLOOSTER W T, KOETZLE T F, SIEGBAHN P E M, et al. Study of the N?H···H?B Dihydrogen Bond Including the Crystal Structure of BH3NH3 by Neutron Diffraction [J]. J Am Chem Soc, 1999, 121(27): 6337-6343.
    [71] CRABTREE R H. A New Type of Hydrogen Bond [J]. Science, 1998, 282(5396): 2000-2001.
    [72] GRABOWSKI S J, ROBINSON T L, LESZCZYNSKI J. Strong dihydrogen bonds - ab initio and atoms in molecules study [J]. Chem Phys Lett, 2004, 386(1-3): 44-48.
    [73] GRABOWSKI S J. BeH2 as a proton-accepting molecule for dihydrogen bonded systems - ab initio study [J]. J Mol Struct, 2000, 553, 151-156.
    [74] CAMPBELL J P, HWANG J-W, YOUNG V G, et al. Crystal Engineering Using the Unconventional Hydrogen Bond. Synthesis, Structure, and Theoretical Investigation of Cyclotrigallazane [J]. J Am Chem Soc, 1998, 120(3): 521-531.
    [75] DESMURS P, KAVALLIERATOS K, YAO W, et al. Intermolecular Re-H···H-N and Re-H···base hydrogen bonding estimated in solution by a UV-VIS spectroscopic method [J]. New J Chem, 1999, 23(11): 1111-1115.
    [76] ORLOVA G, SCHEINER S. Intermolecular MH···HR Bonding in Monohydride Mo and W Complexes [J]. The Journal of Physical Chemistry A, 1998, 102(1): 260-269.
    [77] PERIS E, LEE J C, RAMBO J R, et al. Factors Affecting the Strength of N-H···H-Ir Hydrogen Bonds [J]. J Am Chem Soc, 1995, 117(12): 3485-3491.
    [78] GRABOWSKI S J. Study of correlations for dihydrogen bonds by quantum-chemical calculations [J]. Chem Phys Lett, 1999, 312(5-6): 542-547.
    [79] GRABOWSKI S J. High-level ab initio calculations of dihydrogen-bonded complexes [J]. J Phys Chem A, 2000, 104(23): 5551-5557.
    [80] REMKO M. Thermodynamics of dihydrogen bonds (A-H???H-B) [J]. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 1998, 94(5): 839 - 842.
    [81] FENG Y, ZHAO S-W, LIU L, et al. Blue-shifted dihydrogen bonds [J]. J Phys Org Chem, 2004, 17(12): 1099-1106.
    [82] LIPKOWSKI P, GRABOWSKI S J, ROBINSON T L, et al. Properties of the C-H center dot center dot center dot H dihydrogen bond: An ab initio and topological analysis [J]. J Phys Chem A, 2004, 108(49): 10865-10872.
    [83] BERSKI S, LUNDELL J, LATAJKA Z. A density functional study of the xenon dihydride-water complex [J]. J Mol Struct, 2000, 552(1-3): 223-232.
    [84] KULKARNI S A. Dihydrogen Bonding in Main Group Elements:? An ab Initio Study [J]. The Journal of Physical Chemistry A, 1998, 102(39): 7704-7711.
    [85] CYBULSKI H, PECUL M, SADLEJ J, et al. Characterization of dihydrogen-bonded D-H center dot center dot center dot H-A complexes on the basis of infrared and magnetic resonance spectroscopic parameters [J]. J Chem Phys, 2003, 119(10): 5094-5104.
    [86] GRABOWSKI S, SOKALSKI W A, LESZCZYNSKI J. Nature of X-H+delta center dot center dot center dot-delta H-Y dihydrogen bonds and X-H-center dot center dot center dot sigma interaction [J]. J Phys Chem A, 2004, 108(27): 5823-5830.
    [87] KOCH U, POPELIER P L A. Characterization of C-H···O Hydrogen Bonds on the Basis of the Charge Density [J]. The Journal of Physical Chemistry, 1995, 99(24): 9747-9754.
    [88] BADER R F W. A quantum theory of molecular structure and its applications [J]. Chem Rev, 1991, 91(5): 893-928.
    [89] POPELIER P L A. Characterization of a Dihydrogen Bond on the Basis of the Electron Density [J]. The Journal of Physical Chemistry A, 1998, 102(10): 1873-1878.
