大豆黄酮合成酶基因的克隆与RNA干扰调控异黄酮含量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类黄酮是植物生长过程中广泛存在的一类次生代谢产物,包括异黄酮、黄酮、查耳酮、花青素等具有生物活性的物质。它们对植物生长素运输、花色调节、植物-微生物之间的互作以及对人体健康有直接而复杂的影响。研究类黄酮功能及代谢途径的调控对明确植物的防御反应机制和提高食品的功能性成分具有重要的作用。
     在高等植物中,类黄酮是通过苯基丙酸类代谢途径合成的。目前,对苯基丙酸类代谢途径的研究已经进入了分子生物学领域,在大豆(Glycine max)中,途径中越来越多的编码基因被克隆并鉴定。另一方面,代谢工程,特别是RNA干扰技术的发展,为研究调控植物次生代谢产物的积累及其在植物防御中的作用开辟了新的可能性。
     本研究根据其它物种中已报道的黄酮合成酶(FNS Ⅱ)基因序列及大豆基因组序列信息,进行生物信息学分析,在大豆栽培品种合丰47中通过反转录扩增,得到两个候选基因的cDNA序列,命名为GmFNSⅡ-1与GmFNSⅡ-2。根据序列分析GmFNSⅡ-1与已报道的一个大豆黄酮合成酶基因(CYP93B16)是同一基因,而GmFNSⅡ-2是一个全新的基因。对GmFNSⅡ-1与GmFNSⅡ-2的基因组序列、核苷酸序列、氨基酸序列、蛋白质的物理化学性质、蛋白质的高级结构及功能进行了生物信息学分析。
     通过在大肠杆菌(Escherichia coli)及裂殖酵母(Schizosaccharomyces pombe)中融合蛋白的构建,对GmFNSⅡ-1与GmFNSⅡ-2进行酶活性分析。结果表明两个GmFNSⅡ蛋白都可以直接催化柚皮素(Naringenin)转化为大豆黄酮(Apigenin)。两个GmFNSⅡ基因的组织特异性表达情况相似,在检测的6个组织中都有表达,但总的来说,在根和未成熟种子中的表达量较低。特别的是,在受到渗透胁迫时,幼苗的根、茎及叶中,两个GmFNSⅡ基因的表达量都显著提高,表明这两个基因在大豆的胁迫信号传导过程中有重要作用。
     本研究中,根据RNA干扰技术原理,以P1304+PBI121载体为基本骨架,构建了GmFNSⅡ基因的RNA干扰植物表达载体P1304+-GmFNSⅡ-RNAi;以pCAMBIA3300载体为基本骨架,构建了GmFNSⅡ基因与黄烷酮3-羟化酶基因(F3H)双价的RNA干扰植物表达载体p3300-GmFNSⅡi-F3Hi,并分别构建了两基因的单价RNA干扰植物表达载体p3300-GmFNSⅡi与p3300-F3Hi。
     通过发根农杆菌(Agrobacterium rhizogenes)ATCC15834对大豆子叶节的转化,验证所构建RNA干扰植物表达载体的效率。结果发现,P1304+-GmFNSⅡ-RNAi载体转化的毛状根中,GmFNSⅡ-1与GmFNSⅡ-2基因的表达都受到的显著抑制(<10%),特别是GmFNSⅡ-2基因(<5%)。在p3300-GmFNSⅡi、p3300-F3Hi及p3300-GmFNSⅡi-F3Hi载体转化的毛状根中, GmFNSⅡ或/与F3H基因的表达受到显著抑制,表达量与对照相比降低90%以上。同时,HPLC分析结果显示,RNAi载体转化生成的毛状根中,黄酮的含量与异黄酮总含量发生了明显变化。其中双价RNAi载体对总异黄酮含量的增长具有更好的效果,转化根中总异黄酮含量是对照的两倍。研究结果为利用分子生物学方法,特别是RNAi技术提高大豆异黄酮含量提供了研究基础,并为其他相似的植物次生代谢产物的调控积累提供了依据。
     本研究中,我们检测了体外条件下,不同浓度的大豆黄酮(Apigenin)与染料木素(Genistein)对导致大豆7种主要真菌病害的病原菌生长速度的影响,这7种病原菌包括: Colletotrichum truncatum, Macrophomina phaseolina, Phoma exigua,Phytophthora sojae,Pythium ultimum,Rhizoctonia solani与Sclerotinia sclerotiorum。结果发现,两种类黄酮对实验中的所有病原菌生长都有抑制作用,但抑制效果不同,如:相对其它病原菌,C. truncatum受到的抑制更小而P. exigua受到的抑制更大。并且随着两种类黄酮浓度的提高,抑制效果有明显的剂量效应,但在低浓度下,染料木素表现出更好的抑制作用。研究结果提示我们,在通过代谢工程增强大豆抗病性的研究时,染料木素可能更适宜于作为基因工程的改良的目标。
Flavonoids are one kind of secondary metabolites that are widespread throughout thegrowth and development of plants, including isoflavone, flavone, chalcone, anthocyanidin.They play diverse roles in regulation of auxin transport, modulation of flower color,plant–microbe interactions, and have direct but complex effects on human health. Theresearch of flavonoids biosynthesis pathway plays important roles in plant defenseresponse and improving functional components of food.
