苏云金芽孢杆菌分离与新型cry基因资源的挖掘
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽孢杆菌(简称:Bt)为土著的革兰氏阳性细菌,广泛分布于自然界,能够在各种不同的生境中分离得到,譬如土壤、树叶、水中、昆虫体内等。Bt菌区别其它芽孢杆菌的最大的特点是在生长后期有晶体蛋白会伴随芽孢的形成而生成,一般称为伴胞晶体。Bt菌株被认为是一种昆虫病原菌,其致病性主要或者完全取决于伴孢晶体蛋白,近年大量文献报道了各种Bt菌株对鳞翅目,鞘翅目、双翅目、膜翅目、同翅目昆虫有杀虫活性,同时还发现一些Bt菌株对线虫、螨类和寄生虫有不同程度的活性。现今Bt被广泛应用商业化农业生产、森林害虫防治以及蚊虫控制,已经成为化学合成农药必要的补充或替代产品。尤其是来自Bt菌的杀虫晶体蛋白基因作为转基因作物关键性的基因资源,已经成功转入各种重要的农作物而为之提供抗虫能力最为引人关注。
     然而,现有的Bt毒蛋白依然对许多重要的农业害虫无能无力,需要进一步筛选分离新型Bt菌株和毒蛋白来有效控制它们。此外,现有Bt毒蛋白多年被反复应用,部分昆虫已经或正在逐渐形成抗性。因此全世界各国还在继续开展一系列高密度Bt菌株筛选和毒蛋白基因鉴定克隆的项目。从2004年起,我们发起了对中国各自然保护区Bt资源收集和新型杀虫基因鉴定克隆的研究项目。迄今为止,我们从黑龙江的凉水国家自然保护区(温带),广西区的大王岭、十万大山和弄岗国家自然保护(亚热带),以及海南尖峰、吊罗山、霸王岭岭和五指山热带国家自然保护区,共收集了2,916份土壤样品。利用醋酸钠-温度筛选方法,总共分离获得5,915株芽孢杆菌和208份Bt菌株,菌株平均分离率为3.52%,至此,一个较具规模的芽孢杆菌和Bt菌株库在海南热带农业资源研究所(HITAR)建成。与此同时我们对Bt菌株分布和生境相互关系进行了分析,为了解Bt菌株分布和进一步分离筛选Bt菌株提供思路。
     本研究中采取扫描电镜观察(SEM)、SDS-PAGE蛋白电泳分析、脉冲场电泳分析、以及生物活性测定等方法对Bt分离株进行鉴定和分析。为了鉴定Bt分离株所含有的新型杀虫晶体蛋白基因,我们发展了新的Polymerase Chain Reaction-fragment length polymorphism (PCR-RFLP)鉴定体系,从不同Bt菌株中鉴定克隆10个新型的cry基因,包括cry1Ac22、cry1Ac30、 cry1Ac31、cry30Ea1、cry30Ga2、cry40Da1、cry50Ba1和cry54Ba1等基因。研究结果表明我们发展的新型PCR-RFLP鉴定体系不仅可以鉴定已知cry基因,还能鉴定未知的cry基因,我们相信应用这套新型PCR-RFLP杀虫蛋白基因鉴定体系,将来会有更多的杀虫基因被鉴定克隆。接下来传统的DNA文库,PCR方法,包括Inverse PCR和single oligonucleotide nested-PCR(SON-PCR)等方法,被用来克隆鉴定的杀虫基因的全序列。两种表达体系用于克隆的cry基因的表达,分别用大肠杆菌和Bt无晶体突变株作为表达宿主。鳞翅目昆虫小菜蛾、双翅目昆虫致倦库蚊和白纹伊蚊以及鞘翅目昆虫椰心叶甲幼虫作为靶标昆虫用来测试表达蛋白和Bt菌株的杀虫活性。生物测定结果表明表达的Cry1蛋白对小菜蛾幼虫有很高的杀虫活性。
     蚊虫是一种非常重要的疾病媒介昆虫,在全世界范围内广泛传播各种人和动物致病病毒和寄生虫,诸如疟疾、黄热病、登革热、丝虫病、乙型脑炎和西尼罗河病毒等。由于没有成功开发或者开发成本过于昂贵,目前有效的预防药和疫苗还未普及,因此控制这些蚊媒疾病主要靠控制蚊的数量来降低蚊媒疾病的大规模爆发。但由于化学合成杀蚊剂对环境污染和蚊虫极易对化学杀蚊剂产生抗性,人们逐渐把注意力转向了生物农药,以杀蚊Bt菌为代表的生物农药的表现令人鼓舞。尤其是苏云金芽孢杆菌以色列亚种(Bti)具有高效的杀蚊活性,而且蚊虫不容易对之产生抗性,最重要是对环境友好,被世界卫生组织(WHO)推荐来控制蚊虫的滋生而降低蚊媒疾病爆发。Bti作为化学杀蚊剂的补充多年来被广泛应用,长期反复使用Bti的毒素蛋白,大大增加了蚊对之产生抗性的风险。本研究中分离鉴定了30多株对蚊有活性的Bt菌株,其中BtS2160-1具有和Bti相当的杀蚊活性。但是BtS2160-1的大质粒的脉冲场电泳分析、伴孢晶体蛋白的SDS-PAGE电泳分析、以及cry基因类型等与Bti表现出很大的差异。因此我们有理由相信BtS2160-1是一种新的杀蚊Bt菌株,可以与Bti的互为补充应用于蚊虫的控制,减少蚊虫对Bti的毒蛋白产生抗性的风险。
     我们应用PCR-RFLP鉴定体系成功鉴定Bt S2160-1中含有cry30Eal, cry30Ga2,cry50Ba1和cry54Bal4个新型杀虫基因,但是另外2种主要的晶体蛋白(140kDa和30kDa)对应的杀虫基因没有鉴定出来。进一步利用质谱分析晶体蛋白,结果发现只有cry50Ba和cry54Ba基因被鉴定在BtS2160-1菌株中表达,其它2个cry30基因在原始宿主中不表达或者表达微弱。然而表达的Cry54Ba蛋白只表现出较低的杀蚊活性,在原始宿主中可能和其它的毒素蛋白有协同作用而发挥更大杀虫活性。基因组测序分析表明许多以前没有被鉴定的杀虫基因,但发现它们实际并没有杀虫活性,一般被认为是假基因。Bt S2160-1菌株中cry30Ea和cry30Ga基因初步鉴定在原始宿主不表达,类似于假基因。
     总的来说,中国具有辽阔的疆域,具有独一无二的生态环境和地理特征,并且拥有丰富生物资源和良好的物种多样性,蕴藏了大量Bt菌株资源亟待我们开发利用。本研究着重Bt菌株资源收集和杀虫基因鉴定克隆,以期获得新杀虫菌株和杀虫基因应用于农业生产、森林保护和疾病媒介昆虫的控制,而这些研究对农业生产、环境保护和疾病防治将是非常必要和有意义的。
Bacillus thuringiensis (Bt) is a ubiquitous gram-positive and common soil bacterium that forms a parasporal crystal during the stationary phase of its growth cycle. Bt is found throughout most areas of the world and it can be found in soils and on leaves/needles and in other common environmental situations. Bt was initially characterized as an insect pathogen, and its insecticidal activity was attributed largely or completely to the parasporal crystals. There are more recent reports of B. thuringiensis isolates active against the insect orders (Lepidoptera, Diptera, Coleoptera, Hymenoptera, Homoptera, Orthoptera, and Mallophaga) and against nematodes, mites, and protozoa. Bt is already a useful alternative or supplement to synthetic chemical pesticide application in commercial agriculture, forest management, and mosquito control. It is also a key source of genes for transgenic expression to provide pest resistance in plants.
