玉米幼胚胚性愈伤组织诱导过程中重要miRNA及靶基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的转基因玉米新品种培育需经遗传转化、自交纯合、杂交组配及回交转育几个重要环节,通常从转化体自交纯合到回交转育获得转基因骨干自交系至少需要3~6年。作为世界玉米转基因育种最广泛使用的外植体——玉米胚性愈伤组织,其诱导率受基因型限制。就我国转基因玉米育种工作而言,大多数玉米骨干系胚性愈伤组织诱导率低,不能直接作为转基因受体材料,因而严重阻碍了我国转基因玉米育种的快速发展。miRNA是一类重要的内源性非编码RNA,它通过与靶mRNA序列部分或者完全匹配从而行使对基因的剪切、抑制翻译等,对其表达进行调控,广泛参与植物生长发育及逆境胁迫响应过程;玉米转基因育种的理论研究与无数实践均已经证明,玉米胚性愈伤组织诱导率受基因型限制。因此,本研究通过miRNA途径探讨玉米胚性愈伤组织发生率的遗传机理,以期培育更多胚性愈伤组织高诱导率的骨干亲本系,提高我国玉米基因工程育种的效率。
     本研究选用玉米胚性愈伤组织强诱导能力自交系18-599R为供试材料,利用solexa高通量测序技术与生物信息学分析方法,挖掘获得了大量18-599R未成熟胚经2,4-D诱导形成胚性愈伤组织过程相关的miRNA,结合荧光定量PCR和miRNA转基因过表达技术,对重要候选miRNA进行了表达检测及基因功能初步验证;并通过靶基因降解组高通量测序技术获得了胚性愈伤组织形成过程相关miRNA的靶基因信息。通过本研究,获得以下研究结果与结论:
     (1) solexa高通量测序共筛选获得了20个已知miRNA保守家族的78个差异表达miRNA。从对照(Control)到愈伤诱导过程的后3阶段(Stage Ⅰ、StageⅡ和StageⅢ),共有45个miRNA呈上调表达趋势,占差异表达miRNA的57.69%;下调表达的miRNA占29.49%,共计23个;另外有10个miRNA在愈伤诱导全过程中表达有上调也有下调,占12.82%。表明大多数:miRNA均以上调表达趋势参与了玉米胚性愈伤组织形成过程的调控。
     (2)本研究发现了13个miRNA与zma-miR167、zma-miR172、zma-miR319、 zma-miR393、zma-miR396、zma-miR397、zma-miR408和zma-miR528等8个已知的玉米miRNA家族成员序列保守性极高,经进一步生物信息学分析证实它们是这些miRNA家族的新成员。
     (3)通过高通量测序挖掘获得7个新miRNA,属于4个miRNA家族,分别命名为:zma-miR701、zma-miR702、zma-miR703和zma-miR704,它们在愈伤形成过程存在不同程度及类型的差异表达。这些新miRNA长度为21-22nt,位于其二级结构3’端茎部,并且均具有较低的折叠自由能和典型的二级结构。
     (4)通过聚类分析可将测序获得的已知家族差异表达的miRNA分为4类表达模式:下调模式、表达差异不显著模式、上调模式和显著上调模式。同样表明参与调控胚性愈伤组织形成过程的miRNA多数为上调表达模式。对这4类miRNA表达模式的进一步分析推测,Stage II(初级愈伤形成期)可能是胚性愈伤组织形成过程中重要的质变阶段,与玉米胚性愈伤组织的形成密切相关。
     (5)通过荧光定量PCR验证了测序结果中14个差异表达的miRNA,发现除zma-miR156a、zma-miR167a、zma-miR1671和zma-miR827等4个miRNA下调表达,其余10个均显著上调表达。另外,定量PCR验证结果同部分测序结果的相关系数达到0.94以上,证明本研究测序结果准确性较高。
     (6)通过降解组测序获得了213个靶基因,分别受22个已知miRNA保守家族介导剪切。这些靶基因可分为细胞组成、分子功能和生物过程三类,分别参与调节植物生长发育、转录调控、胁迫响应、激素信号传导、植物代谢途径等过程。其靶基因功能主要涉及SBP、TCP、GAMYB、ARF、F-box和GRAS等转录因子。
     (7)降解组结果经KO分析,发现与胚性愈伤组织形成过程密切相关的显著通路是激素信号转导途径。愈伤形成过程中共有14个靶基因在该通路中表达,分别受zma-miR160、zma-miR167、zma-miR393和zma-miR394等4个]miRNA负调控,从而调控激素信号的转导,影响内源激素合成,最终调控胚性愈伤组织的形成。
     (8)对转基因T1代阳性植株幼胚胚性愈伤组织诱导率的鉴定结果表明,过表达zma-miR159a和zma-miR393a的转基因植株诱导率显著或极显著低于野生型对照,证明这些miRNA确实参与调控胚性愈伤组织形成过程。
Creating new germplasm resources by transgenic methods is a fundamental way to broaden the maize germplasm resources which is relatively strait in China. The conventional way of cultivating new transgenic variety of maize consists of several critical steps including genetic transformation, self-crossing for homozygosis, crossing combination, and back crossing, among which the process from self-crossing transformants to acquiring the transgenic elite inbred lines by backcrossing usually takes at least3to6years.The infeasibility of using embryonic callus as the transgenic recipient material directly, which is attributed to the low frequency of maize embryonic callus introduction being affected by genotype significantly in the majority of elite inbred lines of maize, severely hinders the rapid development of breeding for transgenic maize in China. By regulating plant gene expression through ways such as directing gene splicing or suppressing transcription, miRNA, a class of endogenous non-coding RNA, involves widely in every stage of plant growth and development, as well as responds to the adversity stress.