     In all higher plants, flavonoids are produced through a branch of the phenylpropanoidpathway. At present, the research for phenylpropanoid pathway has been focus on the fieldof molecular biology, more and more coding genes in pathway has been cloned andidentified in soybean. On the other hand, the development of metabolic engineering,especially RNA interference technology, opens up new possibilities for the study ofregulation of plant secondary metabolite accumulation and their roles in plant defense.
     In this study, two FNS Ⅱ genes from soybean cultivar Hefeng47were clonedaccording to basic local alignment search tool (BLAST) contexts using flavone synthasesequences reported in other species. These were named GmFNSⅡ-1and GmFNSⅡ-2.Sequence alignments showed that the cDNA of GmFNSⅡ-1was identical to that ofCYP93B16, whereas GmFNSⅡ-2was clearly distinct. Both GmFNSⅡ genes wereanalysized by bioinformatics in their genome sequences, the nucleotide sequence, aminoacid sequences, physical and chemical properties of protein, and function.
     Functional assays in Escherichia coli and yeast (Schizosaccharomyces pombe)suggested that these two enzymes could convert (2S)-naringenin into apigenin. The twoGmFNSⅡ genes had similar tissue-specific expression patterns, and were significantlyincreased by osmotic stress like glucose and MeJA treatment. This demonstrates that the gene plays an important role in the response to defense signals in soybean.
     Here, a bivalent RNA interference (RNAi) plant-transformation vector wasconstructed to silence both the flavanone3-hydroxylase (F3H) gene and the flavonesynthase Ⅱ (GmFNSⅡ) gene. Moreover, two further unit RNAi vectors were constructedfor each of these two genes.
     RNAi-mediated suppression of those genes showed a significant reduction (to <10%)in gene expression in hairy roots that arose from soybean cotyledons transformed withAgrobacterium rhizogenes (ATCC15834). HPLC showed in hairy roots,RNAi-mediatedsuppression of these genes effectively regulated flavone and isoflavone production.Notably, the bivalent RNAi vector had a significantly greater effect for increasingisoflavone production compared with the two unit RNAi vectors.
     This present study highlights molecular methods that can be used to enhanceisoflavone production in soybean, and demonstrates the challenges associated with suchmetabolic engineering for the production of plant natural products.
     In this study, we tested two flavonoids, apigenin and genistein, in amended culturemedia against seven soybean pathogens including Colletotrichum truncatum,Macrophomina phaseolina, Phoma exigua, Phytophthora sojae, Pythium ultimum,Rhizoctonia solani, and Sclerotinia sclerotiorum. Both compounds restricted growth of allseven pathogens, although not all equally. For example, inhibition of growth was less (P>0.05) for C. truncatum than the other pathogens tested. There also was a dosage effect asincreased concentrations of either compound further restricted colony growth. The resultssuggest that through metabolic engineering, apigenin and genistein may be useful targetsfor overexpression in planta to enhance disease resistance in soybean.
引文
[1]. Hartmann, T., Diversity and variability of plant secondary metabolism: amechanistic view[J]. Entomologia Experimentalis et Applicata,1996,80(1),pp177-188.
    [2].陈晓亚,刘培,植物次生代谢的分子生物学及基因工程[J].生命科学,1996,8(2),pp8-11.
    [3]. Buchanan, B. B.,Gruissem, W.,Jones, R. L., Biochemistry and molecular biologyof plants[M]. American Society of Plant Physiologists:2000.