    [90] EPSTEIN L M, SHUBINA E S. New types of hydrogen bonding inorganometallic chemistry [J]. Coord Chem Rev, 2002, 231(1-2): 165-181.
    [91] ZIERKIEWICZ W, HOBZA P. The dihydrogen bond in X3C-H center dot center dot center dot H-M complexes (X = F, Cl, Br; M = Li, Na, K). A correlated quantum chemical ab initio and density functional theory study [J]. PCCP, 2004, 6(23): 5288-5296.
    [92] WU Y, FENG L, ZHANG X D. Theoretical insights into the properties of the dihydrogen-bonded HXH center dot center dot center dot HC CH complexes (X = Be, Mg, and Ca) [J]. Journal of Molecular Structure-Theochem, 2008, 851(1-3): 294-298.
    [93] CYBULSKI H, TYMINSKA E, SADLEJ J. The properties of weak and strong dihydrogen-bonded D-H center dot center dot center dot H-A complexes [J]. Chemphyschem, 2006, 7(3): 629-639.
    [94] ROBERTSON K N, KNOP O, CAMERON T S. C-H center dot center dot center dot H-C interactions in organoammonium tetraphenylborates: another look at dihydrogen bonds [J]. Canadian Journal of Chemistry-Revue Canadienne De Chimie, 2003, 81(6): 727-743.
    [95] BYTHEWAY I, GILLESPIE R J, TANG T-H, et al. Core Distortions and Geometries of the Difluorides and Dihydrides of Ca, Sr, and Ba [J]. Inorg Chem, 1995, 34(9): 2407-2414.
    [96] KAUPP M, SCHLEYER P V R, STOLL H. Model calcium hydride CaH2(L) and calcium fluoride CaF2(L) complexes (L = neon, argon, krypton, xenon, carbon monoxide, nitrogen mol.): consequences of interactions between "inert-gas" ligands and floppy molecules [J]. The Journal of Physical Chemistry, 1992, 96(24): 9801-9805.
    [97] WANG X, ANDREWS L. Metal Dihydride (MH2) and Dimer (M2H4) Structures in Solid Argon, Neon, and Hydrogen (M = Ca, Sr, and Ba):? Infrared Spectra and Theoretical Calculations [J]. The Journal of Physical Chemistry A, 2004, 108(52): 11500-11510.
    [98] SHAYESTEH A, WALKER K A, GORDON I, et al. New Fourier transform infrared emission spectra of CaH and SrH: combined isotopomer analyses withCaD and SrD [J]. J Mol Struct, 2004, 695-696, 23-37.
    [99] HEHRE W J, RADOM L, SCHLEYER P R, et al. Ab initio molecular orbital theory [M]. Wiley New York. 1986.
    [100] L WDIN P-O. Correlation Problem in Many-Electron Quantum Mechanics I. Review of Different Approaches and Discussion of Some Current Ideas [M]. John Wiley & Sons, Inc., 2007.
    [101] POPLE J A, SEEGER R, KRISHNAN R. Variational configuration interaction methods and comparison with perturbation theory [J]. Int J Quantum Chem, 1977, 12(S11): 149-163.
    [102] FORESMAN J B, HEAD-GORDON M, POPLE J A, et al. Toward a systematic molecular orbital theory for excited states [J]. The Journal of Physical Chemistry, 1992, 96(1): 135-149.
    [103] KRISHNAN R, SCHLEGEL H, POPLE J. Derivative studies in configuration-interaction theory [J]. J Chem Phys, 1980, 72, 4654-4655.
    [104] BROOKS B R, LAIDIG W D, SAXE P, et al. Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach [J]. J Chem Phys, 1980, 72, 4652-4653.
    [105] SALTER E, TRUCKS G W, BARTLETT R J. Analytic energy derivatives in many body methods. I. First derivatives [J]. The Journal of Chemical Physics, 1989, 90, 1752.
    [106] RAGHAVACHARI K, POPLE J A. Calculation of one electron properties using limited configuration interaction techniques [J]. Int J Quantum Chem, 1981, 20(5): 1067-1071.
    [107] POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadratic configuration interaction. A general technique for determining electron correlation energies [J]. The Journal of Chemical Physics, 1987, 87(10): 5968-5975.
    [108] CIOSLOWSKI J, NANAYAKKARA A. A new robust algorithm for fully automated determination of attractor interaction lines in molecules [J]. Chem Phys Lett, 1994, 219(1-2): 151-154.