     However, there are still many important agricultural pests that are not effectively controlled by the existing toxins of Bt strains and it is necessary to screen the novel toxins to evaluate their effectiveness against insect pests. As the result that the intensive screening programs have initiated worldwide aimed to identify and characterize the new Bt isolates as well as the novel insecticidal genes to control agricultural pests effectively and decrease the risk of resistance emergence to the existed toxins of the Bt strains. We also initiated a program aimed to collect soil samples from the Natural Reserve all China to screen new Bt strain and clone novel insecticidal genes since2004.2,916soil samples were collected from the temperatural and subtropical and tropical Nature Reserve in Heilongjiang Province (Liangshui), in Guangxi Province (Dawangling, Shiwandashan and Longgang) and in Hainan Provinve (Jianfengling, Wuzhishan, Dianluoshan and Bawangling). Based on sodium acetate method,5,915isolates of bacillus and208Bt strains had been isolated and the average isolating rate was3.52%. A library of bacillus and Bt strains have constructed in Haide Institute of Tropical Agricultural Resources (HITAR). Some correlations have been established amongst the type of soil and the geographical origin and the distribution of Bt.
     A number of Bt strains with abundant crystal proteins were analyzed through the scanning electron microscope (SEM) observation and SDS-PAGE analysis and Pulsed Field Gel Electrophoresis (PFGE) and bioactivity test. To identify the toxin genes, the new Polymerase Chain Reaction-fragment length polymorphism (PCR-RFLP) system was developed successfully for discovering the novel cry genes in Bt isolate. More than10of cry-type genes, including the novel crylAc22, crylAc30, crylAc31, cry30Eal, cry30Ga2, cry40Dal, cry50Bal and cry54Bal genes had been identified from the different Bt strains. The result indicated that the new PCR-RFLP identification system is very effective to identify known or unknown cry-type genes and it is believed that more and more cry-type genes would be identified using this system in future. The full sequence cloning of the novel genes were conducted through the methods of traditional DNA library construction, common PCR, Inverse PCR and single oligonucleotide nested-PCR (SON-PCR). For expression of cry gene, we try to use E.coli cells and an acrystalliferous mutant Bt as host. The larva of Plutella xylostella and Mosquitoes(Culex quinquefasciatus and Aedes albopictus) were used to test the bioactivity of the expressed proteins.The expessed Cry1protein showed high toxicity to larvae of Plutella xylostella, but not to larva of Culex quinquefasciatus and Aedes albopictus.
     Mosquito is spreaded worldwide as a very important disease vector that transmits disease-causing viruses and parasites between human beings and animals, such as malaria, yellow fever, dengue, filariasis, St.Louis Encephalitis, the West Nile Virus. At present, the effective prophylactic drugs and vaccines against the West Nile Virus, dengue, malaria, filariasis are inaccessible to the practice or too expensive to afford, so to reduce the incidence of these diseases depends basically on control of mosquito populations. For the development of resistance of insects and the potential adverse environmental effects of the chemical insecticides, the bioinsecticides based on Bt, especially B.thuringiensis subsp israelensis(Bti), is receiving much practical attention with little or no effect on humans, wildlife and most other beneficial insects. Bti is effective and safe to control mosquito for cutting down the incidence of mosquito-borne diseases including malaria, filariasis, dengue and so on as recommended by he World Health Organization (WHO). As a useful substitute to chemical insecticides, the mosquito has developed the resistance against the toxins of Bti for it's extensively used. As the result that the intensive screening programs have initiated worldwidely aimed to identify and characterize the new mosquitocidal Bt isolates as well as the novel mosquitocidal genes. In this study, More than thirty Bt isolates with mosquitocidal activity have been characterized with one, the isolate Bt S2160-1, having a comparable mosquitocidal activity to Bti. But there are a great of differences in terms of the large plasmid patterns, parasporal proteins profiles and cry genes contents between Bt S2160-1and Bti. Thus, it is believed that Bt S2160-1could be applied into mosquito control as the potential alternative to prevent mosquito from developing the resistance to the toxins of Bti.
     A novel PCR-RFLP system was successfully used in this study to identify the cry30Ea1cry30Ga2, cry50Bal and cry54Bal genes in Bt S2160-1but did not identify the genes encoding at least four of the main parasporal proteins. Furthermore mass spectrometry only identified Cry50Ba and Cry54Ba amongst the major proteins expressed by this strain. The Cry50Ba and Cry54Ba toxins were expressed in E. coli but only Cry54Ba had any toxicity-a weak activity. This would suggest that Cry54Ba does not play a dominant role in the mosquitocidal toxicity of Bt S2160-1although may be involved in synergistic interactions with other, as yet unknown, toxins as has been observed with Bti. Genomic sequencing is increasingly revealing previously unidentified toxin genes in Bt many of which are likely to be pseudogenes that do not contribute to toxicity and it is possible that some of the genes identified in this study, and cry30Ea and cry30Ga in particular, fall into this category.
     In general, China has a vast territory that contains many unique geographical features and abundant biological resources, which harbors rich diversity of genotypes and the insecticidal activities of Bt. In this study, we make a attempt to discover new resource of Bt strain and insecticidal genes to apply in commercial agriculture, forest management, and mosquito control.
引文
[1]Federici, B. A., Insecticidal bacteria: an overwhelming success for invertebrate pathology, J Invertebr Pathol,2005,89,30-38.
    [2]Haider, M. Z. and D. J. Ellar, Mechanism of action of Bacillus thuringiensis insecticidal delta-endotoxin:interaction with phospholipid vesicles, Biochim Biophys Acta,1989, 978,216-222.