    [4]. Stahmann, K. P.,Revuelta, J.,Seulberger, H., Three biotechnical processes usingAshbya gossypii, Candida famata, or Bacillus subtilis compete with chemicalriboflavin production[J]. Applied microbiology and biotechnology,2000,53(5),pp509-516.
    [5]. Wood, A. J. J.,Rowinsky, E. K.,Donehower, R. C., Paclitaxel (taxol)[J]. NewEngland Journal of Medicine,1995,332(15),pp1004-1014.
    [6].赵剑,王文科,长春花生物碱生物合成途径和相关酶及其基因调控的研究进展[J].植物生理学通讯,1999,35(1),pp60-68.
    [7]. Beecher, G. R., Overview of dietary flavonoids: nomenclature, occurrence andintake[J]. The Journal of nutrition,2003,133(10),pp3248S-3254S.
    [8]. Kim, J. H.,Cheon, Y. M.,Kim, B. G., etc., Analysis of flavonoids andcharacterization of theOsFNS gene involved in flavone biosynthesis in Rice[J].Journal of Plant Biology,2008,51(2),pp97-101.
    [9]. Fowler, Z. L.,Koffas, M. A. G., Biosynthesis and biotechnological production offlavanones: current state and perspectives[J]. Applied microbiology andbiotechnology,2009,83(5),pp799-808.
    [10]. Tahara, S., A journey of twenty-five years through the ecologicalbiochemistry of flavonoids[J]. Bioscience, biotechnology, and biochemistry,2007,(0),p705070390.
    [11]. Coe, E. H.,McCormick, S. M.,Modena, S. A., White pollen in maize[J].Journal of Heredity,1981,72(5),pp318-320.
    [12]. Taylor, L. P.,Grotewold, E., Flavonoids as developmental regulators[J].Current opinion in plant biology,2005,8(3),pp317-323.
    [13]. Li, J.,Ou-Lee, T. M.,Raba, R., etc., Arabidopsis flavonoid mutants arehypersensitive to UV-B irradiation[J]. The Plant Cell Online,1993,5(2),pp171-179.
    [14]. Frohnmeyer, H.,Staiger, D., Ultraviolet-B radiation-mediated responses inplants. Balancing damage and protection[J]. Plant Physiology,2003,133(4),pp1420-1428.
    [15]. Treutter, D., Significance of flavonoids in plant resistance and enhancementof their biosynthesis[J]. Plant Biology,2005,7(6),pp581-591.
    [16]. Chalker‐Scott, L., Environmental significance of anthocyanins in plantstress responses[J]. Photochemistry and photobiology,1999,70(1),pp1-9.
    [17]. Zhang, J.,Subramanian, S.,Stacey, G., etc., Flavones and flavonols playdistinct critical roles during nodulation of Medicago truncatula by Sinorhizobiummeliloti[J]. The Plant Journal,2009,57(1),pp171-183.
    [18]. Willson, M. F.,Whelan, C. J., The evolution of fruit color in fleshy-fruitedplants[J]. American Naturalist,1990, pp790-809.
    [19]. Harborne, J. B.,Williams, C. A., Advances in flavonoid research since1992[J]. Phytochemistry,2000,55(6),pp481-504.
    [20]. Lygin, A. V.,Hill, C. B.,Zernova, O. V., etc., Response of soybean pathogens toglyceollin[J]. Phytopathology,2010,100(9),pp897-903.
    [21]. Kawaii, S.,Tomono, Y.,Katase, E., etc., Antiproliferative activity of flavonoidson several cancer cell lines[J]. Bioscience, biotechnology, and biochemistry,1999,63(5),pp896-899.
    [22]. Leonardo, C. C.,Doré, S., Dietary flavonoids are neuroprotective throughNrf2-coordinated induction of endogenous cytoprotective proteins[J]. NutritionalNeuroscience,2011,14(5),pp226-236.
    [23]. Vajdy, M., Immunomodulatory properties of vitamins, flavonoids and plantoils and their potential as vaccine adjuvants and delivery systems[J]. Expert Opinionon Biological Therapy,2011,(0),pp1-13.
    [24]. Wood, J. G.,Rogina, B.,Lavu, S., etc., Sirtuin activators mimic caloricrestriction and delay ageing in metazoans[J]. Nature,2004,430(7000),pp686-689.
    [25].邢军,李友广,谢丽琼,黄酮类化合物——植物异黄酮的研究进展与展望[J].新疆大学学报:自然科学版,2006,23(2),pp207-210.