     In this study, the maize inbred lines18-599R with the strong ability of embryonic culturing were used as test materials, many candidate miRNAs involved in the process of embryonic callus formation in immature embryos of18-599R under the2,4-D induction were screened based on the initial research combining Solexa high-throughput sequencing with bioinformatics analysis methods; by combing the RT-PCR with miRNA overexpression technology, expression of important candidate miRNAs were detected and the function of target genes were verified; information of target genes of miRNA involved in the formation of embryonic callus was acquired through the high-throughput Degradome Sequencing for target genes. And the final results are as follows;
     1.78differentially expressed miRNAs from25known conservative miRNA families were screened out by Solexa high-throughput sequencing. From the control to the last3stages (Stage Ⅰ,Stage Ⅱ and Stage Ⅲ) of callus induction,45miRNAs accounting for the57.69%of differentially expressed miRNAs were up-regulated, while23miRNAs accounting for the29.49%of total were down-regulated; in addition,10miRNAs accounting for the12.82%of all were up-regulated as well as down regulated.
     2.13miRNAs detected in this study were of significant sequence conservation with members of8known maize miRNA families including zma-miR167、zma-miR172、 zma-miR319、zma-miR393、zma-miR396、zma-miR397、zma-miR408and zma-miR528, the further bioinformatics analysis confirmed that they are novel members of those miRNA families.
     3.7new miRNAs belonging to4miRNA families named zma-miR701, zma-miR702, zma-miR703, zma-miR704, respectively, with various levels and types of differentially expression during the formation of callus, were identified by high-throughput sequencing. Those new miRNAs with the length ranging from21to22nt and3'in the stem of secondary structure, are of relatively low refolding free energy and emblematical secondary structure.
     4. According to the cluster analysis, expression models of those sequencing-detected differentially expressed miRNAs of know families were categorized into four groups including down-regulating model, inconspicuously differential expression model, up-regulating model, significantly up-regulating model. Based on the further analysis for the4expression models, we presume that Stage II(the stage of the formation of primary callus) may be the most important stage during the formation of embryonic callus, and closely related to the formation of embryonic callus of maize.
     5.14of the differentially expressed miRNAs detected by sequencing were verified by RT-PCR, showing that10were significantly up-regulated while the rest4zma-miR156a, zma-miR167a, zma-miR1671and zma-miR827were down-regulated. In addition, the correlation coefficient of the results of qRT-PCR verification and sequencing is above0.94, indicating the high accuracy of sequencing results in this study.
     6.213target genes sliced under the induction of22known miRNA conservative families were identified by the degradome sequencing. These target genes involved in the regulation of processes including plant growth and development, transcriptional regulation, stress responses, hormone signaling, plant metabolic pathways can be categorized into three types:cell composition, molecular function and biological process. Their target gene functions involve transcription factors including SBP, TCP, GAMYB, ARF, F-box and GRAS.
