普通野生稻遗传多样性及2个特有基因的功能初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa L.)是全世界最重要的粮食作物之一,世界上三分之一的人口以稻米为主要粮食。普通野生稻(Oryza rufipogon Griff.)被研究者广泛认为是栽培稻的祖先,保存着栽培稻不具有或已经消失了的许多优异基因,是水稻育种的天然基因库,所以研究普通野生稻的遗传多样性进,挖掘普通野生稻的优异基因并应用于水稻育种是当前水稻科学研究的重要方向。本研究以分布我国北纬18.73N至28.14N的12个普通野生稻为材料,以典型籼稻、粳稻为对照,对普通野生稻的叶绿体DNA(cpDNA)和第四染色体的分子遗传多态性进行研究,以期促进对普通野生稻分子遗传多态性的认识,为将普通野生稻资源更好的应用于水稻分育种提供更丰富的理论基础。另外,对17个三系不育系叶绿体DNA也进行了比较分析。主要研究结果如下:
     1.普通野生稻与栽培稻叶绿体分子遗传多样性的研究
     供试的12个普通野生稻和18个栽培稻在9个cpDNA多变区共计9080个碱基中,共检测到多态性碱基144个。其中普通野生稻间具多态性碱基117个表明分布在不同区域的普通野生稻间存在遗传分化。典型籼稻与典型粳稻之间有131个具亚种特征性差异碱基;爪哇稻在这些特征性位点的碱基序列与粳稻完全一致,说明爪哇稻的cpDNA与粳稻有更近的遗传关系。ORF29-TrnCGCA和ORF100两个扩增片段是快速区分籼粳两种类型cpDNA的分子标记,用这2个分子标记也可将12个普通野生稻cpDNA分成籼粳两种类型,但在9个cpDNA序列中,同一个普通野生稻在不同位点的籼粳属性不同,由此说明普通野生稻cpDNA具有一定籼粳分化趋势,但不能仅凭几对分子标记结果将普通野生稻像栽培稻一样分为型籼型或粳型。本研究支持籼型亚洲栽培稻和粳型亚洲栽培稻分别由具有一定籼粳分化趋势的普通野生稻演化而来的二元起源学说。
     2.不同类型三系不育系材料cpDNA遗传多态性的比较
     对17个不同细胞质来源的三系不育系材料cpDNA的遗传多态性进行比较表明,17个三系不育系可分为三种细胞质类型,即野败型、红莲型和BT型。生产中所称的印水型、冈型、K型不育系cpDNA的9个多变区序列与野败型完全一致,因此都应为野败型细胞质。野败型、红莲型细胞质虽然都来自于海南野生稻,但野败型叶绿体rps16内含子的第220-225位点具独有GTTGAG碱基序列,红莲型在rps16内含子的第595位具特有的碱基G,而其他材料都为T;所谓籼稻质源的BT型不育系cpDNA序列却仅在ccsA基因的540-543位点的碱基与籼稻相同,其余序列均与典型粳稻完全一致,因此本文结果认为BT型不育系的细胞质应为粳型,而粳稻cpDNA背景的ccsA基因的540-543位点的籼型特征性GCTT序列可作为BT型不育系cpDNA特征性分子标记。雄性不育系cpDNA的这些特征性碱基可作为相应不育细胞质类型的分子标记。推测这些特征性碱基是细胞质发生了遗传变异导致的,但这些突变序列与花粉不育有否关系有待于进-步研究。
     3.普通野生稻与栽培稻第四染色体的分子遗传多样性分析
     本研究选用471对SSR标记,对供试普通野生稻和栽培稻第四染色体的遗传多态性进行研究。供试普通野生稻在第四染色体上也呈现出丰富的遗传多态性,遗传距离分析显示普通野生稻内的遗传多样性远大于栽培稻内的遗传多样性,且普通野生稻中含有一些栽培稻中不具有的等位基因,说明从普通野生稻中发掘用于栽培稻品种改良的新基因具有巨大的潜力。通过比对典型籼稻、粳稻亚种间的遗传差异,在第四染色体上建立了141个籼粳亚种间的特征性分子标记。不同纬度来源的普通野生稻在141个籼粳特征性分子标记位点也出现了不同程度的籼粳分化趋势,聚类分析也显示一部分普通野生稻材料归为籼稻一支,另一部分归为粳稻一支。因此,本研究从水稻第四染色体的水平上再次为水稻二元起源学说提供了分子遗传学证据。与cpDNA不同,供试爪哇稻材料在第四染色体上出现了籼粳分化。因此,本文认为基于爪哇稻cpDNA与粳亚种一致性程度高,将爪哇稻归为粳亚种是适合的,但根据第四染色体以及前人关于ITS和IGS序列的遗传多态性分析的综合结果,将爪哇稻归为独立籼稻、粳稻亚种间的一个中间型亚种也有一定遗传基础。
     4.普通野生稻第四染色体特有基因的筛选及其功能初步分析
     本研究筛选得到2个位于第四染色体上的普通野生稻特有基因,并将这两个基因遗传转化到栽培稻中,对其中一个基因遗传转化植株的叶绿素和脯氨酸含量进行了测定,发现其叶绿素和脯氨酸含量均高于野生型对照。同时对此转基因植株进行了各种非生物逆境处理中,初步认为此基因可能与水稻耐高盐胁迫有关。
     综上所述,通过对普通野生稻cpDNA和第四染色体的遗传多态性分析,发现普通野生稻具有丰富的遗传多态性,并且具有一定的籼粳分化趋势。这为亚洲栽培稻的二元起源学说提供了分子遗传证据。同时,本研究还筛选到普通野生稻特有的基因,并认为其中一个基因可能与水稻耐高盐胁迫有关,为加速对普通野生稻资源的认识并进一步挖掘应用普通野生稻种质资源提供了一定的理论参考。另外cpDNA序列差异为基础,将三系不育系材料分为野败型、红莲型和BT型,并首次提出区分3种细胞质的分子标记。
Cultivated rice (Oryza sativa L.) is a major source of nutrition for more than half the global population. Asian common wild rice(Oryza rufipogon Griff.) has long been believed to be the direct ancestor of Asian cultivated rice. It serves as a valuable gene pool for the improvement of cultivated rice because of its many extraordinary traits, therefore, a better understanding of the genetic diversity of Asian common wild rice will be beneficial for the efficient use of the Oryza gene pool and will certainly have significant impact on rice production. In the present study,12different common wild rice distributed from18.73N to28.14N in China were studied, and six indica cultivars, four japonica cultivars were used as controls. A more comprehensive comparison of nine highly variable cpDNA regions and471SSR markers on chromosome4were performed to elucidate the genetic diversity of common wild rice.The results will deepen our understanding of the genetic diversity of common wild rice and ultimately accelerate the efficient use of the extraordinary genes of common wild rice for the genetic improvement of cultivated rice. Meanwhile, the cpDNA genetic diversity of17different cytoplasm male sterile (CMS) lines was also studied in this research. The main results are as follows:
     1. CpDNA genetic diversity analysis of common wild rice and cultivated rice The chloroplast DNA (cpDNA) polymorphism among18cultivated rice and12Asian common wild rice were analyzed by comparing the polymorphic sites in nine highly variable regions. A total of144polymorphic bases were detected. O. rufipogon from different distributions, with117polymorphic bases, showed rich genetic diversity. The131bases in13sites were identified with indica/japonica characteristics, as they showed differences between the indica and japonica subspecies at these sites. The javanica strains and japonica shared similar bases at these131polymorphic sites, suggesting that javanica has a close relationship with japonica. Using the amplified fragment length analysis of ORF100and ORF29-TrnCGCA can simply and rapidly identify the indica/japonica types of O. sativa cytoplasm. Based on the results of the length analyses of the ORF100and the ORF29-TrnCGCA fragments, the O. rufipogon strains can also be classified into indica/japonica subgroups, which indicate that differences in indica and japonica also exist in the cpDNA genome of the O. rufipogon strains. However, these differences showed certain primitiveness and incompleteness, as an O. rufipogon line may show different indica/japonica attributes at different sites. Consequently, the O. rufipogon cannot be simply classified into the indica/japonica types according one or several molecular markers. Our data support the hypothesis that Asian cultivated rice, indica and japonica, separately evolved from different Asian common wild rice strains, which have different indica-japonica differentiation trends.
     2. CpDNA genetic diversity analysis of cytoplasm male sterile (CMS) lines The cpDNA genetic diversity of different types of CMS lines was elucidated by comparing the polymorphic sites in nine highly variable regions, taking cultivated rice and common wild rice as controls. According to the cpDNA polymorphism, the17CMS lines were divided into three cytoplasmic types:CMS-WA (wild-abortive), CMS-HL (Honglian) and CMS-BT (Boro II). So-called CMS-Yinshui, CMS-GA and CMS-K types had the same sequences with CMS-WA lines, so they were redefined as CMS-WA cytoplasmic type. Each CMS type had specific bases:CMS-WA lines uniquely had a "GTTGAG" sequence at position220-225of rps16intron, CMS-HL lines contained a specific "G" base at position595of rps16intron, and CMS-BT lines were distinguishable by their indica specific sequences "GCTT" in the ccsA gene under a japonica cpDNA background. All of these specific sequences can be used as DNA fingerprinting for them. On the other hand, it was proved that some genetic variations occurred in cpDNA of CMS lines. However, further study is needed to reveal the correlationship between these variations and pollen sterility.
     3. Genetic diversity analysis on chromosome4of common wild rice and cultivated rice471pairs of SSR markers were used in this study to explore the genetic diversity on chromosome4in common wild rice and cultivated rice. O. rufipogon from different distributions showed rich genetic diversity which is much higher than that of cultivated rice. And there also exists some allelic genes that cannot be found in cultivated rice, which indicated that common wild rice contains many extraordinary genes used for genetic improvement of cultivated rice.141indica-japonica characteristic SSR markers were identified, and O. rufipogon strains showed different indica-japonica differentiation at these sites. So it proved again that there exists an indica-japonica differentiation trend in genome of the O. rufipogon strains. The constructed dendrogram of these materials also showed this result. Thus, these results provided evidence for dual origin of cultivated rice on the level of molecular genetics. However, javanica rices in this study showed different indica-jaopnica differentiations, which was inconsistent with the results showed by using cpDNA sequences. So it is reasonable to classified javanica in to japonica subspecies based on the cpDNA sequences characteristic of them, while it also seems have a lag to stand on to regard javanica as an independent subspecies of cultivated rice according to the complex analysis results of IGS and ITS sequences (studied by the other researcher of our lab) and chromosome4.
