聚酯合金基纳米复合材料的制备和性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物基纳米复合材料的制备与性能研究是现代高分子材料学关注的重点和热点,具有重要的理论和实际意义。本文从纳米Si02的表面改性入手,制备了PBT/SiO2纳米复合材料,探讨了其非等温结晶动力学;重点研究了PBT/PET/SiO2三元纳米复合材料结构和性能的关系,围绕PBT/PET/纳米颗粒复合材料的结构控制、设计和性能优化进行了较为深入的探索和分析,并扩展到其它多相体系中,获取了很多有价值的信息,为高性能耐热的PBT纳米复合材料的开发和应用奠定了基础,主要结果如下:
     1.采用简单的两相混合法来处理纳米SiO2,红外和表面羟基度分析表明,偶联剂对纳米SiO2的处理获得了成功,且表面羟基度减少。偶联剂的种类和含量显著影响纳米Si02的分散状态和分散稳定性,在KH550含量为3-8wt%时,在PBT基体中分散的最好,复合材料性能最佳。
     2.纳米SiO2使PBT纳米复合材料的力学性能显著提高,其中在0.3wt%含量下,与纯PBT相比,拉伸强度提高了9.5%,而弯曲强度提高了15.1%,且冲击强度与纯PBT维持了同等的水平,综合力学性能最佳。热变形温度在3wt%含量下比纯PBT提高25.7℃,提高幅度达16.6%。非等温结晶行为表明,纳米SiO2有很好的异相成核作用,可显著提高PBT的结晶温度。纳米SiO2/PBT复合材料体系非等温结晶过程与莫志深法动力学方程相吻合,而对Ozawa方法处理的动力学方程并不太适合。莫志深模型求得pure-PBT、PBT/SiO2(0.3wt%)和PBT/SiO2(3wt%)纳米复合材料的F(T)大小为PBT/SiO2(0.3wt%)< PBT/SiO2(3wt%)     3.揭示了PBT/PET/SiO2多元纳米复合材料中纳米SiO2对PBT/PET合金界面酯交换反应及性能的影响规律,为PBT/PET/SiO2纳米复合材料的结构控制、设计和工艺优化提供了理论基础。研究表明,纳米SiO2能均匀地分散在PBT/PET合金基体中。DSC和核磁共振氢谱分析表明纳米SiO2的加入在一定程度上抑制了PBT和PET之间的酯交换反应,并对PBT起到了异相成核的作用。从力学和热性能可以看出,PBT/PET/SiO2多元纳米复合材料表现出了优异的性能,力学性能比PBT/PET合金有提高,尤其是直接添加法制备的PBT/PET/SiO2纳米复合材料的拉伸强度提高了3%,弯曲模量提高了23%,而热变形温度高达187.1℃,比之PBT/PET的热变形温度提高了18℃。
     4.采用熔融共混法制备了PBT/EPOXY/SiO2和PBT/PET/clay纳米复合材料。EPOXY进一步改善了纳米Si02粒子在基体中分散性,提高了界面粘合力,使得复合材料的拉伸和弯曲强度增大,并显著改善了冲击强度和断裂伸长率,达到了同时增韧增强的目的。红外表明,环氧树脂中的环氧基团分别与纳米SiO2表面羟基和PBT的端羟基发生了反应,EPOXY的加入使得PBT的结晶峰温度降低;对于PBT/PET/clay纳米复合材料,TEM可见,有机改性的蒙脱土30B在PBT/PET基体中的形成了插层甚至剥离结构。在PBT/PET组成为80/20时,MMT的含量为2wt%,其综合力学性能最好,热变形温度最高达184.8℃,比纯的PBT提高了19%。
The study on the structure and properties of Polymer nanocomposites is the focal point and hotspot in the modern polymer materials; it is of great significance in science and practice. This thesis starts from the surface treatment of inorganic particles and the preparation of PBT/SiO2 nanocomposites. The relationship between the structure and properties of the PBT/PET/SiO2 ternary nanocomposites was studied systematically. Deep investigation and analysis on the control and design of structure and performance optimization of the nanocomposites were carried out and applied to other systems. A lot of valuable information was obtained that can act as theoretical basis for development of PBT nanocomposites with high mechanical and thermal properties. The main works and conclusions were listed as following:
     1. SiO2 nanoparticles were treated with siliane coupling agent by simple two phase blending method. Surfaces of SiO2 nanoparticle were successfully coated by silane coupling agent with analysis of FTIR and the surface oxhydryl degree. The results indicated that the dispersion of SiO2 was strongly affected by the kinds and the concentration of siliane coupling agent. SiO2 nanoparticles could be well dispersed in PBT matrix when the concentration of KH560 is 3-8%wt.
     2. The mechanical properties of the PBT/SiO2 nanocomposites were obviously enhanced. Compared with the pure PBT, the tensile and flexible strength of nanocomposite with 0.3wt% SiO2 were enhanced 9.5% and 15.1% respectively without losing the impact strength. The thermal deformation temperature increased 25.7℃when 3wt% SiO2 nanoparticles were added. The DSC results showed that crystallization peak temperature for the nanocomposites increased distinctly in comparison to that of pure PBT, which indicated that addition of SiO2 nanoparticles had heterogeneous nucleating effect on PBT. The Ozawa model failed to describe the non-isothermal crystallization of PBT nanocomposites, while Mo model is suitable. The crystallization active energies of pure PBT and nanocomposites with 0.3wt% and 3.0wt% SiO2 determined by Kissinger model were -235.35kJ/mol,-356.14kJ/mol and-351.18kJ/mol respectively.
     3. The effect of SiO2 nanoparticles on the phase morphology, transesterification between PBT and PET and mechanical properties of the PBT/PET/SiO2 nanocomposites prepared by two methods were studied, which made a theoretical basis for the control and design of structure and performance optimization of the nanocomposites. SiO2 nanoparticles dispersed well in the PBT/PET matrix. DSC and HNMR results showed that the addition of SiO2 nanoparticles restrained the transesterification between PBT and PET to some degree., which is because that SiO2 nanoparticles can react with the end groups of polyesters especially when they exist at the interface of PBE and PET phases. PBT/PET/SiO2 nanocomposites exhibited higher properties than those of PBT/PET blend. For PBT/PET/SiO2 nanocomposite prepared by one-step method, the tensile strength, flexural modulus and HDT were enhanced by 3%, 23% and 18℃respectively.