     7. The hormone signaling pathway was identified being significantly correlated with the formation of embryonic callus by KO analysis for the results of degradome sequencing. 14target genes were differentially expressed in this pathway under the negative regulations of4miRNAs including zma-miR160, zma-miR167, zma-miR393, zma-miR394, respectively.
     8. According to the phenotype identification for the embryonic callus induction rate of immature embryo of T1generation transgenic positive plants, the induction rate of transgenic plants overexpressing zma-miR159a or zma-miR393a is significantly or extremely significantly lower than that of wild-type controls. There is a difference between the results and the expected transgene results
引文
[1]王永春,刘洪霞,赵伟..世界玉米产业发展形势分析[J].经济研究导刊,2011,33:207-208.
    [2]贾小霞,王汉林,孔维萍.玉米幼胚和成熟胚愈伤组织诱导过程中内源激素的比较[J].核农学报,2009,23(4):555-560.
    [3]Green C, Phillips R. Plant regeneration fromtissue culture of maize [J]. Crop Sci, 1975,15:417-412.
    [4]潘光堂,张志明,荣廷昭.玉米幼胚培养能力性状QTL分析[J].作物学报,2006,32(01):7-13.
    [5]王国英,张宏,戴景瑞.玉米胚性愈伤组织转化及转Bt基因植株的抗虫性[J].农业生物技术学报,1995,3:49-53.
    [6]杜鹃,余云舟,张领兵.玉米自交系Ⅱ型胚性愈伤组织诱导及遗传转化初报[J].吉林农业大学学报,2000,22(4):41-44.
    [7]潘光堂,夏燕莉,荣廷昭.玉米幼胚培养胚性愈伤组织诱导力的遗传变异分析[J].作物学报,2003,29(3):386-390.
    [8]Ishida Y, Saito H. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens [J]. Nat Biotechnol,2001,14:745-750.
    [9]Brettschneider R, Becker D, Lorz H. Efficient transformation of scutellar tissue of immature maize embryos [J]. TAG,1997,94(6-7):737-748.
    [10]吴敏生,黄健秋,卫志明.玉米幼胚高效再生系统的建立[J].植物生理学报,2001,27:489-494.
    [11]Spencer T, Gordon-Kamm W, Daines R, et.al. Bialaphos selection of stable transformants from maize cell culture [J]. TAG,1990,79(5):625-631.
    [12]钱丹丹,李晓薇,王庆钰,等.玉米胚性愈伤组织继代及侵染条件的优化[J].作物杂志,2011,(2):71-74.
    [13]李浚明.植物组织培养教程[M].北京:中国农业大学出版社,2002.40-42.
    [14]王昌涛,杨爱国,高树仁,等.玉米不同外植体愈伤组织的诱导及植株再生的研究[J].沈阳农业大学学报,2005,36(5):515-518.
    [15]耿华春.小麦成熟胚脱分化过程中转录因子家族及其靶基因的表达谱分析.[学 位论文].郑州,河南农业大学,2008
    [16]杨春燕,刘树楠,冯玲玲,等.不同植物生长调节物质对驱蚊香草细胞脱分化的效应[J].生物学杂志,2006,23(2):39-41.
    [17]孙小玲.浅议植物细胞脱分化的研究概况[J].科技资讯,2010,(015):235-235.
    [18]Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin recepto [J]. Nature,2005,435:446-451.
    [19]Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor [J]. Nature 2005,435(7041):441-445.
    [20]Abel S. Theologis A. Early genes and auxin action [J]. Plant Physiol Biochem, 1996,111:9-17.
    [21]Guilfoyle TJ, Hagen G. Auxin response factors [J]. Current opinion in plant biology, 2007,10(5):453-460.
    [22]Ouyang J, Shao X, Li J. Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana [J]. The Plant Journal,2000,24(3):327-334.
    [23]陈军营,马平安,赵一丹,等.小麦成熟胚脱分化过程中生长素相关基因的表达分析[J].作物学报,2009,35(10):1798-1805.
    [24]Che P, Lall S, Nettleton D. Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture [J]. Plant Physiology,2006,141(2): 620-637.
    [25]Che P, Gingerich DJ, Lall S. Global and hormone-induced gene expression changes during shoot development in Arabidopsis [J]. Plant Cell,2002,14: 2771-2785.
    [26]黄坚钦.植物细胞的分化与脱分化[J].浙江林学院学报,2001,18(1):89-92.