    [26]. Kaldas, R. S.,Hughes Jr, C. L., Reproductive and general metabolic effects ofphytoestrogens in mammals[J]. Reproductive Toxicology,1989,3(2),pp81-89.
    [27]. Kudou, S.,Fleury, Y.,Welti, D., etc., Malonyl Isoflavone Glycosides inSoybean Seeds (Glycine max MERRILL)(Food&Nutrition)[J]. Agricultural andBiological Chemistry,1991,55(9),pp2227-2233.
    [28].旭格拉,陈瑾,大豆异黄酮功能研究进展[J].新疆师范大学学报:自然科学版,2009,27(4),pp36-38.
    [29]. Ferguson, B. J.,Indrasumunar, A.,Hayashi, S., etc., Molecular analysis oflegume nodule development and autoregulation[J]. Journal of Integrative PlantBiology,2010,52(1),pp61-76.
    [30]. Dixon, R. A.,Sumner, L. W., Legume natural products: understanding andmanipulating complex pathways for human and animal health[J]. Plant Physiology,2003,131(3),pp878-885.
    [31]. Subramanian, S.,Graham, M. Y.,Yu, O., etc., RNA interference of soybeanisoflavone synthase genes leads to silencing in tissues distal to the transformation siteand to enhanced susceptibility to Phytophthora sojae[J]. Plant Physiology,2005,137(4),pp1345-1353.
    [32]. Ferguson, B. J.,Mathesius, U., Signaling interactions during noduledevelopment[J]. Journal of Plant Growth Regulation,2003,22(1),pp47-72.
    [33]. Kurzer, M. S., Hormonal effects of soy in premenopausal women and men[J].The Journal of nutrition,2002,132(3),pp570S-573S.
    [34]. Han, K. K.,Soares Jr, J. M.,Haidar, M. A., etc., Benefits of soy isoflavonetherapeutic regimen on menopausal symptoms[J]. Obstetrics&Gynecology,2002,99(3),p389.
    [35]. Kritz-Silverstein, D.,Goodman-Gruen, D. L., Usual dietary isoflavone intake,bone mineral density, and bone metabolism in postmenopausal women[J]. Journal ofwomen's health&gender-based medicine,2002,11(1),pp69-78.
    [36]. Chen, Z.,Hu, Y.,Wu, H., etc., Synthesis and biological evaluation offlavonoids as vasorelaxant agents[J]. Bioorganic&medicinal chemistry letters,2004,14(15),pp3949-3952.
    [37]. Weisshaar, B.,Jenkins, G. I., Phenylpropanoid biosynthesis and itsregulation[J]. Current opinion in plant biology,1998,1(3),pp251-257.
    [38]. Lee, B. H.,Jeong, S. M.,Jung, S., etc., Quercetin inhibits the5-hydroxytryptamine type3receptor-mediated ion current by interacting withpre-transmembrane domain I[J]. Molecules and cells,2005,20(1),p69.
    [39]. Kim, J. D.,Liu, L.,Guo, W., etc., Chemical structure of flavonols in relation tomodulation of angiogenesis and immune-endothelial cell adhesion[J]. The Journal ofnutritional biochemistry,2006,17(3),pp165-176.
    [40]. Kim, Y. H.,Lee, Y. J., TRAIL apoptosis is enhanced by quercetin through Aktdephosphorylation[J]. Journal of cellular biochemistry,2007,100(4),pp998-1009.
    [41]. Graham, T. L., Flavonoid and isoflavonoid distribution in developingsoybean seedling tissues and in seed and root exudates[J]. Plant Physiology,1991,95(2),p594.
    [42]. Latunde-Dada, A. O.,Cabello-Hurtado, F.,Czittrich, N., etc., Flavonoid6-Hydroxylase from Soybean (Glycine maxL.), a Novel Plant P-450Monooxygenase[J]. Journal of Biological Chemistry,2001,276(3),pp1688-1695.
    [43]. Harborne, J. B.,Baxter, H., The handbook of natural flavonoids. Volume1and Volume2[M]. John Wiley&Sons:1999.
    [44]. Martens, S.,Mith fer, A., Flavones and flavone synthases[J]. Phytochemistry,2005,66(20),pp2399-2407.