     4. PBT/EPOXY/SiO2 and PBT/PET/clay ternary nanocomposites were prepared by melt blending in a twin-screw extruder. The effect of epoxy on phase morphology and mechanical properties of PBT/SiO2 nanocomposites was investigated. FTIR rusult showed that the epoxy groups of the epoxy resin react with the hydroxyl groups of the SiO2 surfaces and PBT chains. Addition of epoxy improved the dispersion SiO2 nanoparticles and interfacial adhesion between the SiO2 nanoparticles and PBT matrix, which resulted in not only the enhancement of the tensile and flexural properties, but also improvement of impact strength and elongation, with a good balance of stiffness and toughness. For PBT/PET/clay nanocomposites, an inserted and exfoliated structure was observed by TEM. When the PBT/PET composition is 80/20wt and the MMT content is 2wt%, overall mechanical properties is optimum, and the thermal deformation temperature reached 184.8℃.
引文
[1]Caldwell, J. R., Jackson, W.J., Gray, T.F., Polyesters, Thermooplastic, in Encyclopedia of Polymer Science and Technology.1976,1(1):444-467
    [2]T. H. Sauer, J. H. Wendorff, H. J. Zimmermann. Thermotropic rigid-chain copolymers:X-ray investigations of the structure. J. Polym. Sci., Part B:Polym. Phys.,1987,25(12):2471-2485
    [3]Jaquiss, D. B. G, Borman, W. F. H., Campbell, R. W., Polyester, Thermoplastic, InKirk-Othmer Encyclopedia of Chemical Technology.1982,18:549-574
    [4]梁诚.聚对苯二甲酸丁二醇酯生产应用现状与改性研究.化工文摘.2004,(4):27-28
    [5]K. Pang, R. Kotek, A. Tonelli. Review of conventional and novel polymerization processes for polyesters. Prog. Polym. Sci.2006,31:1009-1037
    [6]Paul, D. Encyclopedia of Polymer Science and Engineering. New York: Wiley.1985
    [7]Fradet, A. Marechal, E. Kinetics and mechanisms of polyesterifications, Adv. Polym.Sci.1982,43:51-142
    [8]Hubbard, P. A., Brittain, W. J., Mattice, W. L., Brunelle, D. J. Ring size distribution in the depolymerization of poly (butylenes terephthalate). Macromolecules.1998,31:1518-22
    [9]Conix, A., Kerpel, R. V. Crystallization behavior and melting properties of m-phenylene group containing polyesters. J. Polym. Sci.1959,11:521-532
    [10]Gilbert M, Hybart FJ. Effect of chemical structure on crystallization rates and melting of polymers:part 1.Aromatic polyesters. Polymer 1972,13:327-32.
    [11]刘磊.热塑性树脂共混改性PBT的研究进展.塑料工业.2008,36:37-40
    [12]J.Y. Kim, S.H. Kim, T. Kikutani. Fiber property and structure development of polyester blend fibers reinforced with a thermotropic liquid-crystal polymer. J. Polym. Sci., Part B:Polym. Phys.,2004,42(14):395-403
    [13]Takemori, M. T. Towards an understanding of heat distortion temperature of thermoplastics, Polym. Eng. Sci.1979,19:1104-1109
    [14]Hobbs, S. Y. Pratt, C. F. Multiple melting in poly (butylene terephthalate), Polymer.1975,16:462-464
    [15]Sandrolini, F., Motori, A.and Saccani, A. Electrical properties of poly (butylene
    terephthalate), J. Appl. Polym. Sci.1992,44:765-771
    [16]Wunderlich, B. Macromolecular Physics. New York:Academic Press.1980
    [17]Bryant, J. J. L., Semlyen, J. A. Cyclic polyesters.7. Preparation and characterization of cyclic oligomers from solution ring chain reactions of poly (butylene terephthalate). Polymer.1997,38:4531-4537
    [18]Tashiro, K., Nakai, Y., Kobayashi, M., Tadokoro, H. Solid-state transition of poly (butylene terephthalate) induced by mechanical deformation. Macromolecules.1980,13:137-145
    [19]Nujalee Dangseeyun, Phornphon Srimoaon, Pitt Supaphol. Isothermal melt-cryst-allization and melting behavior for three. linear aromatic polyesters. Thermochimica Acta.2004,409(1):63-77
    [20]江文.聚对苯二甲酸丁二醇酯(PBT)在汽车零部件中的应用与发展.精细化工原料及中间体.2005,(2):14-15
    [21]魏刚,余燕,黄锐.PBT的增韧改性研究进展.工程塑料应用.2005,33(5):70-73
    [22]钱伯章.世界PBT树脂的产能和市场分析.聚酯工业.2006,19:18-23
    [23]杨勇,张师军.PBT共混改性研究最新进展.塑料.2004.33(4):39-47
    [24]尹华,张师军等.热塑性聚酯工程塑料的进展.合成树脂及塑料.2002.19(5):65-70
    [25]Takashi Aoyamaa, Angola Juan Carlosa. Strain recovery mechanism of PBT/ rubber thermoplastic elastomer. Polymer,1999,40(13):3657-3663
    [26]Zhang Ailing, Zhang Baoyan, Feng Zhiliu. Compatibilization by main-chain thermotropic liquid crystalline ionomer of blends poly (butylene terephthalate)/ polypropylene. J. Appl. Polym. Sci.2002,85(5):111-123
    [27]孟晖.聚对苯二甲酸丁二醇酯生产现状与改性研究.中国石油和化工.2004,4:21-24
    [28]钱伯章.PBT市场与生产和改性技术.塑料工业.2005,33:78-81
    [29]查琳琳,阮叶萍.聚酯类共混改性聚对苯二甲酸丁二醇酯.广东塑料,2004,125(12):22-28
    [30]罗付生,郑德煜.聚酯纳米复合材料的制备和表征.惠州学院学报.2007,27(3):9-14
    [31]丁运生,张志成,史铁军.阻隔性高分子材料研究进展.功能高分子学报.2001.14:287-291