    [3]Schnepf, E., N. Crickmore, J. Van Rie, et al., Bacillus thuringiensis and its pesticidal crystal proteins, Microbiol Mol Biol Rev,1998,62,775-806.
    [4]Bates, S. L., J. Z. Zhao, R. T. Roush, et al., Insect resistance management in GM crops: past, present and future, Nat Biotechnol,2005,23,57-62.
    [5]Challacombe, J. R, M. R. Altherr, G. Xie, et al., The complete genome sequence of Bacillus thuringiensis Al Hakam, J Bacteriol,2007,189,3680-3681.
    [6]Han, C. S., G. Xie, J. F. Challacombe, et al., Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis, J Bacteriol, 2006,188,3382-3390.
    [7]Carlson, C. R. and A.-b. Kolst, A Complete Physical Map of a Bacillus thuringiensis Chromosome, Microbiology,1993,175,1053-1060.
    [8]Carlson, C. R., D. A. Caugant and A. B. Kolsto, Genotypic Diversity among Bacillus cereus and Bacillus thuringiensis Strains, Appl Environ Microbiol,1994,60,1719-1725.
    [9]谭寿湖.张文飞and叶大维,苏云金芽孢杆菌基因组研究概况,基因组学与应用生物学,2009,v.28,202-208.
    [10]Ivanova, N., A. Sorokin, I. Anderson, et al., Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis, Nature,2003,423,87-91.
    [11]Radnedge, L., P. G. Agron, K. K. Hill, et al., Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis, Appl Environ Microbiol,2003, 69,2755-2764.
    [12]Berry, .C, S. O'Neil, E. Ben-Dov, et al., Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis, Appl Environ Microbiol,2002,68,5082-5095.
    [13]Chao, L., B. Qiyu, S. Fuping, et al., Complete nucleotide sequence of pBMB67, a 67-kb plasmid from Bacillus thuringiensis strain YBT-1520, Plasmid,2007,57,44-54.
    [14]Ben-dov, E., M. Einav, N. Peleg, et al., Restriction map of the 125-kilobase plasmid of Bacillus thuringiensis subsp. israelensis carrying the genes that encode delta-endotoxins active against mosquito larvae, Appl. Environ. Microbiol,1996,62,3140-3145.
    [15]Lopez-Meza, J. E., J. E. Barboza-Corona, M. C. Del Rincon-Castro, et al., Sequencing and characterization of plasmid pUIBI-1 from Bacillus thuringiensis serovar entomocidus LBIT-113, Curr Microbiol,2003,47,395-399.
    [16]Roh, J. Y., J. Y. Choi, M. S. Li, et al., Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control, J Microbiol Biotechnol,2007,17,547-559.
    [17]TRAVERS, R. S., P. A. W. MARTIN and R. CHARLES F. REICHELDERFER2S, Selective Process for Efficient Isolation of Soil Bacillus,1987,53,1263-1266.
    [18]Santana, M. A., V. C. Moccia and A. E. Gillis, Bacillus thuringiensis improved isolation methodology from soil samples, J Microbiol Methods,2008,75,357-358.
    [19]VALICENTE, F. H. and M. R. BARRETO, Bacillus thuringiensis Survey in Brazil Geographical Distribution and Insecticidal Activity Against Spodoptera frugiperda (J E. Smith) (Lepidoptera:Noctuidae), Neotropical Entomology,2003,639-644.
    [20]Wasano, N. and M. Ohba, Assignment of delta-endotoxin genes of the four lepidoptera-specific Bacillus thuringiensis strains that produce spherical parasporal inclusions, Curr Microbiol,1998,37,408-411.
    [21]Wenfei, Z., Q. Jiaxin, X. Liu, et al., Collection of Bacillus and Identification of Bacillus thuringensis Isolates from Tropical Rain Forest Reserves of Hainan Island Genomics and Applied Biology,2009,28,265-274.
    [22]Balaraman, K., Occurrence and diversity of mosquitocidal strains of Bacillus thuringiensis, J Vector Borne Dis,2005,42,81-86.
    [23]Manonmani, A. M., S. L. Hoti and K. Balaraman, Isolation of mosquito pathogenic Bacillus thuringiensis strains from mosquito breeding habitats in Tamil Nadu, Indian J Med Res,1987,86,462-468.
    [24]Seleena, P., H. L. Lee and M. M. Lecadet, A new serovar of Bacillus thuringiensis possessing 28a28c flagellar antigenic structure:Bacillus thuringiensis serovar jegathesan, selectively toxic against mosquito larvae, J Am Mosq Control Assoc,1995,11,471-473.
    [25]Sun, M., X. Luo, J. Dai, et al., Evaluation of Bacillus thuringiensis and Bacillus sphaericus Strains from Chinese Soils Toxic to Mosquito Larvae, J Invertebr Pathol, 1996,68,74-77.
    [26]Martin, P. A. and R. S. Travers, Worldwide Abundance and Distribution of Bacillus thuringiensis Isolates, Appl Environ Microbiol,1989,55,2437-2442.
    [27]Padua, L. E., M. Ohba and K. Aizawa, The isolates of Bacillus thuringiensis serotype 10 with a highly preferential toxicity to mosquito larvae, J Invertebr Pathol,1980,36, 180-186.
    [28]Chambers, J. A., A. Jelen, M. P. Gilbert, et al., Isolation and characterization of a novel insecticidal crystal protein gene from Bacillus thuringiensis subsp. aizawai, J Bacteriol, 1991,173,3966-3976.
    [29]Brownbridge, M. and J. Margalit, Identification of Bacillus thuringiensis strains toxic to mosquitoes recently isolated in Israel, J Invertebr Pathol,1987,50,322-323.
    [30]Schnepf, H. E. and H. R. Whiteley, Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli, Proc. Natl. Acad. Sci. USA,1981,78, 2893-2897.
    [31]Koller, C. N., L. S. Bauer and R. M. Hollingworth, Characterization of the pH-mediated solubility of Bacillus thuringiensis var. san diego native delta-endotoxin crystals, Biochem Biophys Res Commun,1992,184,692-699.
    [32]Lecadet, M. M., E. Frachon, V. C. Dumanoir, et al., Updating the H-antigen classification of Bacillus thuringiensis, J Appl Microbiol,1999,86,660-672.
    [33]刘辰,谢柳and张文飞,新型Bt杀虫蛋白:VIP杀虫的机理与植物转基因应用,分子植物育种,2008,1031-1037.
    [34]Yu, C. G., M. A. Mullins, G. W. Warren, et al., The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects, Appl Environ Microbiol,1997,63,532-536.
    [35]Espinasse, S., M. Gohar, J. Chaufaux, et al., Correspondence of high levels of beta-exotoxin I and the presence of cry 1B in Bacillus thuringiensis, Appl Environ Microbiol,2002,68,4182-4186.