    [45]. Lukacin, R.,Matern, U.,Junghanns, K. T., etc., Purification and antigenicityof flavone synthase I from irradiated parsley cells[J]. Archives of Biochemistry andBiophysics,2001,393(1),pp177-183.
    [46]. Martens, S.,Forkmann, G.,Matern, U., etc., Cloning of parsley flavonesynthase I[J]. Phytochemistry,2001,58(1),pp43-46.
    [47]. Lee, Y. J.,Kim, J. H.,Kim, B. G., etc., Characterization of flavone synthase Ifrom rice[J]. BMB Rep,2008,41(1),pp68-71.
    [48]. Kochs, G.,Grisebach, H., Induction and characterization of aNADPH-dependent flavone synthase from cell cultures of soybean[J]. Zeitschrift furNaturforschung. Section C, Biosciences,1987,42(2),pp343-348.
    [49]. Martens, S.,Forkmann, G., Genetic control of flavone synthase II activity inflowers of Gerbera hybrids[J]. Phytochemistry,1998,49(7),pp1953-1958.
    [50]. Zhang, J.,Subramanian, S.,Zhang, Y., etc., Flavone synthases from Medicagotruncatula are flavanone-2-hydroxylases and are important for nodulation[J]. PlantPhysiology,2007,144(2),pp741-751.
    [51]. Kochs, G.,Welle, R.,Grisebach, H., Differential induction of enzyme insoybean cell cultures by elicitor or osmotic stress[J]. Planta,1987,171(4),pp519-524.
    [52]. Schüler, G.,Mith fer, A.,Baldwin, I. T., etc., Coronalon: a powerful tool inplant stress physiology[J]. FEBS letters,2004,563(1),pp17-22.
    [53]. Fliegmann, J.,Furtw ngler, K.,Malterer, G., etc., Flavone synthase II(CYP93B16) from soybean (Glycine max L.)[J]. Phytochemistry,2010,71(5-6),pp508-514.
    [54]. Hagmann, M.,Grisebach, H., Enzymatic rearrangement of flavanone toisoflavone[J]. FEBS letters,1984,175(2),pp199-202.
    [55]. Hashim, M. F.,Hakamatsuka, T.,Ebizuka, Y., etc., Reaction mechamism ofoxidative rearrangement of flavanone in isoflavone biosynthesis[J]. FEBS letters,1990,271(1-2),pp219-222.
    [56]. Stafford, H. A., Flavonoid evolution: an enzymic approach[J]. PlantPhysiology,1991,96(3),p680.
    [57]. Hakamatsuka, T.,Mori, K.,Ishida, S., etc., Purification of2-Hydroxyisoflavanone Dehydratase from the Cell Cultures of Pueraria Lobata inHonour of Professor GH Neil Towers75TH Birthday[J]. Phytochemistry,1998,49(2),pp497-505.
    [58]. Steele, C. L.,Gijzen, M.,Qutob, D., etc., Molecular characterization of theenzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis insoybean[J]. Archives of Biochemistry and Biophysics,1999,367(1),pp146-150.
    [59]. Kim, H. K.,Jang, Y. H.,Baek, I. S., etc., Polymorphism and expression ofisoflavone synthase genes from soybean cultivars[J]. Molecules and cells,2005,19(1),p67.
    [60]. Kim, B. G.,Kim, S. Y.,Song, H. S., etc., Cloning and expression of theisoflavone synthase gene (IFS-Tp) from Trifolium pratense[J]. Mol. Cells,2003,15(3),pp301-6.
    [61]. Holton, T. A.,Cornish, E. C., Genetics and biochemistry of anthocyaninbiosynthesis[J]. The Plant Cell,1995,7(7),p1071.
    [62]. Jin, Z.,Grotewold, E.,Qu, W., etc., Cloning and characterization of aflavanone3-hydroxylase gene from Saussurea medusa[J]. Mitochondrial DNA,2005,16(2),pp121-129.
    [63]. Shen, G.,Pang, Y.,Wu, W., etc., Cloning and characterization of a flavanone3-hydroxylase gene from Ginkgo biloba[J]. Bioscience reports,2006,26(1),pp19-29.
    [64]. Zabala, G.,Vodkin, L. O., The wp mutation of Glycine max carries agene-fragment-rich transposon of the CACTA superfamily[J]. The Plant Cell Online,2005,17(10),pp2619-2632.
    [65].崔建东,李艳,牟德华,苯丙氨酸解氨酶(PAL)的研究进展[J].食品工业科技,2008,(7),pp306-308.