    [32]A. Arostegui, J. Nazabal. Stiffer and super-tough poly (butylene terephthalate) based blends by modification with phenoxy and maleated poly (ethylene-octene) copolymers. Polymer.2003,44(1):239-249
    [33]Takashi Aoyamaa, Angola Juan Carlosa. Strain recovery mechanism of PBT/ rubber thermoplastic elastomer. Polymer.1999,40(13):3657-3663
    [34]Kenneth, E. Gonsalves, Xiaohe Chen, Marie Isabelle Baraton. Mechanistic investigation of the preparation of polymer/ceramic nanocomposites. Nanostructured Materials.1997,9:181-184
    [35]童玉华,刘佑习.玻璃纤维增强PBT/PET共混复合体系的力学性能.高分子材料科学与工程.1996,12(6):105-109
    [36]Teofil Jesionowski, Karol Bula, Jerzy Janiszewski, et al. The influence of filler modification on its aggregation and dispersion behaviour in silica/PBT composite. Composite interfaces.2003,10:225-242
    [37]Julia S. Higginsa, Michael Tambascob, Jane E.G. Lipson. Polymer blends; stretching what we can learn through the combination of experiment and theory. Prog. Polym. Sci.2005,30:832-843
    [38]刘生鹏,童身毅.聚对苯二甲酸丁二醇酯的改性方法及其进展.武汉化工学院学报.2002,24(3):40-44
    [39]Coleman, M. M., Pehlert, G.J., Painter, P.C. Functional group accessibility in hydrogen bonded polymer blends. Macromolecules.1996,29:6820-6831
    [40]陈晓浪.ABS/PBT共混合金体系的研制.四川大学学报.2005,37(4):69-73
    [41]Gerson, L. M.,Leonardo, B. C., Elias, H. J.,et al.Toughening of PBT by ABS, SBS and HIPS systems and the effectsof reactive functionalized copolymers.Macromol. Symp.2001,176:167-175
    [42]W. R. Hale, L. A. Pessan, H. Keskkula. Effect of compatibilization and ABS type on properties of PBT/ABS blends. Polymer.1999,40(15):4237-4250
    [43]Hage, E., Ferreira, L. A. S., Manrrich, S., et al. Crystallization behavior of PBT/ABS polymer blends. J. Appl. Polym. Sci.1999,71(3):423-431
    [44]Lyu Min-Young. Flow characteristics, mechanical properties and chemical resistance of polycarbonate/poly (butylenes terephthalate)/impact modifier blends. Polymer.2002,26(2):237-244
    [45]Arthur, N. W., Steven, B. T., Anthony, J. R. Inhibition of crystalline structure development in a reactive polycarbonate-poly (butylenes terephthalate) blend. Polymer Bulletin.2002,48:199-213
    [46]Pesetskii, S. S., Jurkowski, B., Koval, V. N. Polycarbonate/polyalkylene terephthalate blends:interphase interactions and impact strength. J. Appl. Polym. Sci.2002,84(6):127
    [47]刘佑习,张有勇.离聚物Surlyn对PBT结构与性能的影响.高分子材料科 学与工程.1999,15(2):55-59
    [48]刘佑习,黄政道,张有勇,李玮.离聚体对PBT/PC共混体系结构与性能的影响.高分子材料科学与工程.1998,14(2):67-70
    [49]袁文,李健,隋轶巍,李新宝,王洪雁.PBT/PET合金研究进展.塑料工业.2008,36:4-7
    [50]Antonio Stocco, Vincenzo La Carrubba, Stefano Piccarolo, Valerio Brucato. The Solidification Behavior of a PBT/PET Blend Over a Wide Range of Cooling Rate. J. Polym. Sci:Part B:Polym. Phys.2009,47:799-810
    [51]Sanket Nabar, D. D. Kale. Rheology and Transesterification between Polycarbonate and Polyesters. J. Appl. Polym. Sci.2007,104:2039-2047
    [52]J. Devaux, P. Godard, J. P. Mercier. TheTransesterifiaction of Bisphenol-A Polycarbonate (PC) and PolyButylene Terephthalate (PBT):A New Route to Block Copolycondensates.Polym. Eng. Sci.1982,122(4):229-233
    [53]张军,马荣堂,马青.PC/PET共混体系的形态、结构和性能及催化剂对它们的影响.高分子材料科学与工程.1990,6(4):25-29
    [54]A. Golovoy, M. F. Cheung, K.R. Carduner, H. J. Rokosz.Control of Transesterificationin Polymer Blends. Polym. Eng. Sci.1989,129(18):1 226-1231
    [55]吴培熙,张留城.聚合物共混改性,北京,中国轻工业出版社.1996
    [56]Sang-Soo lee, Junkyun Kim, Min Park, Soonho Lim, Chul Rim Choe. Transesterification reaction of the BaSO4-Filled PBT/Poly (ethylene terephthalate) blend. J Polym Sci:Part B:Polym. Phys.2001,39:2589-2598
    [57]刘森林,马敬红,梁伯润.PET/PBT扩链反应共混物的结晶熔融行为.合成纤维工业.1999,22(3):12-17
    [58]Campbell,1. H., Blackwell, S. J. General. Approach to Nanocomposite Preparation. Chem.Mater.2000,12:234-241
    [59]S. C. Tjong. Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R.2006,53:73-197
    [60]L. A. Goettler, K. Y. Lee, H. Thakkar. Layered Silicate Reinforced Polymer Nanocomposites:Development and Applications. Polymer Reviews.2007, 47:291-317
    [61]Richard, A. Vaia, John, F. Maguire. Polymer Nanocomposites with Prescribed Morphology:Going beyond Nanoparticle-Filled Polymers. Chem. Mater.2007, 19:2736-2751
    [62]林海,谢伟宏,水森,徐铸德.聚丙烯酸包覆超细碳酸钙的机理和表面性质研
    究.化学学报.2002,60(7):1564-1161
    [63]Przepiorski, J., Karolczyk, J., Takeda, K., et al. Porous Carbon Obtained by Carbonization of PET Mixed with Basic Magnesium Carbonate:Pore Structure and Pore Creation Mechanism. Industrial & Engineering Chemistry Reserach. 2009,48(15):7110-7116
    [64]GuoxiaFei, YuanLiu, QiWang. Synergistic effects of novolac-based char former with magnesium hydroxide in flame retardant polyamide-6. Polymer Degradation and Stability.2008,93(7):1351-1356