    [27]Hager A. Role of the plasma membrane H+ATPase in auxin-induced elongation growth:Historical and new aspects [J]. Plant Res,2003,116(6):483-505.
    [28]Nagata T, Ishida S, Hasezawa S, etal. Genes involved in the dedifferentiation of plant cells [J]. The International journal of developmental biology,1994,38(2): 321.
    [29]Jamet E, Durr A, Parmentier Y, etal. Is ubiquitin involved in the dedifferentiation of higher plant cells? [J]. Cell Differentiation and Development,1990,29(1): 37-46.
    [30]Zhao J, Morozova N, Williams L, et.al. Two Phases of Chromatin Decondensation during Dedifferentiation of Plant Cells [J]. Journal of Biological Chemistry,2001, 276(25):22772-22778.
    [31]Koukalova B, Fojtova M, Lim K Y. Dedifferentiation of tobacco cells is associated with ribosomal RNA gene hypomethylation, increased transcription, and chromatin alterations [J]. Plant Physiol,2005,139(275-286).
    [32]Grafi C, Ben-Meir H, Avivi Y, etal. Histone methylation controls telomerase-independent telomere lengthening in cells undergoing dedifferentiation [J]. Developmental Biology,2007,306(2):838-846.
    [33]朱华国,涂礼莉,金双侠,等.棉花细胞初始脱分化的基因差异表达分析[J].科学通报,2008,(20):2483-2492.
    [34]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J]. Cell,1993, 75(5):843-854.
    [35]Kozomara A, Griffiths-Jones S. miRBase:integrating microRNA annotation and deep-sequencing data [J]. Nucleic acids research,2011,39(suppl 1):152-157.
    [36]Griffiths-Jones S, Saini HK, van Dongen S, etal. miRBase:tools for microRNA genomics [J]. Nucleic acids research,2008,36(suppl 1):154-158.
    [37]Griffiths-Jones S, Grocock RJ, van Dongen S, etal. miRBase:microRNA sequences, targets and gene nomenclature [J]. Nucleic acids research,2006, 34(suppl 1):140-144.
    [38]张志明,宋锐,彭华,等.用生物信息学挖掘玉米中的microRNAs及其靶基因[J].作物学报,2010,36(08):1324-1335.
    [39]Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes [J]. RNA,2005,11(3): 241-247.
    [40]Bonnet E, Wuyts J, Rouze P, etal. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes [J]. PNAS,2004,101(31):11511-11516.
    [41]Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants [J]. Annu Rev Plant Biol,2006,57:19-53.
    [42]Papp I, Mette MF, Aufsatz W, etal. Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors [J]. Plant physiology,2003,132(3): 1382-1390.
    [43]Kim VN. MicroRNA biogenesis:coordinated cropping and dicing [J]. Nature reviews Molecular cell biology,2005,6(5):376-385.
    [44]Chen X. MicroRNA biogenesis and function in plants [J]. FEBS letters,2005, 579(26):5923-5931.
    [45]厐明利.番茄中miR397靶基因LeLAC的克隆与表达分析.[学位论文].山东,山东农业大学,2008.
    [46]Doench JG, Petersen CP, Sharp PA. siRNAs can function as miRNAs [J]. Genes & development,2003,17(4):438-442.
    [47]Tang G, Reinhart BJ, Bartel DP, et.al. A biochemical framework for RNA silencing in plants [J]. Genes & development,2003,17(1):49-63.
    [48]Palatnik JF, Allen E, Wu X, etal. Control of leaf morphogenesis by microRNAs [J]. Nature,2003,425(6955):257-263.
    [49]Llave C, Xie Z, Kasschau KD, et.al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA [J]. Science,2002,297(5589): 2053-2056.
    [50]Jing Q, Huang S, Guth S, et.al. Involvement of microRNA in AU-rich element-mediated mRNA instability [J]. Cell,2005,120(5):623-634.
    [51]Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis [J]. Science Signaling,2004,16(8):2001-2019.
    [52]Mallory AC, Vaucheret H. Functions of microRNAs and related small RNAs in plants [J]. Nature Genetics,2006,38:S31-S36.
    [53]Bonnet E, Wuyts J, Rouze P, etal. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences [J]. Bioinformatics,2004,20(17):2911-2917.
    [54]韦懿,陈志辉,陈国兴,等.超量表达水稻miRNA 167a调控株型的研究[J].分子植物育种,2011,9(4):390-396.