     4. Identification of specific genes in common wild rice and the functional analysis of these genes Two common wild rice specific genes located on chromosome4were identified, cloned and transferred into cultivated rice in this study. And the chlorophyll content and proline of one transgenic line were higer than wild type, which suggested this common wild rice specific gene might be related to the stress tolerance of plant. According to the primary results of abiotic stress treatment of this transgenic line, it was suuggetted that this gene might play a role in high salt tolerance of plant. Generally, common wild rice showed rich genentic diversity in both cpDNA and chromosome4. And there also exist indica-japonica differentiation trend in common wild rice which supported the dual origin of cultivated rice.2common wild rice specific genes were also indentified and one of them was suggested plays a role in high salt tolerance of plant in this study. All these results will deepen our understanding of genetic diversity of common wild rice and provide therotical support for genetic improvement of cultivated rice. Meanwhile, according to the cpDNA genetic diversity,17different CMS lines were classified in to3types:CMS-WA, CMS-HL and CMS-BT, and a corresponding DNA fingerprinting system for them was preliminarily established.
引文
[1]Vaughan DA, Morishima H and Kadowaki K. Diversity in the Oryza genus [J]. Curr Opi Plant Biol,2003 (6):139-146.
    [2]朱作峰,孙传清,付永彩,等.用SSR标记比较亚洲栽培稻与普通野生稻的遗传多样性[J].中国农业科学,2002,35(12):1437-1441.
    [3]Sun CQ, Wang XK, Li ZC, et al. Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L) using RFLP markers [J]. Theor Appl Genet,2001,102(1):157-162.
    [4]张晓丽,郭辉,王海岗,等.中国普通野生稻与栽培稻种SSR多样性的比较分析[J].作物学报,2008,34(4):591-597.
    [5]吴妙,李道远.野生稻遗传资源利用展望[J].作物品种资源,1986,18(4):1-4.
    [6]鄂志国,王磊.野生稻有利基因的发掘和利用[J].遗传,2008,30(11):1397-1405.
    [7]应存山,颜辉煌.野生稻有利基因转移技术[J].世界农业,1993(8):22-23.
    [8]李友荣,候小华.湖南野生稻抗病性评价与种质创新[J].湖南农业科学,2001(6):14-18.
    [9]章琦,赵炳宇,赵开军,等.普通野生稻的抗水稻白叶枯病新基因Xa223的鉴定和分子标记定位[J].作物学报,2000,26(5):536-542.
    [10]谭玉娟,张扬,潘项,等.一个普通野生稻资源对三化螟、褐稻虱的抗性研究[J].中国水稻科学,1993,7(4):246.
    [11]姜文正,涂英文,丁忠华,等.东乡野生稻研究[J].作物品种资源,1988(3):1-4.
    [12]秦学毅,韦素美.普通野生稻抗褐稻虱基因导入栽培稻研究[J].广西农业科学,2002(2):57-59.
    [13]李容柏,秦学毅,韦素美,等.普通野生稻稻褐飞虱抗性在水稻改良中的利用研究[J].广西农业生物科学,2003,22(2):75-83.
    [14]陈大洲,钟平安,肖叶青,等.利用SSR记定位东乡野生稻苗期耐冷性基因[J].江西农业大学学报,2002,24(6):754-756.
    [15]陈大洲,邓仁根,肖叶青,等.东乡野生稻抗寒基因的利用与前景展望[J].江西农业学报,1998,10(1):65-68.
    [16]刘凤霞,孙传清,谭禄宾,等.江西东乡野生稻孕穗开花期耐冷基因定位[J].科学通报,2003,48(17):1864-1867.
    [17]傅雪琳,陈伟栋,盘春辉,等.栽培稻与高州普通野生稻耐铝性的比较研究[J].中国农业科学,2010,43(4):661-669.
    [18]周少霞,田丰,朱作峰,等.江西东乡野生稻苗期抗旱基因定位[J].遗传学报,2006(6):551-558.
    [19]Xiao JH, Silvana Grandillo, Sang Nag Ahn, Susan R. McCouch, Steven D. Tanksley, et al. Genes from wild rice improve yield [J]. Nature,1996,384:223-224.
    [20]Xiao JH, Li JM, Silvana Grandillo, Sang NagAhn, Yuan LP, Steven D Tanksley, Susan R.McCouch.Identification of trait improving quantitative trait locialleles from a wild rice relative, Oryza rufipogon [J]. Genetics,1998,150:899-909.
    [21]MoncadaP, MartinezCP, BorreroJ, ChatelM, GauchJrH, GuimaraesE, TohmeJ, McCouchSR. Quantitative trait loci for yield and yield components in an Oryza sativa×Oryza rufipogon BC2F2 population evaluated in an upland environment [J]. Theor Appl Genet,2001,102:41-52.