    [65]L. Elias, F. Fenouillot, J. C. Majeste, Ph. Cassagnau. Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer.2007,48: 6029-6040
    [66]Ruan, W. H., Huang, X. B., Wang, X. H., Rong, M. Z., Zhang, M. Q. Effect of drawing induced dispersion of nano-silica on performance improvement of polypropylene based nanocomposites. Macromol. Rapid. Commun.2006,27: 581-585
    [67]Jing Hua Chen, Min Zhi Rong, Wen Hong Ruan, Ming Qiu Zhang. Interfacial enhancement of nano-SiO2/polypropylene composites. Composites Science and Technology.2009,69:252-259
    [68]Zhou, H. J., Rong, M. Z., Zhang, M. Q., Ruan, W.H., Friedrich, K. Role of reactive compatibilization in preparation of nanosilica/polypropylene composites. Polym. Eng. Sci.2007,47:499-509
    [69]熊传溪,闻获江,皮正杰.超微细Al2O3增韧增强聚苯乙烯的研究.高分子材料科学与工程.1994,10(4):69-73
    [70]Mitsumata, T., Hachiya, T., Nitta, K. Nonlinear viscoelasticity, percolation and particles dispersibility of PVA/aluminum hydroxide composite gels. European Polymer J. 2008,44(8):2574-2580
    [71]Junjun Li, Sang I1 Seok, Baojin Chu, Fatih Dogan, Qiming Zhang, Qing Wang. Nanocomposites of Ferroelectric Polymers with TiO2 Nanoparticles Exhibiting Significantly Enhanced Electrical Energy Density. Adv. Mater.2009, 21: 217-221
    [72]Lingyu Li, Bing Li, Matthew, A. Hood, Christopher, Y. Li. Carbon nanotube induced polymer crystallization:The formation of nanohybrid shish-kebabs. Polymer.2009,50:953-965
    [73]Maspoch, M. L., Franco-Urquiza, E., Gamez-Perez, J., et al. Fracture behaviour of poly[ethylene-(vinylalcohol)]/organo-clay composites. Polymer International. 2009,58(6):648-655
    [74]Biqiong Chen, Julian R. G. Evans. Impact strength of polymer-clay nanocomposites. Soft Matter.2009,5:3572-3584
    [75]Miroslav Huskic, Majda Zigon. PMMA/MMT nanocomposites prepared by one-step in situ intercalative solution polymerization. European Polymer J.2007, 43:4891-4897
    [76]Dian Liua, Zixing Shia, Masashi Matsunagab, Jie Yina. DSC investigation of the hindered effect on curing behavior for epoxy-phenol/MMT nanocomposites based on the acidic octadecylamine modifier. Polymer.2006,47(8):2918-2927
    [77]Yeong Suk Choi, Min Ho Choi, Ki Hyun Wang, Sang Ouk Kim, Yoon Kyung Kim, In Jae Chung. Synthesis of Exfoliated PMMA/Na-MMT Nanocomposites via Soap-Free Emulsion Polymerization. Macromolecules.2001,34:8978-8985
    [78]Hattotuwa, G. B. Premalal, H., Ismail, A. Baharin. Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polymer Testing.2002,21:833-839
    [79]徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002
    [80]Ste'phane Je'ol, Francuoise Fenouillot, Alain Rousseau. Drastic modification of the dispersion state of submicron silica during biaxial deformation of polyethylene terephthalate). Macromolecules.2007,40:3229-3237
    [81]单薇,廖明义.纳米Si02的表面处理及其在聚合物基纳米复合材料中的应用进展.高分子通报.2006,3:1-9
    [82]Dimitris Bikiaris, Vassilis Karavelidis, George Karayannidis. A New Approach to Prepare Poly (ethylene terephthalate)/Silica Nanocomposites with Increased Molecular Weight and Fully Adjustable Branching or Crosslinking by SSP. Macrom. Rap. Comm.2006,27(15):1199-1205
    [83]Fischer H. Polymer nanocomposites:from fundamental research to specific applications. Mater. Sci. Eng.2003,23:763-772
    [84]Giannelis, E. P. Polymer layered silicate nanocomposites. Adv. Mater.1996,8: 29-35
    [85]Vaia, R. A., Wagner, H. D. Framework for nanocomposites. Mater Today.2004, 7:32-37
    [86]Ginzburg, V. V., Singh, C., Balazs, A. C. Theoretical phase diagrams of polymer/clay composites:the role of grafted organic modifiers. Macromolecules.2000,33:1089-1099
    [87]VanderHart, D. L., Asano, A., Gilman, J. W. Solid-state NMR investigation of paramagnetic nylon 6 clay nanocomposites.1. Crystallinity, morphology, and the direct influence of Fe3+ on nuclear spins. Chem. Mater. 2001,13: 3781-3795
    [88]Paul, M. A., Alexandre, M., Degee, P., Calberg, C., Jerome, R., Dubois P. Exfoliated polylactide/clay nanocomposites by in situ coordination-insertion polymerization. Macrom. Rap. Comm.2003,24:561-566
    [89]Paul Podsiadlo, Amit K. Kaushik, Ellen M. Arruda, Anthony M. Waas, Bong Sup Shim, et al. Ultrastrong and Stiff Layered Polymer Nanocomposites. Science.2007,318:80-83
    [90]成会明.纳米碳管制备、结构、物性及应用.北京:化学工业出版社,2002
    [91]Lijima, S. Helical microtubes of graphitic carbon. Nature.1991,354(6348): 56-58
    [92]P. M. Ajayan, O. Stephen. Aligned carbon nanotube arrays formed by cutting polymer resin-nanotube composite. Science.1994,265:1212-1216
    [93]J. Emilie, C. Dennis. Melt processing of SWCNT-polyimide nanocomposite fibers. Polymer.2004,45:439-446