    [55]Jung JH, Seo YH, Seo PJ, etal. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis [J]. The Plant Cell Online,2007,19(9):2736-2748.
    [56]Zhao L, Kim Y, Dinh TT, etal. miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems [J]. The Plant Journal,2007,51(5):840-849.
    [57]Yoo AS, Greenwald I. LIN-12/Notch activation leads to microRNA-mediated down-regulation of Vav in C. elegans [J]. Science Signaling,2005,310(5752): 1330-1333.
    [58]Cui Q, Yu Z, Purisima EO, et.al. Principles of microRNA regulation of a human cellular signaling network [J]. Molecular systems biology,2006,2(1):1-7.
    [59]Achard P, Herr A, Baulcombe DC, et.al. Modulation of floral development by a gibberellin-regulated microRNA [J]. Science Signaling,2004,131(14):3357-3365.
    [60]ZHANG BH, Xiao Ping P, Qing Lian W, et.al. Identification and characterization of new plant microRNAs using EST analysis [J]. Cell Research,2005,15(5):336-360.
    [61]Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA [J]. Molecular cell,2004,14(6): 787-799.
    [62]Patade VY, Suprasanna P. Short-term salt and PEG stresses regulate expression of MicroRNA, miR159 in sugarcane leaves [J]. JCSB,2010,13(3):177-182.
    [63]沈亚欧,林海建,张志明,等.植物逆境miRNA研究进展[J].遗传,2009,3:227-235.
    [64]Fujii H, Chiou TJ, Lin SI, et.al. A miRNA Involved in Phosphate-Starvation Response in Arabidopsis [J]. Current Biology,2005,15(22):2038-2043.
    [65]Sunkar R, Chinnusamy V, Zhu J, et.al. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation [J]. Trends in plant science,2007,12(7): 301-309.
    [66]Bazzini A, Hopp H, Beachy R, et.al. Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development [J]. PNAS,2007,104(29):12157-12162.
    [67]Yamasaki H, Abdel-Ghany SE, Cohu CM, et.al. Regulation of copper homeostasis by micro-RNA in Arabidopsis [J]. Journal of Biological Chemistry,2007,282(22): 16369-16378.
    [68]沈亚欧.玉米C型细胞质雄性不育系及保持系microRNA克隆与功能分析.[学位论文].四川,四川农业大学,2008
    [69]Calin GA, Sevignani C, Dumitru CD, et.al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers [J]. Proc Natl Acad Sci USA,2004,101(9):2999-3004.
    [70]Varallyay E, Burgyan J, Havelda Z. Detection of microRNAs by Northern blot analyses using LNAprobes [J]. Methods,2007,43(2):140-145.
    [71]戴建军,程大友,常缨,等.低温诱导甜菜(Beta vulgaris L.) Ty7Br600基因的Northern blotting和Southern blotting分析[J].东北农业大学学报,2012,43(4):80-83.
    [72]刘冬梅,杨凤玺,余迪求.高表达miR396小分子导致拟南芥花柱头弯曲[J].云南植物研究,2009,31(4):353-356.
    [73]Zeng Y, Cullen BR. Sequence requirements for micro RNA processing and function in human cells [J]. RNA,2003,9(1):112-123.
    [74]韩璐.豆科植物蒺藜苜蓿发育相关基因LOBED LEAFLET1和STAY-GREEN的鉴定.[学位论文].山东,山东大学,2010
    [75]Chen XM. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development [J]. Science Signaling,2004,303(5666):2022-2025.
    [76]马卓娅,李欣,汤华,等.生物芯片检测细胞中microRNA的表达[J].生物技术通讯,2007,18(6):955-957.
    [77]周晓君,刘旭昊,郭向萌,等.水稻miRNA应答低能N+束辐照的基因芯片分析[J].农业科学与技术(英文版),2010,11(9-10):47-49.
    [78]李春贺,阴祖军,刘玉栋,等.盐胁迫条件下不同耐盐棉花miRNA差异表达研究[J].山东农业科学,2009,7:12-17.
    [79]Fahlgren N, Howell MD, Kasschau KD, et.al. High-throughput sequencing of Arabidopsis microRNAs:evidence for frequent birth and death of MIRNA genes [J]. PloS one,2007,2(2):e219.
    [80]刘生财,林玉玲,陈晓东,等.利用Solexa测序技术鉴定苋菜试管开花过程中的miRNAs [J].热带作物学报,2011,32(7):1296-1303.