    [22]李德军,孙传清,付永彩,李晨,朱作峰,陈亮,才宏伟,王象坤.利用AB-QTL法定位江西东乡野生稻中的高产基因[J].科学通报,2002,47:854-858.
    [23]袁玲,祝莉莉,何光存.稻米品质性状基因的SSR标记定位[J].武汉大学学报(理学版),2002,48:507-510.
    [24]李子先,刘国平,陈忠友.中国东乡野生稻遗传因子转移的研究[J].遗传学报,1994,21(2):133-146.
    [25]范树国,张再君.中国野生稻遗传资源的保护及其在育种的应用[J].生物多样性,2000(2):198-204.
    [26]Zhu YG. Biology of Male Sterity in Rice [M]. Wuhan:Wuhan University Press, 2000:398-417.
    [27]Lu TT, Yu SL, Fan DL, et al. Collection and Comparative Analysis of 1888 Full-length cDNAs from Wild Rice Oryza rufipogon Griff. W1943 [J]. DNA RESEARCH,2008,15:285-295.
    [28]燕安,朱登云.叶绿体基因组在系统发育学及基因工程领域的应用[J].细胞生物学杂志,2004,26(2):153-156.
    [29]唐萍,彭程.叶绿体基因组进化的速率和方式[J].生物学通报,2010,6(45):8-10.
    [30]Hirai A, Isshibashi T, Morikami A, Iwatsuki N, Shinozaki K, Sugiura M. Rice chloroplast DNA:a physical map and the location of the genes for the large subunit of ribulose 1,5-bisphosphate carboxylase and the 32 kD photosystem II reaction center protein [J]. Theor Appl Genet,1985,70:117-122.
    [31]Hiratsuka J, Shimada H, Whittier R, et al. The complete sequence of the rice (Oryza sativa) chloroplast genome:intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals [J]. Mol Gen Genet,1989,217:185-194.
    [32]Dally AM,Second G. Chloroplast DNA diversity in wild and cultivated species of rice (genus Oryza, Section Oiyza) Cladistic-mutation and genetic-distance analysis[J].Theor Appl Genet,1990,80:209-222
    [33]Ishii, T., Terachi, T. Tsunewaki, K. Restriction endonuclease analysis of chloroplast DNA from cultivated species, Oiyza sativa and O. glaberrima. Jpn J Genet.1986,61:537-541.
    [34]Raghvendra AS. Photosynthesis:a comprehensive treatise [M]. Cambridge Cambridge Univ Press,1998,72-86.
    [35]Ichikawa H, Hirai A, Katayama T. Genetic analysis of Oryza species by molecular markers for chloroplast genomes [J].Theor Appl Genet,1986,72:353-358.
    [36]Ishii, T., Terachi, T. Tsunewaki, K.. Restriction endonuclease analysis of chloroplast DNA from A genome diploid species of rice [J]. Jpn J Genet1988,63: 523-536.
    [37]Ishii, T., Tsunewaki, K. Chloroplast genome differentiation in Asian cultivated rice [J].Genome,1991,34:818-826.
    [38]Kanno A, Watanabe N, Nakamura I, et al. Variation in chloroplast DNA from rice (Oryza sativa):Differences between deletions mediated by short direct-repeat sequences within a single species [J].Theor Appl Genet,1993,86:579-584.
    [39]Chen WB, Nakamura I, Sato YI, et al. Distribution of deletion types in cpDNA of cultivated and wild rice [J]. Jpn J Genet,1993,68:597-603.
    [40]孙传清,王象坤,吉村淳.普通野生稻和亚洲栽培稻叶绿体DNA的籼粳分化[J].农业生物技术学报,1 997,11(5),319-323.
    [41]Tang JB, Xia HA, Cao ML, Zhang XQ, Zeng WY, Hu SN, Tong W, Wang J, Wang J, Yu., Yang HM, Zhu LH. A comparision of rice chloroplast genomes [J]. Plant Physiol,2004,135:412-420.
    [42]Shaw J, Lickey EB, Beck JT. The tortoise and the hareII: relative utility of 21 non-coding chloroplast DNAsequences for phylogenetic analysis [J]. Amer J Bot, 2005,92(1):142-166.
    [43]黄光文.运用分子标记技术对水稻遗传多样性的研究[D].长沙:湖南师范大学,2006.
    [44]Feng Q, Zhang YJ, Hao P, Wang SY, Fu G, et al. Sequence and analysis of rice chromosome 4 [J]. Nature,2002,420,316-320.
    [45]Zhao Q, Zhang Y, Cheng ZK,et al. A Fine Physical Map of the Rice Chromosome 4 [J]. Genome Research,2002,5:817-823.
    [46]李璨.水稻基因组第4号染色体简单重复序列的遗传分析及比较基因组学研究[D].上海:中国科学院研究生院(上海生命科学研究院),2004.
    [47]贾沛昕.水稻第四号染色体特异DNA芯片的研制及水稻第四号染色体基因的表达谱和籼粳稻之间差异表达谱分析[D].上海:中国科学院研究生院(上海生命科学研究院),2005.