    [36]Shao, Z., Z. Liu and Z. Yu, Effects of the 20-kilodalton helper protein on Cry1Ac production and spore formation in Bacillus thuringiensis, Appl Environ Microbiol,2001, 67,5362-5369.
    [37]Hannay, C. L., Crystalline inclusions in aerobic spore-forming bacteria, Nature,1953, 172,1004.
    [38]Hofte, H. and H. R. Whiteley, Insecticidal crystal proteins of Bacillus thuringiensis, Microbiol Rev,1989,53,242-255.
    [39]Butko, P., Cytolytic toxin Cyt1A and its mechanism of membrane damage:data and hypotheses, Appl Environ Microbiol,2003,69,2415-2422.
    [40]Crickmore, N., D. R. Zeigler, J. Feitelson, et al., Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins, Microbiol Mol Biol Rev,1998,62, 807-813.
    [41]de Maagd, R. A., A. Bravo and N. Crickmore, How Bacillus thuringiensis has evolved specific toxins to colonize the insect world, Trends Genet,2001,17,193-199.
    [42]Morse, R. J., T. Yamamoto and R. M. Stroud, Structure of Cry2Aa suggests an unexpected receptor binding epitope, Structure,2001,9,409-417.
    [43]Boonserm, P., P. Davis, D. J. Ellar, et al., Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications, J Mol Biol,2005,348,363-382.
    [44]Li, J. D., J. Carroll and D. J. Ellar, Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution, Nature,1991,353,815-821.
    [45]Grochulski, P., L. Masson, S. Borisova, et al., Bacillus thuringiensis Cry1A(a) insecticidal toxin:crystal structure and channel formation, J Mol Biol,1995,254, 447-464.
    [46]Navon, A. and K. R. S. Ascher, Bioassys of Entomopathogenic Microbes and Nematodes, CABI Publishing Wallingford,2000, p.1-49.
    [47]Hofmann, C., P. Luthy, R. Hutter, et al., Binding of the delta endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae), Eur J Biochem,1988,173,85-91.
    [48]Van Rie, J., S. Jansens, H. Hofte, et al., Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins, Appl Environ Microbiol,1990,56,1378-1385.
    [49]Jurat-Fuentes, J. L. and M. J. Adang, Characterization of a Cry1 Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae, Eur J Biochem,2004, 271,3127-3135.
    [50]Knight, P. J., N. Crickmore and D. J. Ellar, The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N, Mol Microbiol,1994,11,429-436.
    [51]Vadlamudi, R. K., E. Weber, I. Ji, et al., Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis, J Biol Chem,1995,270,5490-5494.
    [52]Valaitis, A. P., J. L. Jenkins, M. K. Lee, et al., Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis CrylA toxins with high affinity, Arch Insect Biochem Physiol, 2001,46,186-200.
    [53]Bravo, A., I. Gomez, J. Conde, et al., Oligomerization triggers binding of a Bacillus thuringiensis CrylAb pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains, Biochim Biophys Acta,2004,1667,38-46.
    [54]Zhuang, M., D. I. Oltean, I. Gomez, et al., Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation, J Biol Chem,2002,277,13863-13872.
    [55]Rausell, C., I. Garcia-Robles, J. Sanchez, et al., Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata (Say), Biochim Biophys Acta,2004,1660,99-105.
    [56]Soberon, M., L. E. Fernandez, C. Perez, et al., Mode of action of mosquitocidal Bacillus thuringiensis toxins, Toxicon,2007,49,597-600.
    [57]Fernandez, L. E., K. G. Aimanova, S. S. Gill, et al., A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry 11 Aa toxin in Aedes aegypti larvae, Biochem J, 2006,394,77-84.
    [58]Buzdin, A. A., L. P. Revina, L. I. Kostina, et al., Interaction of 65-and 62-kD proteins from the apical membranes of the Aedes aegypti larvae midgut epithelium with Cry4B and Cry11A endotoxins of Bacillus thuringiensis, Biochemistry (Mosc),2002,67, 540-546.
    [59]Wirth, M. C., G. P. Georghiou and B. A. Federici, CytA enables CryⅣ endotoxins of Bacillus thuringiensis to overcome high levels of CryⅣ resistance in the mosquito, Culex quinquefasciatus, Proc Natl Acad Sci U S A,1997,94,10536-10540.
    [60]Ferre, J. and J. Van Rie, Biochemistry and genetics of insect resistance to Bacillus thuringiensis, Annu Rev Entomol,2002,47,501-533.
    [61]Perez, C., L. E. Fernandez, J. Sun, et al., Bacillus thuringiensis subsp. israelensis Cyt1 Aa synergizes Cry11 Aa toxin by functioning as a membrane-bound receptor, Proc Natl Acad Sci U S A,2005,102,18303-18308.
    [62]Bravo, A., Phylogenetic relationships of Bacillus thuringiensis delta-endotoxin family proteins and their functional domains, J Bacteriol,1997,179,2793-2801.
    [63]Van Frankenhuyzen, K., L. Gringorten and D. Gauthier, Cry9Cal Toxin, a Bacillus thuringiensis Insecticidal Crystal Protein with High Activity against the Spruce Budworm (Choristoneura fumiferana), Appl Environ Microbiol,1997,63,4132-4134.
    [64]Barboza-Corona, J. E., D. M. Reyes-Rios, R. Salcedo-Hernandez, et al., Molecular and biochemical characterization of an endochitinase (ChiA-HD73) from Bacillus thuringiensis subsp. kurstaki HD-73, Mol Biotechnol,2008,39,29-37.
    [65]Hwang, S. H., H. Saitoh, E. Mizuki, et al., A novel class of mosquitocidal delta-endotoxin, Cry 19B, encoded by a Bacillus thuringiensis serovar higo gene, Syst Appl Microbiol,1998,21,179-184.
    [66]Beard, C. E., C. Ranasinghe and R. J. Akhurst, Screening for novel cry genes by hybridization, Lett Appl Microbiol,2001,33,241-245.
    [67]刘旭光,宋福平,文思远,et a1.,苏云金芽孢杆菌cry基因芯片检测方法的研究,中国农业科学,2004,987-992.
    [68]Porcar, M. and V. Juarez-Perez, PCR-based identification of Bacillus thuringiensis pesticidal crystal genes, FEMS Microbiol Rev,2003,26,419-432.
    [69]Bravo, A., S. Sarabia, L. Lopez, et al., Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection, Appl Environ Microbiol,1998,64,4965-4972.
    [70]Kim, H. S., H. Saitoh, S. Yamashita, et al., Cloning and Characterization of Two Novel Crystal Protein Genes from a Bacillus thuringiensis serovar dakota Strain, New York, 2003,46,33-38.