    [81]陈洁,林海建,潘光堂,等.利用深度测序技术检测玉米根系和叶片中已知的microRNAs [J].遗传,2010,32(11):1175-1186.
    [82]张何芳,陈新,卢诚,等.利用Solexa测序技术发掘木薯microRNAs [J].中国农学通报,2012,28(30):184-190.
    [83]秦一雨,全志伟,李济宇.miRNA检测方法学的研究进展[J].医学研究生学报,2007,20(11):1198-1201.
    [84]张金梅,李煌,汪启明,等.柑橘中冷胁迫相关的miRNA的RT-PCR鉴定 [J].湖南农业科学,2011,(5):13-16.
    [85]黄飞飞,李贺,张志宏.苹果microRNA的茎环RT-PCR检测及离体试管苗与田间苗表达差异[J].华北农学报,2010,25(1):104-109.
    [86]孙润泽,侯琦,章文乐,等.甜杨低温响应microRNAs的克隆与分析[J].基因组学与应用生物学,2011,30(2):204-201.
    [87]Raymond CK, Roberts BS, Garrett-Engele P, et.al. Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs [J]. Rna,2005,11(11):1737-1744.
    [88]Design R-TPP. Facile means for quantifying microRNA expression by real-time PCR [J]. Biotechniques,2005,39(4):519-525.
    [89]Chen C, Ridzon DA, Broomer AJ, et.al. Real-time quantification of microRNAs by stem-loop RT-PCR [J]. Nucleic acids research,2005,33(20):e179.
    [90]李洪有,王婵,李丽林,等.洋葱花器官B类MADS-box基因AcPI的克隆及表达分析[J].中国农业科学,2012,45(23):4759-4769.
    [91]Kulcheski F, de Oliveira L, Molina L, et.al. Identification of novel soybean microRNAs involved in abiotic and biotic stresses [J]. BMC genomics,2011,12(1): 307.
    [92]S.ETROM O, SNΦVE O, SAETROM P. Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms [J]. Rna,2005,11(7): 995-1003.
    [93]Kim SK, Nam JW, Rhee JK, et.al. miTarget:microRNA target gene prediction using a support vector machine [J]. BMC bioinformatics,2006,7(1):411.
    [94]许振华,谢传晓.植物microRNA与逆境响应研究进展[J].遗传,2010,32(10):1018-1030.
    [95]Kasschau KD, Xie Z, Allen E, et.al. Pl/HC-Pro, a Viral Suppressor of RNA Silencing, Interferes with Arabidopsis Development and miRNA Function [J]. Developmental cell,2003,4(2):205-217.
    [96]Llave C, Kasschau KD, Rector MA, et.al. Endogenous and silencing-associated small RNAs in plants [J]. The Plant Cell Online,2002,14(7):1605-1619.
    [97]Zhou M, Gu L, Li P, etal. Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica) [J]. Frontiers in Biology,2010,5(1): 67-90.
    [98]Yang JH, Li JH, Zhou H, et.al. starBase:a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data [J]. Nucleic acids research,2011,39(suppl 1):D202-D209.
    [99]Song QX, Liu YF, Hu XY, et.al. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing [J]. BMC Plant Biology,2011,11(1): 5.
    [100]Pantaleo V, Szittya G, Moxon S, et.al. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis [J]. The Plant Journal,2010,62(6):960-976.
    [101]Zhang JZ, Ai XY, Guo W, etal. Identification of miRNAs and Their Target Genes Using Deep Sequencing and Degradome Analysis in Trifoliate Orange [Poncirus trifoliate (L.) Raf [J]. Molecular biotechnology,2012,51(1):44-57.
    [102]Jurgens G. Growing up green:cellular basis of plant development [J]. Mechanisms of development,2003,120(11):1395-1406.
    [103]Vernoux T, Benfey PN. Signals that regulate stem cell activity during plant development [J]. Current opinion in genetics & development,2005,15(4):388-394.
    [104]Sablowski R. The dynamic plant stem cell niches [J]. Current opinion in plant biology,2007,10(6):639-644.
    [105]Weigel D, Jurgens G. Stem cells that make stems [J]. Nature,2002,415(6873): 751-754.
    [106]Nakajima K, Benfey PN. Signaling In and Out Control of Cell Division and Differentiation in the Shoot and Root [J]. The Plant Cell Online,2002,14(suppl 1): S265-S276.