    [48]佚名.水稻基因组计划概述.http://www.103 edu.cn/Article/ShowArticle.asp?ArticleID=715
    [49]Lin SY, Sa Sa Kit, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice (Oryza sativa L.) using backcross inbred lines [J]. Theor Appl Genet,1998,96:997-1003.
    [50]Xi OJ, Li J, Yuan L, et al. Dominance is the major genetic basis of hetero sis in rice as revealed by QTL analysis using molecular markers [J]. Genetics,1995,140: 745-754.
    [51]何风华,席章营,曾瑞珍,AkshayTalukdar,张桂权《利用单片段代换系定位水稻抽穗期QTL》
    [52]曹立勇,占小登,庄杰云,郑康乐,程式华.水稻产量性状的QTL定位与上位性分析[J].中国农业科学,2003,36(11):1241-1247.
    [53]严建兵,汤华,黄益勤,郑用琏,李建生.玉米和水稻重要性状QTL的比较研究[J].遗传学报,2004,31(12):1401-1407.
    [54]梁永书,张启军,叶少平,刘明伟,殷得所,李平.水稻分蘖相关性状的QTL定位与分析[J].中国农学通报,2005,21(12):47-51.
    [55]叶少平,张启军,李杰勤,赵兵,殷得所,李平.用培矮64S/日本晴F2群体对水稻6个农艺性状的QTL定位[J].中国水稻科学,2007,21(1):39-43.
    [56]封功能,李东霞,何颖,吴娟,徐明良.水稻籽粒酚反应基因的QTL分析和定位[J].扬州大学学报(农业与生命科学版),2005,26(3):44-47.
    [57]罗继景,黄巍,朱瑞良,林鸿宣.栽培稻抗旱性相关性状QTL的定位[J].植物生理学通讯,2005,41(2):260-268.
    [58]王立锋,郝宪彬,何云霞,华泽田,高用明,黎志康.利用选择回交导入群体进行粳稻优良恢复系抗旱性改良与QTL定位[J].安徽农业大学学报,2007,34(3):311-319.
    [59]Qiu Y, Guo J, Jing S, et al. High-resolution mapping of the brown panthopper resistance gene Bph6 in rice and characterizing its resistance in the 9311 and Nipponbare near isogenc backgrounds [J]. Theor Appl Genet,2010,121:1601-1611.
    [60]Yang H, Ren X, Weng Q, et al. Molecular mapping and genetic analysis of a rice brown planthopper (Nilaparvata lugens Stl.) resistance gene [J]. Hereditas,2002,136: 39-43.
    [61]Sun L, Liu Y, Jiang L, et al. Mapping of a major resistance gene to the brown planthopper in the rice cultivar Rathu Heenati [J]. Breeding Sci,2005,55:391-396.
    [62]Rahman M L, Jiang W, Chu S H, et al. High-resolution mapping of two rice brown panthopper resistance genes, Bph20(t) and Bph21(t), originating from Oryza minuta [J]. Theor Appl Genet,2009,119:1237-1246.
    [63]Huang Z, He G C, Shu L H, et al. Identification and mapping of two rice brown panthopper resistance genes in rice [J]. Theor Appl Genet,2001,102:929-934.
    [64]Satomi Yoshimura, Utako Yamanouchi, Yuichi Katayose, Seiichi Toki, Z X Wang, Izumi Kono, Nori Kurata, Masahiro Yano, Nobuo Iwata and Takuji Sasaki. Expression of Xal, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation [J]. Proc Natl Acad Sci USA,1998,95(4):1663-1668.
    [65]陈灵芝,马克平.生物多样性科学原理与实践.上海:上海科学出版社,2001,8.
    [66]庞汉华.栽培稻与野生稻杂交花培创新种质的研究[J].作物品种资源,1999(2):10-12.
    [67]袁平荣,贺庆瑞,文国松.云南元江普通野生稻的地理分布、生态环境及植物学特征[J].云南农业科技,1994,(4).
    [68]潘大建,梁能,范芝兰.广东特殊生境的普通野生稻(Oryza rufipogon Griff)遗传变异研究[J].植物遗传资源科学,2002,(2).
    [69]陈成斌,李杨瑞,黄一波,梁世春,王启德,赖群珍,黎家泳,梁云涛,赵通,徐志健,陈福健,黄娟,李宇钊.广西野生稻种质资源原位保护示范区资源现状调查研究[J].广 西农业科学,2005,(3).
    [70]李自超,张洪亮,曾亚文,申时全,孙传清,王象坤.云南稻种资源表型遗传多样性的研究[J].作物学报,2001,(6).
    [71]Seeond G. Different rates of genome divergence presumed between two species group in the genus Oryza [J]. The Nueleus,27:44-48.
    [72]Sarkar R and Raina SN. Assessment of genome relationships in the genus Oryza. L.based on seed-protein profile analysis [J]. Theor Appl Genet,1992,85: 127-132.
    [73]Sano YH, Yi X,ShaoQQ. Ribosomal DNA spaeer-length variations in a wild riee population from Dongxiang China.Proc.of the 16th International Congress of SABRAO [Z]. Tsukuba, Japan,1989,493-496.