    [94]Tianxi Liu, In Yee Phang, Lu Shen, Shue Yin Chow, Wei-De Zhang. Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites. Macromolecules.2004,37:7214-7222
    [95]GBrozaa, M., Kwiatkowska, Z. Roslaniec. Processing and assessment of poly(butylene terephthalate) nanocomposites reinforced with oxidized single wall carbon nanotubes. Polymer.2005,46(16):5806-5867
    [96]刘则安,王平华,刘春华,黄志良,赵天奇,贾艳飞,刘佳.PBT/碳纳米管复合材料结构与性能研究.塑料工业.2008,36(12):54-58
    [97]吴亮,吴德峰,张明.聚对苯二甲酸丁二醇酯/多壁碳纳米管复合材料的流变及结晶行为.塑料.2007,36(6):46-50
    [98]B. A. Rozenberga, R. Tenneb. Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog. Polym. Sci.2008,33:40-112
    [99]S. Hayashi, Y. Takeuchi, M. Eguchi, T. Iida, N.T. subokawa. Graft polymerization of vinyl monomers initiated by peroxycarbonate groups introduced onto silica surface by Michael addition. J. Appl. Polym. Sci.1999, 71(9):1491-1497
    [100]毋伟,陈建峰,屈一新.硅烷偶联剂的种类与结构对二氧化硅表面聚合物接枝改性的影响.硅酸盐学报.2004,32(5):570-575
    [101]H. Y. Yu, J. S. Gu, J. Du, M. Y. Guan. Study on the surface modification of nano-TiO2 by grafting PMMA/PBMA and its thermalk stability. Chinese J. Polymer Science.2005,23(3):243-247
    [102]Ph. Espiard, A. Guyot. Poly (ethyl acrylate) latexes encapsulating nanoparticles of silica:2. Grafting process onto silica. Polymer.1995,36(23):4391-4395
    [103]何三雄,高保娇.无机微粒表面接枝聚合物的研究进展.中北大学学报.2006,27(4):339-344
    [104]X. D. Wu, D. P. Wang. Preparation and characterization of stearate-capped titanium dioxide nanoparticles. J. Colloid. Interf. Sci.2000,222:37-41
    [105]徐存英,段云彪,张鹏翔等.纳米二氧化钛的表面改性研究.云南化工.2000,27(5):6-7
    [106]Poncet, Legrand, C., Bordes, B., Lafuma, F. Surface modification of colloidal silica particles. Colloid and Polymer Surface.2001,279:114-121
    [107]Ohno, K., Koh, K., Tsujii, Y., et al. Synthesis of gold nanoparticles coated with well-defined, High-density polymer brushes by surface-initiated living radicalpolymerizatuion. Macromolecures.2002,35:8989-8993
    [108]Donald, R. Bear, Paul, E. Burows. Enhancing coating functionality using nanoscience and nanotechnology.Prog. in Organic Coatings.2003,47: 342-356
    [109]刘福春.纳米材料浓缩浆及其在涂料中应用的研究.博士论文.北京科技大学腐蚀与防护中心.2003
    [110]Sabbides, Th. G., Koutsoukos, P. G. The efect of surface treatment with inorganic orthophosphate on the dissolution of calcium carbonate. J. Crystal Growth.1996,165:268-272
    [111]容敏智,章明秋,郑永祥,曾汉民.纳米SiO2增韧增强聚丙烯的界面效应与逾渗行为.复合材料学报.2002,19(1):1-4
    [112]王锐,武荣瑞.PET/纳米SiO2复合材料的制备Ⅰ.纳米SiO2在PET单体EG中的分散性的研究.高分子材料科学与工程.2002,18(4):181-185
    [113]M. Yoshida, M. Lal, K. N. Deepak, et al. Prasad PN.TiO2 nano-particle-dispersed polyimide composite optical wave guide materials through reverse micelles.J.Mater.Sci.1997,32:4047-4051
    [114]Michael Alexandre, Philippe Dubois. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 2000,28:1-63
    [115]葛建华,王迎军,郑裕东.溶胶凝胶法在聚合物/无机纳米复合材料中的应用.材料科学与工程学报.2004,22(3):442-445
    [116]Wei Chen, Baojun Qu. Enhanced thermal and mechanical properties of poly(methyl acrylate)/ZaAl layered double hydroxide nanocomposites formed by in situ polymerization. Polymer Degradation and Stability.2005, 90(1):162-166
    [117]Chen, X. C.,You, B., Zhou, S. X., et al. Surface and interface characterization of polyester-based polyurethane/nano-silica composites. Surface and Interface Analysis.2003,35:369-374
    [118]J. H. Chang, J. K. Sung, L. J. Yong, I. Seungsoon. Poly (ethylene terephthalate) nanocomposites by in situ interlayer polymerization:the thermo-mechanical properties and morphology of the hybrid fibers. Polymer.2004,45(3): 919-926
    [119]G. Christian, G. Guido, S. Thomas. Influence of the layer morphology on the electrical properties of Sol-Gel transparent conducting oxide coatings. J. Sol-Gel Science and Technology.2000,19(2):435-439
    [120]W. T. Liu, X. Y. Tian, P. Cui, Y. Li, K. Zheng, Y. Yang. Preparation and characterization of PET/silica nanocomposites. J. Appl. Polym. Sci.2004, 91(2):1229-1232
    [121]黄维垣,闻建勋.高技术有机高分子材料进展.北京:化学工业出版社.1994
    [122]Ray, S. S., Bousima, M. Biodegradable polymers and their layered silicate nanocomposites:in greening the 21st centurymaterial world. Prog. Mater. Sci. 2005,50:962-1079
    [123]Young-Wook Chang. Poly (butylene terephthalate)-clay nanocomposites prepared by melt intercalation:morphology and thermomechanical properties. Polymer International.2005,54(2):348-353
    [124]Chaoying Wan, Xujin Bao, Feng Zhao, et al. Morphology and Properties of Silane-Modified Montmorillonite Clays and Clay/PBT Composites. J. Appl. Polym. Sci.2008,110:550-557
    [125]郭子东,徐晓楠.PBT/粘土纳米复合材料阻燃性能的锥形量热仪研究.消防科学与技术.2005,24(6):750-752