    [71]Kim, H. S., D. W. Lee, S. D. Woo, et al., Distribution, Serological Identification, and PCR Analysis of Bacillus thuringiensis Isolated from Soils of Korea, International Journal,1998,37,195-200.
    [72]Tounsi, S., N. Zouari and S. Jaoua, Cloning and study of the expression of a novel cry1 la-type gene from Bacillus thuringiensis subsp. kurstaki, Society,2003,23-28.
    [73]Wang, J., A. Boets, J. Van Rie, et al., Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China, J Invertebr Pathol,2003,82,63-71.
    [74]Bourque, S. N., J. R. Valero, J. Mercier, et al., Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringiensis, Appl Environ Microbiol,1993,59,523-527.
    [75]Ceron, J., A. Ortiz, R. Quintero, et al., Specific PCR primers directed to identify cryl and crylll genes within a Bacillus thuringiensis strain collection, Appl Environ Microbiol, 1995,61,3826-3831.
    [76]Ben-Dov, E., A. Zaritsky, E. Dahan, et al., Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis, Appl Environ Microbiol,1997,63,4883-4890.
    [77]Juarez-Perez, V. M., M. D. Ferrandis and R. Frutos, PCR-based approach for detection of novel Bacillus thuringiensis cry genes, Appl Environ Microbiol,1997,63,2997-3002.
    [78]Kuo, W. S. and K. F. Chak, Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA, Appl Environ Microbiol,1996,62,1369-1377.
    [79]Song, F., J. Zhang, A. Gu, et al., Identification of cryll-type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-type gene, Appl. Environ. Microbiol.,2003,69,5207-5211.
    [80]Xue, J., G. Liang, N. Crickmore, et al., Cloning and characterization of a novel CrylA toxin from Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects, FEMS Microbiol Lett,2008,280,95-101.
    [81]Shu, C., G., Yan and R. Wang, Characterization of a novel cry 8 gene specific to Melolonthidae pests:Holotrichia oblita and Holotrichia parallela, Plasmid,2009.
    [82]Shu, C., G. Yan, R. Wang, et al., Characterization of a novel cry8 gene specific to Melolonthidae pests:Holotrichia oblita and Holotrichia parallela, Appl Microbiol Biotechnol,2009,84,701-707.
    [83]Shu, C., H. Yu, R. Wang, et al., Characterization of two novel cry8 genes from Bacillus thuringiensis strain BT185, Curr Microbiol,2009,58,389-392.
    [84]周钦贤,中国蚊类及蚊媒病早期研究的综述,中国热带医学,2003,Vol.3 No.119-22.
    [85]Porter, A. G., E. W. Davidson and J. W. Liu, Mosquitocidal toxins of bacilli and their genetic manipulation for effective biological control of mosquitoes, Microbiol Rev,1993, 57,838-861.
    [86]Muturi, E. J., B. G. Jacob, C.-h. Kim, et al., Are coinfections of malaria and filariasis of any epidemiological significance?, Tropical Medicine & Parasitology,2008,175-181.
    [87]Barghini, A. and B. A. de Medeiros, Artificial Lighting as a Vector Attractant and Cause of Disease Diffusion, Environ Health Perspect,2010.
    [88]Barbosa, R. M., L. Regis, R. Vasconcelos, et al., Culex mosquitoes (Diptera:Culicidae) egg laying in traps loaded with Bacillus thuringiensis variety israelensis and baited with skatole, J Med Entomol,2010,47,345-348.
    [89]Nowell, W. R., International quarantine for control of mosquito-borne diseases on Guam, Aviat Space Environ Med,1977,48,53-60.
    [90]Tolle, M. A., Mosquito-borne diseases, Curr Probl Pediatr Adolesc Health Care,2009,39, 97-140.
    [91]Sweeney, A. W., Prospects for control of mosquito-borne diseases, J Med Microbiol, 1999,48,879-881.
    [92]Miller, J. R., The control of mosquito-borne diseases in New York City, J Urban Health, 2001,78,359-366.
    [93]Scherer, W. F., Epidemics of mosquito-borne virus diseases in the Pacific area, exclusive of dengue and Chikungunya viruses with emphasis on the past five years, Jpn J Med Sci Biol,1967,20 Suppl,7-10.
    [94]Li, P. L., J. Zhang, X. L. Wang, et al., [Study on the characteristics of major mosquito-borne infectious diseases in Three Gorges Reservoir Area from 1997 to 2008.], Zhonghua Liu Xing Bing Xue Za Zhi,2010,31,56-59.
    [95]WHO, Dengue:guidelines for diagnosis, treatment, prevention and control- New edition, World Health Organization (WHO) and the Special Programme for Research and Training in Tropical Diseases, Geneva-2009, p.3-86.
    [96]Kittayapong, P., S. Yoksan, U. Chansang, et al., Suppression of dengue transmission by application of integrated vector control strategies at sero-positive GIS-based foci, Am J Trop Med Hyg,2008,78,70-76.
    [97]Lee, Y. W. and J. Zairi, Susceptibility of laboratory and field-collected Aedes aegypti and Aedes albopictus to Bacillus thuringiensis israelensis H-14, J Am Mosq Control Assoc, 2006,22,97-101.
    [98]Moyer, V. A., Current Problems in Pediatric and Adolescent Health Care. Mosquito-borne diseases. Foreword, Curr Probl Pediatr Adolesc Health Care,2009,39, 95-96.
    [99]Wu, J. Y, Z. R. Lun, A. A. James, et al., Dengue Fever in mainland china, Am J Trop Med Hyg,2010,83,664-671.
    [100]Das, P. K. and D. D. Amalraj, Biological control of malaria vectors, Indian J Med Res, 1997,106,174-197.
    [101]Kumar, A., V. P. Sharma, D. Thavaselvam, et al., Control of Anopheles stephensi breeding in construction sites and abandoned overhead tanks with Bacillus thuringiensis var. israelensis, J Am Mosq Control Assoc,1995,11,86-89.
    [102]Kar, I., A. Eapen, K. J. Ravindran, et al., Field evaluation of Bacillus sphaericus, H5a5b and B. thuringiensis var. israelensis, H-14 against the Bancroftian filariasis vector Culex quinquefasciatus, Say in Chennai, India, Indian J Malariol,1997,34,25-36.
    [103]Priest, F. G., Biological control of mosquitoes and other biting flies by Bacillus sphaericus and Bacillus thuringiensis,J Appl Bacteriol,1992,72,357-369.
    [104]Srinivasan, R. and M. Kalyanasundaram, Ultra low volume aerosol application of deltacide (deltamethrin 0.5% w/v, S-bioallethrin 0.71% w/v & piperonyl butoxide 8.9% w/v) against mosquitoes, Indian J Med Res,2006,123,55-60.