    [74]Martin C, Juliano A, Newbury HJ,et al. The use of RAPD markers to facilitate the identification of Oryza species within a germplasm collection [J].Genetic Resources and Crop Evolution,1997,44:175-183.
    [75]Akimoto M, Shimamoto Y, Morishim H. The extinction of genetic resources of Asian wild rice Oryza rufipogon Griff: A case study in Thailand [J].Genetic Resources and Crop Evolution,1999,46:419-425.
    [76]秦志海.野生稻的微卫星DNA多态性研究[D].武汉:武汉大学,1994.
    [77]王振山,朱立煌,刘志勇,等.野生稻天然群体限制性酶切片段长度多态性(RFLP)研究[J].农业生物技术学报,1996,4(2):111-117.
    [78]Ge S, Oliveira GCX, Sehaa 1BA, et al. RAPD variation within and between natural populations of the wild rice Oryza rufipogon from China and BraZil [J]. Heredity,1999,82:638-644.
    [79]Gao LZ, Ge S, Hong DY. Low levels of genetic diversity within populations and high differentiation among populations of a wild rice Oryza granulate from China [J]. Int J Plant Sci,2000,161(4):691-697.
    [80]Qian W, Ge S, Hong DY. Genetic variation within and among populations of a wild riee Oryza granulate from China Detected by RAPD and ISSR markers [J].Theor Appl Genet,2001,102:440-449.
    [81]谢建坤,陈庆隆,肖叶青,等.东乡野生稻核基因组SSLP分析[J].江西农业学报,2002,14(3):1-6.
    [82]Lu BR, Zheng KL, Qian FR, et al. Genetie differentiation of wild relatives of rice as assessed by RFLP analysis [J]. Theor Appl Genet,2002,106:1001-106.
    [83]孙新立,才宏伟,王象坤.水稻同工酶基因多态性及非随机组合现象研究[J].遗传学报,1996,23(4):276-285.
    [84]孙传清,王象坤,吉村淳,岩田伸夫.普遍野生稻和亚洲栽培稻遗传多样性的研究[J].遗传学报,2000,(3).
    [85]杨文.中国普通野生稻、粳稻和籼稻的遗传结构及相互关系[D].南昌:南昌大学,2008.
    [86]杨庆文,戴陆园,时津霞,等.云南元江普通野生稻遗传多样性分析及保护策略研究[J].植物遗传资源学报,2004,5(1):1-5
    [87]杨庆文.中国普通野生稻(Oryza rufipogon Griff.)的遗传多样性及其保护研究[D].北京:中国农业大学,2004.
    [88]Kato S, Kosaka H, Hara S. On the affinity of rice varierier as shown by fertility of hybrid plants [J]. Bull Sci Fac Agric.1928,3:132-147.
    [89]Ting Y. The origin and evolution of cultivated rice in China [J]. Acta Agron Sinica,1957,8(3):243-260.
    [90]Michael D. Purugganan. The evolution of rice:molecular vignettes on its origins and spread [J]. Archaeol Anthropol Sci,2010,2:61-68.
    [91]Morishin a H, Gadrinab L. Are the Asian common wild rice differentiated into the Indica and Japonica types in:Sungching Hsieh (eds) [M]. Crop Exploration and Utilization of Genetic Resourses, Taiwan Provincial Taichung District Agri Improvement Station,1987,11-20.
    [92]才宏伟,王象坤,庞汉华.中国普通野生稻是否发生籼、粳分化的同工酶研究[J].农业科学集刊,1993,(1):1-4.
    [93]王象坤,才宏伟,孙传清,等.中国普通野生稻的原始型及其是否存在籼粳分化的初探[J].中国水稻科学,1994,8(4):205-210.
    [94]Sano Y, Sano R. Variation of the intergentic spacer region of ribosomal DNA in cultivated and wild rice species [J]. Genome,1990,33:209-219.
    [95]孙传清,毛龙,王振山,等.中国普通野生稻和栽培稻基因组的随机扩增多态性DNA(RAPD)初步分析[J].中国水稻科学,1995,9(1):1-6.
    [96]Wang ZY, Tanksley SD.Restriction fragment length polymorphism in Oryza sativa L. [J]. Genome,1989,32:1113-1118.
    [97]Wang ZY, Secibd G, Tanksley SD. Polymorphism and phylogenetic relationships among species in the genus Oryza as detemined by analysis of nuclear RFLPs [J]. Theor Appl Genet,1992,83:565-581.
    [98]Zhang Q, SahaiMaroof MA, Lu TY, et al. Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis [J]. Theor Appl Genet,1992,83: 495-499.
    [99]Nakano M, Yoshinura A, Iwata N. Phylogenetic study of cultivated rice and its wild relatives by RFLP [J]. Rice Genetics New sletter,1992,9:132-134.
    [100]刘克德,张启发,张端品,等.云南地方稻种的遗传变异和籼粳分化[J].植物学报,1995,37(9):718-724.
    [101]Sun CQ, Wang XK, Yoshimura A, Iwata N. RFLP analysis of nuclear DNA in common wild rice (O. rufipogon Griff.) and cultivated rice (O. sativa L.) [J]. Scientia Agric Sinica,1997,30:37-44.