    [109] SCHLEGEL H B, ROBB M A. MC SCF gradient optimization of the H2CO--> H2+ CO transition structure [J]. Chem Phys Lett, 1982, 93(1): 43-46.
    [110] EADE R H A, ROBB M A. Direct minimization in mc scf theory. the quasi-newton method [J]. Chem Phys Lett, 1981, 83(2): 362-368.
    [111] HEGARTY D, ROBB M. Application of unitary group methods to configuration interaction calculations [J]. Mol Phys, 1979, 38(6): 1795-1812.
    [112] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Phys Rev, 1964, 136(3B): B864-B871.
    [113] KOHN W, SHAM L. Self-consistent equations including exchange and correlation effects [J]. Phys Rev, 1965, 140(4A): A1133-A1138.
    [114] SALAHUB D R, ZERNER M C. The Challenge of d and f Electrons [M]. ACS Publications, 1989.
    [115] PARR R G, YANG W. Density-functional theory of atoms and molecules [M]. Oxford University Press, USA, 1994.
    [116] POPLE J A, GILL P M W, JOHNSON B G. Kohn--Sham density-functional theory within a finite basis set [J]. Chem Phys Lett, 1992, 199(6): 557-560.
    [117] JOHNSON B G, FISCH M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy [J]. The Journal of Chemical Physics, 1994, 100(10): 7429-7442.
    [118] LABANOWSKI J K, ANDZELM J W. Density functional methods in chemistry [M]. Springer-Verlag New York, Inc. New York, NY, USA, 1991.
    [119] FUKUI K. Variational principles in a chemical reaction [J]. Int J Quantum Chem, 1981, 20(S15): 633-642.
    [120] FUKUI K, TACHIBANA A, YAMASHITA K. Toward chemodynamics [J]. Int J Quantum Chem, 1981, 20(S15): 621-632.
    [121] MOURIK T V, GDANITZ R J. A critical note on density functional theory studies on rare-gas dimers [J]. The Journal of Chemical Physics, 2002, 116(22): 9620-9623.
    [122] ZIMMERLI U, PARRINELLO M, KOUMOUTSAKOS P. Dispersion corrections to density functionals for water aromatic interactions [J]. The Journal of Chemical Physics, 2004, 120(6): 2693-2699.
    [123] GRIMME S. Accurate description of van der Waals complexes by density functional theory including empirical corrections [J]. J Comput Chem, 2004, 25(12): 1463-1473.
    [124] KIM K, JORDAN K D. Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer [J]. The Journal of Physical Chemistry, 1994, 98(40): 10089-10094.
    [125] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields [J]. The Journal of Physical Chemistry, 1994, 98(45): 11623-11627.
    [126] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Physical Review B, 1988, 37(2): 785.
    [127] DAVIDSON E R, FELLER D. Basis set selection for molecular calculations [J]. Chem Rev, 1986, 86(4): 681-696.
    [128] BALABIN R M. Communications: Intramolecular basis set superposition error as a measure of basis set incompleteness: Can one reach the basis set limit without extrapolation? [J]. The Journal of Chemical Physics, 2010, 132(21): 211103.
    [129] BOYS S F, BERNARDI F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors [J]. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 1970, 19(4): 553 - 566.
    [130] MAYER I, VALIRON P. Second order M?ller--Plesset perturbation theory without basis set superposition error [J]. The Journal of Chemical Physics, 1998, 109(9): 3360-3373.
    [131] VAN DUIJNEVELDT F B, VAN DUIJNEVELDT-VAN DE RIJDT J GC M, VAN LENTHE J H. State of the Art in Counterpoise Theory [J]. Chem Rev, 1994, 94(7): 1873-1885.
    [132] PAIZS B, SUHAI S. Comparative study of BSSE correction methods at DFT and MP2 levels of theory [J]. J Comput Chem, 1998, 19(6): 575-584.
    [133] BADER R F W. Atoms in molecules : a quantum theory [M]. Oxford ; New York: Clarendon Press, 1990.
    [134] AIM2000 designed by Friedrich Biegler-K?nig, University of Applied Sciences, Bielefeld, Germany. [M].