    [105]Baumann, P., M. A. Clark, L. Baumann, et al., Bacillus sphaericus as a mosquito pathogen:properties of the organism and its toxins, Microbiol Rev,1991,55,425-436.
    [106]Yu, Y. M., M. Ohba and S. S. Gill, Characterization of mosquitocidal activity of Bacillus thuringiensis subsp. fukuokaensis crystal proteins, Appl Environ Microbiol, 1991,57,1075-1081.
    [107]Lambert, B., W. Theunis, R. Aguda, et al., Nucleotide sequence of gene cryⅢD encoding a novel coleopteran-active crystal protein from strain BTI109P of Bacillus thuringiensis subsp. kurstaki, Gene,1992,110,131-132.
    [108]Huang, D. F., J. Zhang, F. P. Song, et al., Microbial control and biotechnology research on Bacillus thuringiensis in China, J Invertebr Pathol,2007,95,175-180.
    [109]Wolfenbarger, L. L., S. E. Naranjo, J. G. Lundgren, et al., Bt Crop Effects on Functional Guilds of Non-Target Arthropods:A Meta-Analysis, Order A Journal On The Theory Of Ordered Sets And Its Applications,2008,3.
    [110]Estruch, J. J., N. B. Carozzi, N. Desai, et al., Transgenic plants:an emerging approach to pest control, Nat Biotechnol,1997,15,137-141.
    [111]Van Rie, J., Bacillus thuringiensis and its use in transgenic insect control technologies, Int J Med Microbiol,2000,290,463-469.
    [112]Gould, F., Sustainability of transgenic insecticidal cultivars:integrating pest genetics and ecology, Annu Rev Entomol,1998,43,701-726.
    [113]McGaughey, W. H., F. Gould and W. Gelernter, Bt resistance management, Nat Biotechnol,1998,16,144-146.
    [114]Tabashnik, B. E. and Y. Carriere, Bt transgenic crops do not have favorable effects on resistant insects, J Insect Sci,2004,4,4.
    [115]Shelton, A. M., J. Z. Zhao and R. T. Roush, Economic, ecological, food safety, and social consequences of the deployment of bt transgenic plants, Annu Rev Entomol,2002, 47,845-881.
    [116]Zhao, J. Z., J. Cao, Y. Li, et al., Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution, Nat Biotechnol,2003,21,1493-1497.
    [117]Shelton, A. M., J. D. Tang, R. T. Roush, et al., Field tests on managing resistance to Bt-engineered plants, Nat Biotechnol,2000,18,339-342.
    [118]Roush, R. T. and A. M. Shelton, Assessing the odds:the emergence of resistance to Bt transgenic plants, Nat Biotechnol,1997,15,816-817.
    [119]Kaur, S., Molecular approaches for identification and construction of novel insecticidal genes for crop protection, Journal of Microbiology,2006,233-253.
    [120]Bravo, A. and M. Soberon, How to cope with insect resistance to Bt toxins, Trends Biotechnol.,2008,26,573-579.
    [121]Schnepf, E., Bacillus thuringiensis and its pesticidal crystal proteins,1998.
    [122]Pinto, L. M., A. O. Azambuja, E. Diehl, et al., Pathogenicity of Bacillus thuringiensis isolated from two species of Acromyrmex (Hymenoptera, Formicidae), Braz J Biol,2003, 63,301-306.
    [123]Uribe, D., W. Martinez and J. Ceron, Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia, J Invertebr Pathol,2003,82,119-127.
    [124]Aronson, J. N. and F. M. Thompson, Bacillus thuringiensis sporulation at suboptimal temperature, J Bacteriol,1971,105,445-448.
    [125]Martin, P. A. W. and R. S. Travers, Worldwide abundance and distribution of Bacillus thuringiensis isolates, Appl. Environ. Microbiol,1989,55,2437-2442.
    [126]Hongyu, Z., Y. Ziniu and D. Wangxi, Isolation, distribution and toxicity of Bacillus thuringiensis from warehouses in China, Mortality,2000,19,449-454.
    [127]张文飞,谢柳,赵立仕,et al.,黑龙江凉水自然保护区苏云金芽孢杆菌的收集与鉴定,基因组学与应用生物学,2009,v.28,685-690.
    [128]张文飞,全嘉新,谢柳,et al.,海南岛热带雨林区芽孢杆菌收集及Bt菌鉴定,基因组学与应用生物学,2009,v.28,265-274.
    [129]Xie, L., W. F. Zhang, J. X. Quan, et al., Bacillus thuringiensis collection and isolates identification from Damingshan and Dawangling natural reserves in Guangxi province, Genomics and Applied Biology,2009,28,62-68.
    [130]Berbert-Molina, M. A., A. M. Prata, L. G. Pessanha, et al., Kinetics of Bacillus thuringiensis var. israelensis growth on high glucose concentrations, J Ind Microbiol Biotechnol,2008,35,1397-1404.
    [131]Smith, R., Method for storing Toxoplasma gondii (RH strain) in liquid nitrogen, Appl Microbiol,1973,26,1011-1012.
    [132]Novick, A., Growth of bacteria, Annu Rev Microbiol,1955,9,97-110.
    [133]Sayyed, A. H., R. Gatsi, T. Kouskoura, et al., Susceptibility of a field-derived, Bacillus thuringiensis-resistant strain of diamondback moth to in vitro-activated Cry1 Ac toxin, Appl Environ Microbiol,2001,67,4372-4373.
    [134]WHO, Report of the WHO informal consultation on the evaluation on the testing of insecticides, CTD_WHOPES, Geneva,1996, p.31-48.
    [135]Antal, Z., C. Rascle, M. Fevre, et al., Single oligonucleotide nested PCR:a rapid method for the isolation of genes and their flanking regions from expressed sequence tags, Curr Genet,2004,46,240-246.
    [136]Zhang, W. f., W. Xi and Z. Lin,海南岛热带雨林区芽孢杆菌收集及Bt菌鉴定Collection of Bacillus and Identification of Bacillus thuringensis Isolates from Tropical Rain Forest Reserves of Hainan Island, Genomics,2009.
    [137]Carlson, C. R., T. Johansen and A. B. Kolsto, The chromosome map of Bacillus thuringiensis subsp. canadensis HD224 is highly similar to that of the Bacillus cereus type strain ATCC 14579, FEMS Microbiol Lett,1996,141,163-167.
    [138]Porcar, M., J. Iriarte, M. Ferrandis, et al., Identification and characterization of the new bacillus thuringiensis serovars pirenaica (serotype H57) and iberica (serotype H59), Journal of Applied Microbiology,1999,87,640-648.