    [102]Gurdev S. Khush. Origin, dispersal, cultivation and variation of rice [J].Plant Molecular Biology,1997,35:25-34.
    [103]Morishima H, Y Sano, and H I Oka. Differentiation of perennial and annual types due to habitat conditions in the wild rice Oryza perennis [J]. Plant Syst Evol, 1984,144:119-135.
    [104]Morishima H, Y Sano, and H I Oka. Evolutionary studies in cultivated rice and its wild relatives [J]. Oxford Surveys Evol Biol,1992,8:135-184.
    [105]Motohashi R, Mochizuku K, Ohtsubo H, Ohtsubo E. Structures and distribution of p-SINE 1 members in rice genomes [J]. Theor Appl Genet,1997,95:359-368.
    [106]Tatout C, Warwick S, Lenoir A, Deragon J M. SINE insertions as clade markers for wild rice species [J]. Mol Biol Evol,1999,16:1614-1621.
    [107]Chaoyang Cheng, Reiko Motohashi, Suguru Tsuchimoto, Yoshimichi Fukuta, Hisako Ohtsubo, Eiichi Ohtsubo. Polyphyletic origin of cultivated rice:based on the interspersion pattern of SINEs [J]. Mol Biol Evol,2003,20(1):67-751.
    [108]胡昊.水稻四号染色体基因组学和比较基因组杂交分析以及一个微倒转转座元件族的分化对亚洲栽培稻二源学说的佐证和对其逆境胁迫的分子机理研究[D].上海:中国科学院研究生院(上海生命科学研究院),2005.
    [109]Caicedo AL, Williamson SH, Hernandez RD, Boyko A, Fledel-Alon A, McCouch SR, Bustamante CD, Purugganan MD. Genome-wide patterns of nucleotide polymorphism in domesticated rice [J]. PLoS Genetics,2007,3:1745-1756.
    [110]Avise JC. Phylogeography. London:Harvard University Press,2000.
    [111]Tian X, Zheng J, Hu S, Yu J. The rice mitochondrial genomes and their variations [J]. Plant Physiol,2006,140:401-410.
    [112]Masood SM, Nishikawa T, Fukuoka S, Njenga KP, Tsudzuki T, Kadowaki K. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome:frequent DNA sequence acquisition and loss during the evolution of flowering plants [J]. Gene, 2004,340:133-139.
    [113]Tamura K, Dudley J, Nei M, Kumar S. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 [J]. Mol Biol Evol,2007,24: 1596-1599.
    [114]Tajima F. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism [J]. Genetics,1989,123:585-595.
    [115]Felsenstein J. Confidence limits on phylogenies:an approach using the bootstrap [J]. Evolution,1985,39:783-791.
    [116]Sato YI, Morishima H. Distribution of the genes causing F2 chlorosis in rice cultivars of the Indica and Japonica types [J]. Theor Appl Genet,1988,75:723-727.
    [117]Zhang QF, Liu KD, Yang GP, et al. Molecular marker diversity and hybrid sterility in indica japonica rice crosses [J]. Theor Appl Genet,1997,95(1-2):112-118.
    [118]Fukuoka S, Namai H, Okuno K. Geographical variation of the genes controlling hybrid breakdown and genetic differentiation of the chromosomal regions harboring these genes in Asian cultivated rice, Oryza sativa L. [J]. Genes Genet Syst,1998,73 211-217.
    [119]Harushima Y, Kurata N, Yano M, Sasaki T, Nakagahra M. Detection of interactive loci for genotype segregation in F2 populations between japonica and indica rice crosses [J]. Breed Sci,1998,48 (Suppl.2):101.
    [120]Hiroshi I. Why are There Indica Type and Japonica Type in Rice?--History of the Studies and a View for Origin of Two Types [J]. Rice Science,2009,1 (16):1-13.
    [121]Chen WB, Sato, Nakamura I. Indica-Japonica differentiation in Chinese rice landraces [J]. Euphytica,1994,74:195-201.
    [122]Fukui K, Ohmido N. and Khush GS. Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization [J]. Theor Appl Genet,1994, 87:893-899.
    [123]Garris AJ, Tai TH, Coburn J, Kresovich A, and McCouch S. Genetic structure and diversity in Oryza sativa L. [J]. Genetics,2005,169:1631-1638.
    [124]Kanno A, Watanabe N, Nakamura I, et al. Variation in chloroplast DNA from rice (Oryza sativa):Differences between deletions mediated by short direct-repeat sequences within a single species [J].Thero Appl Genet,1993,86,577-584.
    [125]Mochizuki K, Ohtsubo H, Hirano H, Sano Y, Ohtsubo E. Classification and relationships of rice strains with AA genome by identification of transposable elements at nine loci [J]. Jap Jour Genet,1993,68:205-217.
    [126]Tang SX, Jiang YZ, Zhang BD ,Lu YL, Yu LQ, Yu HY. Biodiversity of rice growing regions in China [J]. Chinese Biodiversity,1999,7(1):73-78.
    [127]Li DY, Liang YM, Yang HQ. Genetic Diversity of Agricultural Crops Germplams in Guangxi [J]. Acta Botanica Yunnanica,2001, Suppl. (Ⅲ):18-21.