    [107]Jacobsen SE, Running MP, Meyerowitz EM. Disruption of an RNA helicase/RNAse Ⅲ gene in Arabidopsis causes unregulated cell division in floral meristems [J]. Development,1999,126:5231-5243.
    [108]Schommer C, Bresso EG, Spinelli SV, etal. Role of MicroRNA miR319 in Plant Development [M]. MicroRNAs in Plant Development and Stress Responses. Springer.2012:29-47.
    [109]Zimmerman JL. Somatic Embyrogenesis:A Model for Early Development in Higher Plants [J]. Plant Cell,1993,5:1411-1423.
    [110]Shen YO, Jiang ZH, Yao XD, etal. Genome Expression Profile Analysis of the Immature Maize Embryo during Dedifferentiation [J]. Plos one,2012,7(3):1-9.
    [111]杨子刚,郭庆海.世界玉米市场供求分析[J].市场与贸易,2011,6:80-82.
    [112]王莉,胡胜德.玉米用途之争:粮食消费还是能源消费[J].农业发展,2008,11:8-9.
    [113]杨培珠,钟国祥,谢虹,等.玉米种质资源的背景与利用现状[J].中国农学通报,2011,27(05):25-28.
    [114]罗振锋,李晓辉.我国转基因玉米研究进展和产业化分析[J].玉米科学,2006,14(4):4-6.
    [115]李晓琳.玉米转基因受体幼胚培养体系的建立与优化.[学位论文].河南,河南农业大学,2010
    [116]崔琰.小麦成熟胚脱分化过程中bZIP家族转录因子及其靶基因的表达谱分析.[学位论文].河南,河南农业大学,2009
    [117]曹雪,上官凌飞,于华平,等.葡萄SBP基因家族生物信息学分析[J].基因组学与应用生物学,2010,29(4):791-798.
    [118]Dharmasiri N, Estelle M. Auxin signaling and regulated protein degradation [J]. Trends Plant Sci,2004,9(6):302-308.
    [119]Xie K, Wu C, Xiong L. Genomic Organization, Differential Expression, and Interaction of SQUAMOSA Promoter-Binding-Like Transcription Factors and microRNA156 in Rice [J]. Plant Physiology,2006,142(1):280-293.
    [120]Manning K, Poole M, Hong Y, et.al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening [J]. Nature,2006,38:948-952.
    [121]张东向,张崇浩,李杰芬.玉米叶片胚性愈伤组织诱导及其与内源IAA和ABA关系的初步研究[J].作物学报,2000,26(02):195-199.
    [122]刘伟娜,韩建民,董金皋,等.棉花TCP家族转录因子基因GhTCP 1的克隆与表达分析[J].棉花学报,2010,22(5):409-414.
    [123]雷娟,魏刚,朱玉贤.拟南芥TCP家族转录因子At2g31070的转录激活活性鉴定与表达谱分析[J].分子植物育种,2005,3(1):31-35.
    [124]Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize [J]. Nature,1997,385(6624):485-488.
    [125]孙红炜,尚佑芬,杨崇良,等.影响玉米愈伤组织诱导和植株再生的有关因素研究[J].山东农业科学,2002,6:30-31.
    [126]楚海娇,王丕武,曲静,等.4种骨干玉米自交系幼胚愈伤组织诱导条件的优化[J].河南农业科学,201 1,40(9):26-29.
    [127]朱友银,赵德刚,冯怡,等.不同基因型玉米愈伤组织诱导与植株再生研究[J].生物技术,2008,18(4):62-64.
    [128]熊国胜,李家洋,王永红.植物激素调控研究进展[J].科学通报,2009,54(18):2718-2733.
    [129]Yang X, Lee S, So JH,等.The IAAl protein is encoded by AXR5 and is a substrate of SCF(TIR1) [J]. Plant Journal,2004,40(5):772-782.
    [130]王宏伟,史振声,徐盛恩,等.激素和附加物对玉米幼胚愈伤组织诱导的影响[J].西北农学报,2007,16(5):105-108.
    [131]冯质雷.玉米未成熟胚胚性愈伤组织诱导率与内源激素.[学位论文].四川,四川农业大学,2004.
    [132]解亚坤.水稻miR393基因家族的表达模式及其对植株生长发育的影响.[学位论文].浙江,浙江大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700