    [139]Vilas-boas, G. T., M. Victor and F. Lemos, Diversity of cry genes and genetic characterization of Bacillus thuringiensis, Agriculture,2004.
    [140]韩丽珍,王茜,谢柳,et al.,来自海南等地的17个Bt分离株质粒多样性分析,基因组学与应用生物学,2009,v.28,486-492.
    [141]C, B., D. A, T. F, et al., Transfer of the Toxin Protein Genes of Bacillus sphaericus into Bacillus thuringiensis subsp. israelensis, Appl Environ Microbiol,1990,56,340-344.
    [142]Smedley, D. P. and D. J. Ellar, Mutagenesis of three surface-exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity, receptor recognition and possibly membrane insertion, Microbiology,1996,142 (Pt 7), 1617-1624.
    [143]Crickmore, N. and D. J. Ellar, Involvement of a possible chaperonin in the efficient expression of a cloned CryⅡA delta-endotoxin gene in Bacillus thuringiensis, Mol Microbiol,1992,6,1533-1537.
    [144]Lecadet, M. M., J. Chaufaux, J. Ribier, et al., Construction of Novel Bacillus thuringiensis Strains with Different Insecticidal Activities by Transduction and Transformation,1992,58,840-849.
    [145]Thompson, J. D., D. G. Higgins and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res,1994,22, 4673-4680.
    [146]Kumar, S., M. Nei, J. Dudley, et al., MEGA:a biologist-centric software for evolutionary analysis of DNA and protein sequences, Brief Bioinform,2008,9,299-306.
    [147]Singh, V. K., A. K. Mangalam, S. Dwivedi, et al., Primer premier: program for design of degenerate primers from a protein sequence, Biotechniques,1998,24,318-319.
    [148]Xie, L., W. Zhang, Z. Liu, et al., Characterization of a New Highly Toxic Isolate of Bacillus thuringiensis from the Diapausing Larvae of Silkworm and Identification of cry 1A 22 Gene, Bt Research 2010,1,1-9.
    [149]Scharf, S. J., G. T. Horn and H. A. Erlich, Direct cloning and sequence analysis of enzymatically amplified genomic sequences, Science,1986,233,1076-1078.
    [150]Law, D. and N. Crickmore, Use of a simplified rapid size screen protocol for the detection of recombinant plasmids,1997,2,136-137.
    [151]Chen, H. R., M. T. Hsu and S. C. Cheng, Spheroplast preparation facilitates PCR screening of yeast sequence, Biotechniques,1995,19,744-746,748.
    [152]Ling, M., F. Merante and B. H. Robinson, A rapid and reliable DNA preparation method for screening a large number of yeast clones by polymerase chain reaction, Nucleic Acids Res,1995,23,4924-4925.
    [153]Cheong, H. and S. S. Gill, Cloning and characterization of a cytolytic and mosquitocidal delta-endotoxin from Bacillus thuringiensis subsp. jegathesan, Appl Environ Microbiol,1997,63,3254-3260.
    [154]Ross, L. S. and S. S. Gill, Limited growth PCR screening of a plasmid library, Biotechniques,1996,21,382-384,386.
    [155]Lechner, S., R. Mayr, K. P. Francis, et al., Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group, Int J Syst Bacteriol,1998,48 Pt 4, 1373-1382.
    [156]Chen, Y., J. Succi, F. C. Tenover, et al., Beta-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain, J Bacteriol,2003,185,823-830.
    [157]Zimmermann, A. and U. Pauli, Event Speci"c Transgene Detection in Bt11 Corn by Quantitative PCR at the Integration Site, Plasmid,2000,216,210-216.
    [158]Kaluza, B., G. Betzl, H. Shao, et al., A general method for chimerization of monoclonal antibodies by inverse polymerase chain reaction which conserves authentic N-terminal sequences, Gene,1992,122,321-328.
    [159]Ishizaki, A., K. Sugahara, K. Tsuruda, et al., Usefulness of long-distance inverse polymerase chain reaction for molecular detection of 14q32 translocation in a clinical setting, Scand J Clin Lab Invest,2008,1-7.
    [160]Huang, S. H., Y. Y. Hu, C. H. Wu, et al., A simple method for direct cloning cDNA sequence that flanks a region of known sequence from total RNA by applying the inverse polymerase chain reaction, Nucleic Acids Res,1990,18,1922.
    [161]Hartl, D. L. and H. Ochman, Inverse polymerase chain reaction, Methods Mol Biol, 1996,58,293-301.
    [162]Ochman, H., A. S. Gerber and D. L. Hartl, Genetic applications of an inverse polymerase chain reaction, Genetics,1988,120,621-623.
    [163]Horinouchi, S. and B. Weisblum, Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance, J Bacteriol,1982,150, 815-825.
    [164]Macaluso, A.and A. M. Mettus, Efficient transformation of Bacillus thuringiensis requires nonmethylated plasmid DNA, J Bacteriol,1991,173,1353-1356.
    [165]Masson, L., G. Prefontaine and R. Brousseau, Transformation of Bacillus thuringiensis vegetative cells by electroporation, FEMS Microbiol Lett,1989,51,273-277.
    [166]Bone, E.J. and D. J. Ellar, Transformation of Bacillus thuringiensis by electroporation, FEMS Microbiol Lett,1989,49,171-177.
    [167]Lowry, O. H., N. J. Rosebrough, A. L. Farr, et al., Protein measurement with the Folin phenol reagent, J Biol Chem,1951,193,265-275.
    [168]ZhangWenfei, Y. Shuxia, X. Liu, et al., Identification of Bacillus thuringiensis Isolate S1478-1 and Cloning of cry1 Ac Homolog, Genomics and Applied Biology,2009,28, 471-476.
    [169]Derbyshire, D. J., D. J. Ellar and J. Li, Crystallization of the Bacillus thuringiensis toxin Cry1 Ac and its complex with the receptor ligand N-acetyl-D-galactosamine, Acta Crystallogr D Biol Crystallogr,2001,57,1938-1944.
    [170]Li, J., D. J. Derbyshire, B. Promdonkoy, et al., Structural implications for the transformation of the Bacillus thuringiensis delta-endotoxins from water-soluble to membrane-inserted forms, Biochem Soc Trans,2001,29,571-577.
    [171]Galitsky, N., V. Cody, A. Wojtczak, et al., Structure of the insecticidal bacterial delta-endotoxin Cry3Bbl of Bacillus thuringiensis, Acta Crystallogr D Biol Crystallogr, 2001,57,1101-1109.
    [172]Boonserm, P., M. Mo, C. Angsuthanasombat, et al., Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution, J Bacteriol,2006,188,3391-3401.