    [66].王燕,许锋,程水源,植物查尔酮合成酶分子生物学研究进展[J].河南农业科学,2007,(8),pp5-9.
    [67]. Chen, X.,Xu, Z., Recent progress in biotechnology and genetic engineering ofmedicinal plants in China[J]. Medicinal Chemistry Research,1996,6(4),pp215-224.
    [68]. Verpoorte, R.,Van Der Heijden, R.,Ten Hoopen, H., etc., Metabolicengineering of plant secondary metabolite pathways for the production of finechemicals[J]. Biotechnology letters,1999,21(6),pp467-479.
    [69]. Oksman-Caldentey, K. M.,Inzé, D., Plant cell factories in the post-genomicera: new ways to produce designer secondary metabolites[J]. Trends in plant science,2004,9(9),pp433-440.
    [70]. Jung, W. S.,Heo, H. Y., Review: Manipulating Isoflavone Levels in Plants[J].Journal of Plant Biotechnology,2003,5(3),pp149-155.
    [71]. Jung, W.,Yu, O.,Lau, S. M. C., etc., Identification and expression ofisoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes[J].Nature Biotechnology,2000,18(2),pp208-212.
    [72].何水林,参与植物次生代谢调控的转录因子及其在植物次生代谢遗传改良中的应用[J].热带亚热带植物学报,2004,12(4),pp374-380.
    [73]. Broun, P., Transcription factors as tools for metabolic engineering inplants[J]. Current opinion in plant biology,2004,7(2),pp202-209.
    [74]. Paz-Ares, J.,Ghosal, D.,Wienand, U., etc., The regulatory c1locus of Zeamays encodes a protein with homology to myb proto-oncogene products and withstructural similarities to transcriptional activators[J]. The EMBO journal,1987,6(12),p3553.
    [75]. Ray, H.,Yu, M.,Auser, P., etc., Expression of anthocyanins andproanthocyanidins after transformation of alfalfa with maize Lc[J]. Plant Physiology,2003,132(3),pp1448-1463.
    [76]. Lloyd, A. M.,Walbot, V.,Davis, R. W., Arabidopsis and Nicotianaanthocyanin production activated by maize regulators R and C1[J]. Science,1992,258(5089),pp1773-1775.
    [77]. Bradley, J. M.,Davies, K. M.,Deroles, S. C., etc., The maize Lc regulatorygene up‐regulates the flavonoid biosynthetic pathway of Petunia[J]. The PlantJournal,1998,13(3),pp381-392.
    [78]. Mooney, M.,Desnos, T.,Harrison, K., etc., Altered regulation of tomato andtobacco pigmentation genes caused by the delila gene of Antirrhinum[J]. The PlantJournal,1995,7(2),pp333-339.
    [79]. Goldsbrough, A. P.,Tong, Y.,Yoder, J. I., Lc as a non‐destructive visualreporter and transposition excision marker gone for tomato[J]. The Plant Journal,1996,9(6),pp927-933.
    [80]. Bovy, A.,De Vos, R.,Kemper, M., etc., High-flavonol tomatoes resulting fromthe heterologous expression of the maize transcription factor genes LC and C1[J].The Plant Cell Online,2002,14(10),pp2509-2526.
    [81]. Grotewold, E.,Chamberlin, M.,Snook, M., etc., Engineering Secondar yMetabolism in Maize Cells by Ectopic Expression of Transcription Factors[J]. ThePlant Cell Online,1998,10(5),pp721-740.
    [82]. Yu, O.,Shi, J.,Hession, A. O., etc., Metabolic engineering to increaseisoflavone biosynthesis in soybean seed[J]. Phytochemistry,2003,63(7),pp753-763.
    [83]. Jorgensen, R., Altered gene expression in plants due to trans interactionsbetween homologous genes[J]. Trends in biotechnology,1990,8(12),p340.
    [84]. Guo, S.,Kemphues, K. J., par-1, a gene required for establishing polarity inC. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetricallydistributed[J]. Cell,1995,81(4),p611.
    [85]. Fire, A.,Xu, S. Q.,Montgomery, M. K., etc., Potent and specific geneticinterference by double-stranded RNA in Caenorhabditis elegans[J]. Nature,1998,391(6669),pp806-811.
    [86]. Baulcombe, D., RNA silencing in plants[J]. Nature,2004,431(7006),pp356-363.