    [135] RAGHAVACHARI K, WHITESIDE R A, POPLE J A, et al. Molecular orbital theory of the electronic structure of organic molecules. 40. Structures and energies of C1-C3 carbocations including effects of electron correlation [J]. J Am Chem Soc, 1981, 103(19): 5649-5657.
    [136] DUNITZ J D, GAVEZZOTTI A. Molecular Recognition in Organic Crystals: Directed Intermolecular Bonds or Nonlocalized Bonding? [J]. Angew Chem Int Ed, 2005, 44(12): 1766-1787.
    [137] CARNEIRO J W D M, SCHLEYER P V R, SAUNDERS M, et al. Protonated Ethane. A Theoretical Investigation of C2H7+ Structures and Energies [J]. J Am Chem Soc, 1994, 116(8): 3483-3493.
    [138] SIEBER S, BUZEK P, SCHLEYER P V R, et al. The tert-butyl cation (C4H9+) potential energy surface [J]. J Am Chem Soc, 1993, 115(1): 259-270.
    [139] BADER R F W, BEDDALL P M. Virial Field Relationship for Molecular Charge Distributions and the Spatial Partitioning of Molecular Properties [J]. The Journal of Chemical Physics, 1972, 56(7): 3320-3329.
    [140] L WDIN P O. Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction [J]. Physical Review, 1955, 97(6): 1474-1489.
    [141] FOSTER J, WEINHOLD F. Natural hybrid orbitals [J]. J Am Chem Soc, 1980, 102(24): 7211-7218.
    [142] REED A E, CURTISS L A, WEINHOLD F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint [J]. Chem Rev, 1988, 88(6): 899-926.
    [143] REED A E, WEINHOLD F. Natural bond orbital analysis of near-Hartree--Fock water dimer [J]. The Journal of Chemical Physics, 1983, 78(6): 4066-4073.
    [144] REED A E, WEINSTOCK R B, WEINHOLD F. Natural population analysis a) [J]. The Journal of Chemical Physics, 1985, 83(2): 735-746.
    [145] REED A E, WEINHOLD F. Natural localized molecular orbitals [J]. The Journal of Chemical Physics, 1985, 83(4): 1736-1740.
    [146] CARPENTER J E, WEINHOLD F. Analysis of the geometry of the hydroxymethyl radical by the "different hybrids for different spins" natural bond orbital procedure [J]. Journal of Molecular Structure: THEOCHEM, 1988, 169(41-62.
    [147] CHOCHOLOUSOVA J, SPIRKO V, HOBZA P. First local minimum of the formic acid dimer exhibits simultaneously red-shifted O-H center dot center dot center dot O and improper blue-shifted C-H center dot center dot center dot O hydrogen bonds [J]. PCCP, 2004, 6(1): 37-41.
    [148] ROZAS I, ALKORTA I, ELGUERO J. Modeling Protein?RNA Interactions: An Electron-Density Study of the Formamide and Formic Acid Complexes with RNA Bases [J]. The Journal of Physical Chemistry B, 2004, 108(10): 3335-3341.
    [149] DOMAGALA M, GRABOWSKI S J. X-H...[pi] and X-H...N hydrogen bonds - Acetylene and hydrogen cyanide as proton acceptors [J]. Chem Phys, 2009, 363(1-3): 42-48.
    [150] LI Q, HU T, AN X, et al. Theoretical Study of the Interplay between Lithium Bond and Hydrogen Bond in Complexes Involved with HLi and HCN [J]. Chemphyschem, 2009, 10(18): 3310-3315.
    [151] YANG X, HALL M B. Monoiron Hydrogenase Catalysis: Hydrogen Activation with the Formation of a Dihydrogen, Fe?Hδ?···Hδ+?O, Bond andMethenyl-H4MPT+ Triggered Hydride Transfer [J]. J Am Chem Soc, 2009, 131(31): 10901-10908.
    [152] CRAMER C J, GLADFELTER W L. Ab Initio Characterization of [H3N.BH3]2, [H3N.AlH3]2, and [H3N.GaH3]2 [J]. Inorg Chem, 1997, 36(23): 5358-5362.
    [153] SIEGBAHN P E M, EISENSTEIN O, RHEINGOLD A L, et al. A New Intermolecular Interaction: UnconventionalHydrogen Bonds with Element?Hydride Bonds as ProtonAcceptor [J]. Acc Chem Res, 1996, 29(7): 348-354.