    [126]G. Brozaa, M. Kwiatkowska, Z. Roslaniec. Processing and assessment of poly (butylenes terephthalate) nanocomposites reinforced with oxidized single wall carbon nanotubes. Polymer.2005,46(16):5806-5867
    [127]F. Ania, G. Broza, M. F. Mina. et al. Micromechanical properties of poly (butylene terephthalate) nanocomposites with single-and multi-walled carbon nanotubes. Composite Interfaces.2006,13(1):33-45
    [128]Jianfei Che, Baoyong Luan, Xujie Yang, Lude Lu, Xin Wang. Graft polymerization onto nano-sized SiO2 surface and its application to the modification of PBT. Mater. Lett.2005,59:1603-1609
    [129]Xiayin Yao, Xingyou Tian, Xian Zhang, et al. Preparation and Characterization of Poly(butylene terephthalate)/Silica Nanocomposites.Polym. Eng. Sci.2009. 10:799-807
    [130]Ling Zhang, Yuerong Hong, et al. A Novel Approach to Prepare PBT Nanocomposites with Elastomer-Modified SiO2 Particles. Polymer Composites.2009.10:673-674
    [131]魏刚,彭娅,黄锐.PBT/E-MA-GMA/CaCO3复合材料的制备与性能.工程塑料应用.2005,33(10):8-11
    [132]Defeng Wu, Chixing Zhou, Wei Yu, Fan Xie. Effect of Blending Sequence on the Morphologies of Poly(butylenes terephthalate)/ Epoxy/Clay Nanocomposites by a Rheological Approach. J. Appl. Polym. Sci.2006,99: 340-346
    [133]Junfeng Xiao, Yuan Hu, Hongdian Lu, et al. Effect of Order of Mixing on Morphology and Thermal Properties of the Compatibilized PBT and ABS/Alloys/OMTNanocomposites. J. Appl. Polym. Sci.2007.104:2130-2139
    [134]刘景春,韩建成.跨世纪的高科技纳米二氧化硅的应用领域.化工新型材料.1998,7:3-6
    [135]束华东,李小红,张治军.表面修饰纳米二氧化硅及其与聚合物的作用.化学进展.2008,20(10):1509-1515
    [136]Mathew, G., Huh, M. Y., Rhee, J. M., et al. Improvement of properties of silica-filled styrene-butadiene rubber composites through plasma surface modification of silica. Polymers for Advanced Technologies.2004,15(7): 400-408
    [137]Bourgeat Lami E., Lang, L. Encapsulation of inorganic particles by dispersion polymerization in polar media 1. Silica nanoparticles encapsulated by polystyrene. J. Colloid and Interface Sci.1998,197(2):293-308
    [138]Willander, M., Nur, O., Yu E Lozovik, et al. Solid and soft nanostructured materials:Fundamentals and applications. Microelectronics. J.2005,7: 940-949
    [139]Huang Wei, Huang Ying, Yu Yun zhao. Application of polysiloxane to modification of epoxy encapsulant. Silicone Material and Applications,1999, (3):10-12
    [140]熊家林,贡长生,张克立.无机精细化学品的制备与应用.北京:化学工业出版社.1999
    [141]Arkles, B.Tailoring surfaces with silanes. Chem. Tech.1997,7:766-777
    [142]Ben, J., Lu S. Research on the Composite Dispersion of Ultra Fine Powder in
    the Air.Materials Chemistry and Physics.2001,69:204-209
    [143]Tsubokawa, N., Shimi, Y., Tsuehida, H., et al.Photografting of VinylPolymers onto Ultrafine Inorganic particles:Photopolym erization of Vinyl Monomers Initiated by Azo Groups Introduced onto these Surface. J. Polym. Sci. PartA: Polymer Chemistry.1994,32(12):2327-2332
    [144]马文有,田秋,曹茂盛等.纳米颗粒分散技术研究进展—分散方法与机理.中国粉体技术.2002,3:31-34
    [145]Liu Ying-ling, Chih Yuan hsul, Wang Mei ling, et al. Poly (methylmethacrylate)-silica Nanocomposites Films From Surface Funetionalized Silica Nanoparticles. Polymer.2005,46:1851-1856
    [146]Ding Xue-feng, Jiang Ya-qiu, Yu Kai-feng, et al. Silica Nanopartieles Encapsulated by Polystyrene via Surface Grafting and in Situ Emulsion Polym erization. Mater. Lett.2004,58:3126-3130
    [147]Deng, G., Michael, A. M., Paul, R., et al. Control ofsurface expression of functional groups on silica particles. Mater. Sci. and Eng.2000,11:165-172
    [148]Maean, J., Ivankovi, H., Ivankovi, M., et al. Study of cure kinetics of epoxy-silica organic-inorganic hybrid materials. Thermochimica Acta.2004, 414:219-225
    [149]毋伟,贾梦秋,陈建峰等.硅烷偶联剂对溶胶凝胶法纳米二氧化硅复合材料制备及应用的影响.复合材料学报.2004,21(2):70-75
    [150]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性.北京:化学工业出版社.2003
    [151]Shoichiro, Y, Keisuke, J., Kimio, K. Physical properties and structure of organic-inorganic hybrid materials prodtced by sol-gel process. Materi. Sci. Eng.1998,6(1):75-87
    [152]柯扬船.水溶性聚苯乙烯共聚物及其纳米复合材料.高分子材料科学与工程.2008,24(6):18-22
    [153]Soares, Vera, L., Pereira, Ramos,Valeria, D. Hydroxy-ter-minated polybutadiene toughened epoxy resin:Chemical modification,microstructure,and impact strength. Advances in Polymer Technology.2002,21(1):25-32
    [154]Shih-Jung Liu, Ming-Jen Lin, Yi-Chuan Wu. An experimental study of the water-assisted injion molding of glass fiber filled poly-butylene-terephthalate (PBT) composites.Composites Science and Technology.2007,67:1415-1424
    [155]S. Carroccio, P. Rizzarelli, G. Scaltro, C. Puglisi. Comparative investigation of photo- and thermal-oxidation processes in poly (butylene terephthalate).