    [87]. Vaucheret, H., Post-transcriptional small RNA pathways in plants:mechanisms and regulations[J]. Genes&Development,2006,20(7),pp759-771.
    [88]. Matzke, M. A.,Birchler, J. A., RNAi-mediated pathways in the nucleus[J].Nature Reviews Genetics,2005,6(1),pp24-35.
    [89]. Meister, G.,Landthaler, M.,Dorsett, Y., etc., Sequence-specific inhibition ofmicroRNA-and siRNA-induced RNA silencing[J]. Rna,2004,10(3),pp544-550.
    [90]. Zamore, P. D.,Tuschl, T.,Sharp, P. A., etc., RNAi:: Double-Stranded RNADirects the ATP-Dependent Cleavage of mRNA at21to23Nucleotide Intervals[J].Cell,2000,101(1),pp25-33.
    [91]. Nyk nen, A.,Haley, B.,Zamore, P. D., ATP requirements and smallinterfering RNA structure in the RNA interference pathway[J]. Cell,2001,107(3),pp309-321.
    [92]. Jorgensen, R. A.,Atkinson, R. G.,Forster, R. L. S., etc., An RNA-basedinformation superhighway in plants[J]. Science,1998,279(5356),p1486.
    [93]. Feinberg, E. H.,Hunter, C. P., Transport of dsRNA into cells by thetransmembrane protein SID-1[J]. Science,2003,301(5639),pp1545-1547.
    [94]. Travella, S.,Klimm, T. E.,Keller, B., RNA interference-based gene silencingas an efficient tool for functional genomics in hexaploid bread wheat[J]. PlantPhysiology,2006,142(1),pp6-20.
    [95]. Ivashuta, S.,Liu, J.,Lohar, D. P., etc., RNA interference identifies acalcium-dependent protein kinase involved in Medicago truncatula rootdevelopment[J]. The Plant Cell Online,2005,17(11),pp2911-2921.
    [96]. Kong, Z.,Li, M.,Yang, W., etc., A novel nuclear-localized CCCH-type zincfinger protein, OsDOS, is involved in delaying leaf senescence in rice[J]. PlantPhysiology,2006,141(4),pp1376-1388.
    [97]. Kumagai, H.,Kinoshita, E.,Ridge, R. W., etc., RNAi knock-down ofENOD40s leads to significant suppression of nodule formation in Lotus japonicus[J].Plant and cell physiology,2006,47(8),pp1102-1111.
    [98].李小平,马媛媛,李鹏丽, etc.,利用RNA干扰技术敲减rlpk2基因的表达可以延缓大豆叶片衰老[J].科学通报,2005,50(11),pp1090-1096.
    [99]. Liu, Q.,Singh, S. P.,Green, A. G., High-stearic and high-oleic cottonseed oilsproduced by hairpin RNA-mediated post-transcriptional gene silencing[J]. PlantPhysiology,2002,129(4),pp1732-1743.
    [100]. Lucioli, A.,Noris, E.,Brunetti, A., etc., Tomato yellow leaf curl Sardinia virusrep-derived resistance to homologous and heterologous geminiviruses occurs bydifferent mechanisms and is overcome if virus-mediated transgene silencing isactivated[J]. Journal of virology,2003,77(12),pp6785-6798.
    [101]. Davuluri, G. R.,Van Tuinen, A.,Fraser, P. D., etc., Fruit-specificRNAi-mediated suppression of DET1enhances carotenoid and flavonoid content intomatoes[J]. Nature Biotechnology,2005,23(7),pp890-895.
    [102]. Mattoo, A. K.,Shukla, V.,Fatima, T., etc., Genetic engineering to enhancecrop-based phytonutrients (nutraceuticals) to alleviate diet-related diseases[J].Bio-Farms for Nutraceuticals,2011, pp122-143.
    [103]. Stevens, R.,Grelon, M.,Vezon, D., etc., A CDC45Homolog in Arabidopsis IsEssential for Meiosis, as Shown by RNA Interference–Induced Gene Silencing[J].The Plant Cell Online,2004,16(1),pp99-113.
    [104]. Miki, D.,Itoh, R.,Shimamoto, K., RNA silencing of single and multiplemembers in a gene family of rice[J]. Plant Physiology,2005,138(4),pp1903-1913.