    [154] RICHARDSON T B, KOETZLE T F, CRABTREE R H. An M-H...H-C hydrogen bonding interaction [J]. Inorg Chim Acta, 1996, 250(1-2): 69-73.
    [155] KULKARNI S A, SRIVASTAVA A K. Dihydrogen bonding in main group elements: A case study of complexes of LiH, BH3, and AlH3 with third-row hydrides [J]. J Phys Chem A, 1999, 103(15): 2836-2842.
    [156] BRAGA D, DE LEONARDIS P, GREPIONI F, et al. Structural and Theoretical Analysis of M?H- - -H?M and M?H- - -H?C Intermolecular Interactions [J]. Inorg Chem, 1998, 37(13): 3337-3348.
    [157] KULKARNI S A. Intramolecular Dihydrogen Bonding in Main Group Elements. Connection with Dehydrogenation Reactions [J]. The Journal of Physical Chemistry A, 1999, 103(46): 9330-9335.
    [158] KULKARNI S A, SRIVASTAVA A K. Dihydrogen Bonding in Main Group Elements: A Case Study of Complexes of LiH, BH3, and AlH3 with Third-Row Hydrides [J]. The Journal of Physical Chemistry A, 1999, 103(15): 2836-2842.
    [159] CUSTELCEAN R, JACKSON J E. Dihydrogen Bonding:? Structures, Energetics, and Dynamics [J]. Chem Rev, 2001, 101(7): 1963-1980.
    [160] GRABOWSKI S J, SOKALSKI W A, LESZCZYNSKI J. How Short Can the H···H Intermolecular Contact Be? New Findings that Reveal the Covalent Nature of Extremely Strong Interactions [J]. The Journal of Physical Chemistry A, 2005, 109(19): 4331-4341.
    [161] FENG L, BAI F-Q, WU Y, et al. Dihydrogen Bond in C2H4-nCln···NaH (n=0,1,2,3) Complexes: Ab Initio, AIM and NBO Studies [J]. Mol Phys, 2011, 109(5): 645-653.
    [162] BOGDANOVI? B. Catalytic Synthesis of Organolithium and Organomagnesium Compounds and of Lithium and Magnesium Hydrides—Applications in Organic Synthesis and Hydrogen Storage [J]. Angewandte Chemie International Edition in English, 1985, 24(4): 262-273.
    [163] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. 2004.
    [164] SHAYESTEH A, APPADOO D R T, GORDON I, et al. The vibration--rotation emission spectrum of MgH[sub 2] [J]. The Journal of Chemical Physics, 2003, 119(15): 7785-7788.
    [165] SIM F, ST. AMANT A, PAPAI I, et al. Gaussian density functional calculations on hydrogen-bonded systems [J]. J Am Chem Soc, 1992, 114(11): 4391-4400.
    [166] BOESE A D, CHANDRA A, MARTIN J M L, et al. From ab initio quantum chemistry to molecular dynamics: The delicate case of hydrogen bonding in ammonia [J]. The Journal of Chemical Physics, 2003, 119(12): 5965-5980.
    [167] ALKORTA M, ELGUERO J, GRABOWSKI S J. How to determine whether intramolecular H center dot center dot center dot H interactions can be classified as dihydrogen bonds [J]. J Phys Chem A, 2008, 112(12): 2721-2727.
    [168] GRABOWSKI S J. BeH2 as a proton-accepting molecule for dihydrogen bonded systems--ab initio study [J]. J Mol Struct, 2000, 553(1-3): 151-156.
    [169] ALKORTA I, ZBOROWSKI K, ELGUERO J, et al. Theoretical study of dihydrogen bonds between (XH)(2), X = Li, Na, BeH, and MgH, and weak hydrogen bond donors (HCN, HNC, and HCCH) [J]. J Phys Chem A, 2006, 110(34): 10279-10286.
    [170] GRABOWSKI S J, SOKALSKI W A, LESZCZYNSKI J. How short can the H center dot center dot center dot H intermolecular contact be? New findings that reveal the covalent nature of extremely strong interactions [J]. J Phys Chem A,2005, 109(19): 4331-4341.
    [171] CHOCHOLOUSOVA J, SPIRKO V, HOBZA P. First local minimum of the formic acid dimer exhibits simultaneously red-shifted O-HO and improper blue-shifted C-HO hydrogen bonds [J]. PCCP, 2004, 6(1): 37-41.