    Polymer.2008,49:3371-3381
    [156]Zheng, K., Yao, X. Y.,Chen, L., Zheng, J.,Tian, X. Y., Li, Y. Synthesis and non-isothermal crystallization behavior of poly(ethylene terephthalate)/ attapulgite nanocomposites. J. Macromol.Sci.Part B-Phys.2008,47:217
    [157]Al-Mulla, A., Mathe, W. J., Yeh, S. K., Gupta, R. Non-isothermal crystallization kinetics of PBT nanocomposites. Composites Part A.2008,39:204-209
    [158]Che, J. R, Luan, B. Y, Yang, X. J., Lu, L. D.,Wang, X. Graft polymerization onto nano-sized SiO2 surface and its application to the modification of PBT. Mater. Lett.2005,59:1603-1611
    [159]Wu, D. F., Wu, L., Yu, G. C, Xu, B., Zhang, M. Crystallization and thermal behavior of multiwalled carbon nanotube/poly (butylenes terephthalate) composites. Polym. Eng. Sci.2008,48:1057-1063
    [160]Yao, X. Y, Tian, X. Y, Zhang, X., Zheng, K., Zheng, J., Wang, R. X., Kang, S. H, Cui, Ping. Preparation and characterization of poly(butylene terephthalate)/silica nanocomposites. Polym. Eng. Sci.2009,49:799-811
    [161]Huang, J. W., Wen, Y. L., Kang, C. C.,Yeh, M. Y, Wen, S. B. Crystallization of poly(butylene terephthalate)/poly(ethylene octene) blends:Non-isothermal crystallization. J. Appl. Polym. Sci.2008,107:583-596
    [162]Cheong, S. I., Choi, K. Y. Modeling of continuous rotating disk poly condensation reactor for the synthesis of thermoplastic polyesters. J. Appl. Polym. Sci.1996,61:763-777
    [163]Pilati, R., Manaresi, P., Fortunato, B., Munari, A., Passalacqua, V. Formation of poly (butylene terephthalate):Growing reactions studied by model molecules. Polymer.1981,22:799-803
    [164]V. Siracusa, L. Finelli, N. Lotti, A. Munari. Sulfur-Containing Polymers:Effect of Composition on Melting Behavior and Crystallization Kinetics of Poly(butylene terephthalate). J. Appl. Polym. Sci.2003,90:2003-2009
    [165]李宏伟,高绪珊,童俨.PP/多壁碳纳米管复合材料的非等温结晶动力学.合成树脂及塑料.2006,23(2):28-31
    [166]G. S. Zhang, D. Y. Yan. Crystallization kinetics and melting behavior of nylon 10, 10 in nylon 10,10-montmorillonite nanocomposites. J. Appl. Polym. Sci.2003, 88(9):2181-2188
    [167]张大余,闰明涛,吴丝竹,吴刚.PET/分子筛复合材料的非等温结晶性能.塑料工业.2005,33(2):48-50
    [168]L. C. Lopez, G. L. Wilkes. Non-isothermal crystallization kinetics of poly (p-phenylene sulphide). Polymer.1989,30(5):882-887
    [169]H. E. Kissinger, J. L. Brimhall, B. Mastel. Physical characterization of molybdenum single crystals for irradiation experiments. Materials Research Bulletin.1967,2(4):437-448
    [170]C. F. Ou, M. T. Ho, J. R. Lin. Synthesis and characterization of poly(ethylene terephthalate) nanocomposites with organoclay. J. Appl. Polym. Sci.2004, 91(2):140-145
    [171]Yu, Y. S., Choi, K. J. Crystallization in blends of poly (ethylene terephthalate) and poly (butylene terephthalate). Polym. Eng. Sci.1997,37:91-99
    [172]Aravinthan, G; Kale, D. D. Blends of poly (ethylene terephthalate) and poly(butylene terephthalate). J. Appl. Polym. Sci.2005,98:75-81
    [173]Supaphol, P., Dangseeyun, N., Srimoaon, P. Non-isothermal melt crystallization kinetics for poly (trimethylene terephthalate)/poly (butylene terephthalate) blends. Polym Test.2004,23:175-187
    [174]Chonggang Wu, Chang Dae Han, You Suzuki, Motohiro Mizuno. Transesterification and mechanical properties of blends of a model thermotropic polyester and polycarbonate. Macromolecules.2006,39: 3865-3868
    [175]Jose'M. R. C. A. Santos, James, T. Guthrie. Polymer blends:the PC-PBT case. J. Mater. Chem.2006,16:237-243
    [176]Kalkar, A. K., Siesler, H. W., Pfeiferb, F., Wadekar, S. A. Molecular orientation and relaxation in poly (butylene terephthalate)/polycarbonate blends. Polymer. 2003,44:7251-7256
    [177]Hage, E., Hale, W., Keskkula, H., Paul, D. R. Impact modification of poly(butylene terephthalate) by ABS materials. Polymer.1997,38:3237-3248
    [178]Tae Kyu Kang, Yang Kim, Chang-Sik Ha. Rheological and thermal properties of blends of modified poly (ethylene terephthalate) with p-Acetoxybenzoic acid and poly (butylene terephthalate). J. Appl. Polym. Sci.1999,74:1797-1804
    [179]Julia S. Higgins, Michael Tambasco, Jane, E. G. Lipson. Polymer blends; stretching what we can learn through the combination of experiment and theory. Prog. Polym. Sci.2005,30:832-839
    [180]Ryan, A. J. Designer polymer blends. Nat. Mater.2002,1:8-10
    [181]Jacques, B., Devaux, J., Legras, R., Nield, E. Reactions induced by triphenyl phosphite addition during melt mixing of PET/PBT blends:chromatographic evidence of a molecular weight increase due to the creation of bonds of two different natures. Polymer.1997,38:5367-5374
    [182]Backson, S. C. E., Kenwright, A. M., Richards, R. W. A 13C n.m.r. study of transesterification in mixtures of poly(ethylene terephthalate) and poly(butylene terephthalate). Polymer.1995,36:1991-1997
    [183]Kim, J. H.; Lyoo, W. S., Ha, W. S. Sequence analysis of poly(ethylene