    [128]Chang TT. The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices [J]. Euphytica,1976,25:435-441.
    [129]Lu BR, Zheng KL, Qian HR, and Zhuang JY. Genetic differentiation of wild relatives of rice assessed by RFLP analysis [J]. Theor Appl Genet,2002,106:101-106.
    [130]Duan SH, Li SQ, Li YS. Distribution and SNPs of the rice CMS-related gene in AA-genome of Oryza species [J]. HEREDITAS,2006,29(4):455-461.
    [131]Second G. Origin of the genetic diversity of cultivated rice (Oryza spp.):study of the polymorphism scored at 40 isozyme loci [J]. Jap Jour Genet,1982,57:25-57.
    [132]Bautista NS, Solis R, Kamijima O, Ishii T. RAPD, RFLP and SSLP analyses of phylogenetic relationships between cultivated and wild species of rice [J]. Genes Genet Syst,2001,76:71-79.
    [133]Cheng C, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohtsubo E. Polyphyletic origin of cultivated rice:based on the interspersion pattern of SINEs [J]. Mol Biol Evol,2003,20:67-75.
    [134]Cheng C, Tsuchimoto S, Ohtsubo H, Ohtsubo E. Evolutionary relationships among rice species with AA genome based on SINE insertion analysis [J]. Genes Genet Syst,2002,77:323-334.
    [135]Yamanaka S, Nakamura I, Nakai H, Sato Y. Dual origin of the cultivated rice based on molecular markers of newly collected annual and perennial accessions of wild rice species, Oryza nivara and O. rufipogon [J]. Genet Res Crop Evol,2003,50: 529-538.
    [136]Zhu Q, Ge S. Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes [J]. New Phytol,2005,167: 249-265.
    [137]Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa [J]. Proc Natl Acad Sci,2006,103:9578-9583.
    [138]Shinjyo C. Cytoplasmic genetic male sterility in cultivated rice, Oryza sativa L. II. The inheritance of male sterility [J]. Jpn J Genet,1969,44:149-156.
    [139]Lin SC, Yuan LP. Hybrid rice breeding in China. In Innovative Approaches to Rice Breeding [Z]. Manila:Philippines:International Rice Research Institute,1980, pp35-51
    [140]Yuan LP. Breeding of Hybrid Rice [M]. Beijing:China Agriculture Press,2002, 38-127.
    [141]Kadowaki, K., Harada, K.:Differential organization of mitochondrial genes in rice with normal and male sterile cytoplasm [J]. Jap J Breed,1989,30:179-186.
    [142]Iwahashi, M., Kyozuka, J., Shimamoto, K. Processing followed by complete editing of an altered mitochondrial atp6 RNA restores fertility of cytoplasmic male sterile rice [J]. Theor Appl Genet,1984,12:1437-1446.
    [143]Yao FY, Li GX, Zhu CX, Wen FJ. RAPD analysis for mitochondrial DNAs of the BT cytoplasmic male sterile (CMS) line and its associated lines in rice (Oryza sativa) [J]. Acta bot boreal occident sin,2001,21:839-843.
    [144]Lin XY, Zhou PJ, Hang QY, Guan HX, Zhu YG. Isolation and sequence analysis of a mitochondrial DNA fragment associated with CMS in Hong Lian type rice [J].Acta biol exp sin,2000,33:151-155.
    [145]Li GX, Yao FY, Zhuang YJ. Inheritance of fertility restoration and molecular mapping of restoring genes of CMS in rice [J]. Hybrid Rice,2006,21 (3):1-6.
    [146]Wu KS, Tanksley S D. Abundance, polymorphism and genetic mapping of microsatellites in rice [J]. Mol Gen Genet,1993,241:225-235.
    [147]Nei M. Molecular Evol utionary Genetic [M]. New York:Columbia University Press,1987:190-191.
    [148]杨致荣,李润植,魏兴华.利用SSR标记进行粳稻品种的遗传多样性研究[J].山西农业大学学报(自然科学版),2008,(4).
    [149]杨致荣,李润植,魏兴华.微卫星标记对籼稻品种遗传多样性分析[J].山西农业科学,2008,(8).
    [150]戴小军,梁满中,陈良碧.栽培稻种内核糖体基因的ITS序列比较研究[J].作物学报,2007,(11).
    [151]戴小军,欧立军,李文嘉,梁满中,陈良碧.栽培稻种内rDNA基因IGS序列分析 及系统学意义[J].作物学报,2008,36(9):1569-1573.
    [152]王关林,方宏筠.植物基因工程[M].北京:科学出版社.2002.
    [153]中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南[M].北京:科学出版社.2002:302-304.
    [154]Chen QJ, Zhou HM, Chen J, Wang XC. Using a modified TA cloning method to create entry clones [J]. Analytical Biochemistry,2006,358:120-125.
    [155]皮灿辉.农杆菌介导法将Bt毒蛋白基因导入水稻[D].湖南:湖南农业大学,2003(03).
    [156]薛应龙.植物生理学实验手册[M].上海:上海科学技术出版社.1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700