    [172] DESIRAJU G, STEINER T. The weak hydrogen bond: In structural chemistry and biology [M]. Oxford University Press, USA, 2001.
    [173] ALKORTA I, ELGUERO J, M O, et al. Ab Initio Study of the Structural, Energetic, Bonding, and IR Spectroscopic Properties of Complexes with Dihydrogen Bonds [J]. The Journal of Physical Chemistry A, 2002, 106(40): 9325-9330.
    [174] WU Y, FENG L, ZHANG X. Theoretical insights into the properties of the dihydrogen-bonded HXH···HCCH complexes (X = Be, Mg, and Ca) [J]. Journal of Molecular Structure: THEOCHEM, 2008, 851(1-3): 294-298.
    [175] DOMAGALA M, GRABOWSKI S J. Hydrocarbons as proton donors in C-H...N and C-H...S hydrogen bonds [J]. Chem Phys, 2010, 367(1): 1-6.
    [176] ESPINOSA E, MOLINS E, LECOMTE C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities [J]. Chem Phys Lett, 1998, 285(3-4): 170-173.
    [177] OLIVEIRA B G D, RAMOS M N. Dihydrogen bonds and blue-shifting hydrogen bonds: A theoretical study of AH···HCF3 and TH2···HCF3 model systems with A = Li or Na and T = Be or Mg [J]. Int J Quantum Chem, 2010, 110(2): 307-316.
    [178] ALABUGIN I V, MANOHARAN M, PEABODY S, et al. Electronic Basis of Improper Hydrogen Bonding:? A Subtle Balance of Hyperconjugation and Rehybridization [J]. J Am Chem Soc, 2003, 125(19): 5973-5987.
    [179] LIAO H Y. Computational study on the microsolvation effect of dihydrogen-bonded LiH...HF system [J]. Chem Phys Lett, 2006, 424(1-3): 28-33.
    [180] WU H, ZHOU W, UDOVIC T J, et al. Structure and vibrational spectra of calcium hydride and deuteride [J]. J Alloys Compd, 2007, 436(1-2): 51-55.
    [181] KONG V C Y, KIRK D W, FOULKES F R, et al. Development of hydrogen storage for fuel cell generators II: utilization of calcium hydride and lithium hydride [J]. Int J Hydrogen Energy, 2003, 28(2): 205-214.
    [182] PINKERTON F E, MEYER M S. Reversible hydrogen storage in the lithium borohydride--calcium hydride coupled system [J]. J Alloys Compd, 2008, 464(1-2): L1-L4.
    [183] PARRY M R, SYNGELLAKIS S, SINCLAIR I. Numerical modelling of combined roughness and plasticity induced crack closure effects in fatigue [J]. Mater Sci Eng, A, 2000, 291(1-2): 224-234.
    [184] DE KOCK R L, PETERSON M A, TIMMER L K, et al. A theoretical study of the linear versus bent geometry for several MX2 molecules: MgF2, CaH2, CaF2, CeO2 and YbCl2 [J]. Polyhedron, 1990, 9(15-16): 1919-1934.
    [185] VON SZENTP LY L. Hard Bends Soft: Bond Angle and Bending Force Constant Predictions for Dihalides, Dihydrides, and Dilithides of Groups 2 and 12 [J]. The Journal of Physical Chemistry A, 2002, 106(49): 11945-11949.
    [186] KAUPP M, SCHLEYER P V R, STOLL H, et al. Pseudopotential approaches to Ca, Sr, and Ba hydrides. Why are some alkaline earth MX[sub 2] compounds bent? [J]. The Journal of Chemical Physics, 1991, 94(2): 1360-1366.
    [187] KOPUT J. Ab Initio Prediction of the Potential Energy Surface and Vibrational?Rotational Energy Levels of Calcium Dihydride, CaH2 [J]. The Journal of Physical Chemistry A, 2005, 109(19): 4410-4414.
    [188] HAWORTH N L, SULLIVAN M B, WILSON A K, et al. Structures and Thermochemistry of Calcium-Containing Molecules [J]. The Journal of Physical Chemistry A, 2005, 109(40): 9156-9168.
    [189] WU Y, ZHANG T. Structural and Electronic Properties of Amino Acid Based Ionic Liquids: A Theoretical Study [J]. The Journal of Physical Chemistry A, 2009, 113(46): 12995-13003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700