    terephthalate)/poly(butylene terephthalate) copolymer prepared by ester-interchange reactions. J. Appl. Polym. Sci.2001,82:159-163
    [184]Matsuda, H., Asakura, T., Miki, T. Triad sequence analysis of poly (ethylene/butylene terephthalate) copolymer using 1H NMR. Macromolecules 2002,35:4664-4669
    [185]Matsuda, H., Asakura, T. Relationship between sequence distribution and thermal properties of the transesterification product between poly (ethylene terephthalate) and poly (butylene terephthalate). Macromolecules.2004,37: 4651-4652
    [186]Che, J. F., Luan, B. Y., Yang, X. J., Lu, L. D., Wang, X. Graft polymerization onto nano-sized SiO2 surface and its application to the modification of PBT. Mater.Lett.2005,59:1603-1608
    [187]Wang, F., Meng, X. F., Xu, X. F., et al. Inhibited transesterification of PET/PBT blends filled with silica nanoparticles during melt processing. Ploym. Degrad. Stab.2008,93:1397-1402
    [188]Bikiaris, D., Karavelidis, V., Karayannidis, G, et al. A new approach to prepare poly(ethylene terephthalate)/silica nanocomposites with increased molecular weight and fully adjustable branching or crosslinking by SSP. Macromol Rapid Commun.2006,27:1199-1204
    [189]Bhawna Kulshreshtha, Anup K. Ghosh, Ashok Misra. Crystallization and Equilibrium Melting Behavior of Poly(Butylene Terephthalate)/Epoxy Blends. J. Macromolecular. Sci. Part B:Physics.2003,42(2):307-323
    [190]Kimura, M., Porter, R. S., Salee, G. Blends of poly (butylene terephthalate) and a polyarylate before and after transesterification. J. Polym. Sci., Polym. Phys. Ed.1983,21:367-373
    [191]Ludwig, H. J., Eyerer, P. Influence of the processing conditions on morphology and deformation behavior of poly(butylene terephthalate) (PBT). Polym. Eng. Sci.1988,28:143-148
    [192]江耀贵,杨其,程小莲,陈健,蔡盛梅,张叶琴,肖淼.环氧树脂在热塑性树脂改性中的应用.化学研究与应用.2008,20(12):1535-1540
    [193]Quang, T., Nguyen, Donald, G. Baird. Preparation of Polymer-Clay Nanocomposites and Their Properties. Advances in Polymer Technology.2006, 25(4):270-285
    [194]C. I. W. Calcagno, C. M. Mariani, S. R. Teixeira, R. S. Mauler. The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites. Polymer.2007,48:966-974
    [195]A. Aro'stegui, J. Naza'bal. Compatibilization of a Poly (butylene terephthalate)/Poly(ethylene octene) Copolymer Blends with Different
    Amounts of an Epoxy Resin. J. Appl. Polym. Sci.2004,91:260-269
    [196]Bhawna Kulshreshtha, Anup K. Ghosh, Ashok Misra. Crystallization kinetics and morphological behavior of reactively processed PBT/epoxy blends. Polymer. 2003,44:4723-4734
    [197]Ray, S. S., Bousmina, M. Effect of organic modification on the compatibilization efficiency of clay in an immiscible polymer blend. Macromol. Rapid. Commun.2005,26:1639-1646
    [198]Hu, X. B., Lesser, A. J. Enhanced crystallization of bisphenol-apolycarbonate by nano-scale clays in the presence of supercritical carbon dioxide. Polymer.2004, 45:2333-2340
    [199]Ito, Y., Yamashita, M. S., Okamoto, M. Foam processing and cellular structure of polycarbonate-based nanocomposites. Macromol. Mater. Eng.2006,291: 773-783
    [200]Krishnamoorti, R., Giannelis, E. P. Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules.1997,30:4097-4102
    [201]Han, C. D., Kim, J. K. On the use of time-temperature superposition in multicomponent/multiphase polymer systems. Polymer 1993,34:2533-2539
    [202]Oyama, H. T., Ougizawa, T., Inoue, T., Weber, M., Tamaru, K. Interfacial coupling between immiscible polymers:reactive interface between polysulfone and amorphous polyamide. Macromolecules.2001,34:7017-7024
    [203]Martin, P., Gallez, C., Devaux, J., Legras, R., Leemans, L., van Gurp, M., et al. Reactive compatibilization of blends of polybutyleneterephthalate with epoxide-containing rubber. The effect of the concentrations in reactive functions. Polymer.2003,44:5251-5262
    [204]Dharaiya, D., Jana, S. C., Shafi, A. A study of the use of phenoxy resins as compatibilizers of polyamide (PA6) and polybutylene terephthalate (PBT). Polym. Eng. Sci.2003,43:580-595
    [205]O_Shaughnessy, B., Vavylonis, D. Reactive polymer interfaces:how reaction kinetics depend on reactivity and density of chemical groups. Macromolecules. 1999,32:1785-1796
    [206]Huiliang Zhang, Shulin Sun, Minqiao Ren, Qingyong Chen, Jianbin Song, Hongfang Zhang, Zhishen Mo. Thermal and Mechanical Properties of Poly(butylene terephthalate)/Epoxy Blends. J. Appl. Polym. Sci.2008,109: 4082-4088
    [207]Zhang, W., Blackburn, R. S., Dehghani-Sanij, A. A. Effect of silica concentration on electrical conductivity of epoxy resin-carbon black-silica nanocomposites. Scr. Mater.2007,56(7):581-584
    [208]Charef Harrats, Gabriel Groeninckx. Features, Questions and Future Challenges in Layered Silicates Clay Nanocompositeswith Semicrystalline Polymer Matrices. Macromol. Rapid. Commun.2008,29:14-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700