    [173]Masson, L., B. E. Tabashnik, Y. B. Liu, et al., Helix 4 of the Bacillus thuringiensis Cry1 Aa toxin lines the lumen of the ion channel, J Biol Chem,1999,274,31996-32000.
    [174]Pacheco, S., I. Gomez, I. Arenas, et al., Domain Ⅱ loop 3 of Bacillus thuringiensis CrylAb toxin is involved in a "ping pong" binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors, J Biol Chem,2009,284,32750-32757.
    [175]Jimenez-Juarez, N., C. Munoz-Garay, I. Gomez, et al., Bacillus thuringiensis CrylAb mutants affecting oligomer formation are non-toxic to Manduca sexta larvae, J Biol Chem,2007,282,21222-21229.
    [176]Vachon, V., G. Prefontaine, F. Coux, et al., Role of helix 3 in pore formation by the Bacillus thuringiensis insecticidal toxin Cry1 Aa, Biochemistry,2002,41,6178-6184.
    [177]Vachon, V., G. Prefontaine, C. Rang, et al., Helix 4 mutants of the Bacillus thuringiensis insecticidal toxin Cry1 Aa display altered pore-forming abilities, Appl Environ Microbiol, 2004,70,6123-6130.
    [178]Pigott, C. R., M. S. King and D. J. Ellar, Investigating the properties of Bacillus thuringiensis Cry proteins with novel loop replacements created using combinatorial molecular biology, Appl Environ Microbiol,2008,74,3497-3511.
    [179]Guo, S., S. Ye, Y. Liu, et al., Crystal structure of Bacillus thuringiensis Cry8Eal:An insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela, J Struct Biol,2009,168,259-266.
    [180]Hui, E. K., P. C. Wang and S. J. Lo, Strategies for cloning unknown cellular flanking DNA sequences from foreign integrants, Cell Mol Life Sci,1998,54,1403-1411.
    [181]Rosenthal, A. and D. S. Jones, Genomic walking and sequencing by oligo-cassette mediated polymerase chain reaction, Nucleic Acids Res,1990,18,3095-3096.
    [182]Devon, R. S., D. J. Porteous and A. J. Brookes, Splinkerettes--improved vectorettes for greater efficiency in PCR walking, Nucleic Acids Res,1995,23,1644-1645.
    [183]Liu, Y. G. and R. F. Whittier, Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from PI and YAC clones for chromosome walking, Genomics,1995,25,674-681.
    [184]WHO, World malaria report 2008, World Health Organization, Geneva,2008, p. 1-149.
    [185]Pal, R., Disease vector control in the People's Republic of China, Mosquito News,1982, 42,149-158.
    [186]Rajkumar, S. and A. Jebanesan, Bioactivity of flavonoid compounds from Poncirus trifoliata L. (Family:Rutaceae)against the dengue vector, Aedes aegypti L.Diptera:Culicidae), Parasitology Research,2008,104,19-25.
    [187]Regis, L., M. H. Silva-Filha, C. Nielsen-LeRoux, et al., Bacteriological larvicides of dipteran disease vectors, Trends Parasitol,2001,17,377-380.
    [188]Tilquin, M., M. Paris, S. Reynaud, et al., Long lasting persistence of Bacillus thuringiensis Subsp. israelensis (Bti) in mosquito natural habitats, PLoS One,2008,3, e3432.
    [189]Huiyang, L., X. Liu, X. Qimeng, et al., Biological Control of Mosquitoes by Bacillus thuringiensis, Genomics and Applied Biology,2010,9,1-14.
    [190]Sayyed, A. H., N. Crickmore and D. J. Wright, CytlAa from Bacillus thuringiensis subsp. israelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry 1 Ac towards a resistant strain, Appl Environ Microbiol,2001,67, 5859-5861.
    [191]Kuo, W. and K. Chak, Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA, Appl. Environ. Microbiol,1996,62,1369-1377.
    [192]Shevchenko, A., H. Tomas, J. Havlis, et al., In-gel digestion for mass spectrometric characterization of proteins and proteomes, Nat Protoc,2006,1,2856-2860.
    [193]Tabashnikt, B. E., Evaluation of Synergism among Bacillus thuringiensis Toxinst,1992, 58,3343-3346.
    [194]Kaur, A. and J. Singh, Natural occurrence of Bacillus thuringiensis in leguminous phylloplanes in the new region of India,, World J Microbiol Biotechnol,2000,16, 679-682.
    [195]Porcar, M., J. Iriarte, V. Cosmao Dumanoir, et al., Identification and characterization of the new bacillus thuringiensis serovars pirenaica (serotype H57) and iberica (serotype H59), J Appl Microbiol,1999,87,640-648.
    [196]Vilas-Boas, G. T. and M. V. Lemos, Diversity of cry genes and genetic characterization of Bacillus thuringiensis isolated from Brazil, Can J Microbiol,2004,50,605-613.
    [197]Wilcks, A., L. Smidt, M. I. Bahl, et al., Germination and conjugation of Bacillus thuringiensis subsp. israelensis in the intestine of gnotobiotic rats, J Appl Microbiol, 2008,104,1252-1259.
    [198]Bienvenut, W. V., C. Deon, C. Pasquarello, et al., Matrix-assisted laser desorption/ionization-tandem mass spectrometry with high resolution and sensitivity for identification and characterization of proteins, Proteomics,2002,2,868-876.
    [199]Ranasinghe, C. and R. J. Akhurst, Matrix assisted laser desorption ionisation time of flight mass spectrometry (MALDI-TOF MS) for detecting novel Bt toxins, J Invertebr Pathol,2002,79,51-58.
    [200]Noguera, P. A. and J. E. Ibarra, Detection of New cry Genes of Bacillus thuringiensis by Use of a Novel PCR Primer System, Appl Environ Microbiol,2010,76,6150-6155.
    [201]Sun, Y., Z. Fu, X. Ding, et al., Evaluating the insecticidal genes and their expressed products in Bacillus thuringiensis strains by combining PCR with mass spectrometry, Appl Environ Microbiol,2008,74,6811-6813.
    [202]Fu, Z., Y. Sun, L. Xia, et al., Assessment of protoxin composition of Bacillus thuringiensis strains by use of polyacrylamide gel block and mass spectrometry, Appl Microbiol Biotechnol,2008,79,875-880.
    [203]Otieno-Ayayo, Z. N., A. Zaritsky, M. C. Wirth, et al., Variations in the mosquito larvicidal activities of toxins from Bacillus thuringiensis ssp. israelensis, Environ Microbiol,2008,10,2191-2199.
    [204]Martin, J., W. Zhu, K. D. Passalacqua, et al., Bacillus anthracis genome organization in light of whole transcriptome sequencing, BMC Bioinformatics,2010,11 Suppl 3,S10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700