    [105]. Waterhouse, P. M.,Graham, M. W.,Wang, M. B., Virus resistance and genesilencing in plants can be induced by simultaneous expression of sense and antisenseRNA[J]. Proceedings of the National Academy of Sciences,1998,95(23),p13959.
    [106]. Wesley, S. V.,Helliwell, C. A.,Smith, N. A., etc., Construct design for efficient,effective and high‐throughput gene silencing in plants[J]. The Plant Journal,2001,27(6),pp581-590.
    [107]. Smith, N. A.,Singh, S. P.,Wang, M. B., etc., Gene expression: Total silencingby intron-spliced hairpin RNAs[J]. Nature,2000,407(6802),pp319-320.
    [108]. Hannon, G. J., RNAi: A guide to gene silencing[M]. Cold Spring HarborLaboratory Pr:2003.
    [109]. Chuang, C. F.,Meyerowitz, E. M., Specific and heritable genetic interferenceby double-stranded RNA in Arabidopsis thaliana[J]. Proceedings of the NationalAcademy of Sciences,2000,97(9),p4985.
    [110].王雷,种康,许智宏,植物功能基因组学研究的有效工具———RNAi技术[J].植物生理学通讯,2003,39(6),pp705-710.
    [111]. Helliwell, C.,Waterhouse, P., Constructs and methods for high-throughputgene silencing in plants[J]. Methods,2003,30(4),pp289-295.
    [112]. Brummell, D. A.,Balint‐Kurti, P. J.,Harpster, M. H., etc., Inverted repeat ofa heterologous3′‐untranslated region for high‐efficiency, high‐throughputgene silencing[J]. The Plant Journal,2003,33(4),pp793-800.
    [113]. Lee, H.,Humann, J. L.,Pitrak, J. S., etc., Translation start sequences affectthe efficiency of silencing of Agrobacterium tumefaciens T-DNA oncogenes[J]. PlantPhysiology,2003,133(3),pp966-977.
    [114]. Poppenberger, B.,Fujioka, S.,Soeno, K., etc., The UGT73C5of Arabidopsisthaliana glucosylates brassinosteroids[J]. Proceedings of the National Academy ofSciences of the United States of America,2005,102(42),p15253.
    [115]. De Block, M.,Herrera-Estrella, L.,Van Montagu, M., etc., Expression offoreign genes in regenerated plants and in their progeny[J]. The EMBO journal,1984,3(8),p1681.
    [116]. Horsch, R. B.,Fraley, R. T.,Rogers, S. G., etc., Inheritance of functionalforeign genes in plants[J]. Science,1984,223(4635),p496.
    [117]. Hinchee, M. A. W.,Connor-Ward, D. V.,Newell, C. A., etc., Production oftransgenic soybean plants using Agrobacterium-mediated DNA transfer[J]. NatureBiotechnology,1988,6(8),pp915-922.
    [118]. Horsch, R.,Fry, J.,Hoffmann, N., etc., A simple and general method fortransferring genes into plants[J]. Science,1985,227pp1229-1231.
    [119]. Facciotti, D.,O'Neal, J.,Lee, S., etc., Light-inducible expression of a chimericgene in soybean tissue transformed with Agrobacterium[J]. Nature Biotechnology,1985,3(3),pp241-246.
    [120]. Parrott, W.,Hoffman, L.,Hildebrand, D., etc., Recovery of primarytransformants of soybean[J]. Plant Cell Reports,1989,7(8),pp615-617.
    [121]. Sanford, J. C.,THEODORE, M. K.,EDWARD, D., etc., Delivery ofsubstances into cells and tissues using a particle bombardment process[J].Particulate Science and Technology,1987,5(1),pp27-37.
    [122]. McCabe, D. E.,Swain, W. F.,Martinell, B. J., etc., Stable transformation ofsoybean (Glycine max) by particle acceleration[J]. Nature Biotechnology,1988,6(8),pp923-926.
    [123]. Trick, H. N.,Dinkins, R. D.,Santarém, E. R., etc., Recent advances in soybeantransformation[J]. Plant Tissue Culture and Biotechnology,1997,3pp9-26.
    [124]. Huang, G.,Dong, Y.,Sun, J., Introduction of exogenous DNA into cotton viathe pollen-tube pathway with GFP as a reporter[J]. Chinese science bulletin,1999,44(8),pp698-701.
    [125]. Ohta, Y., High-efficiency genetic transformation of maize by a mixture ofpollen and exogenous DNA[J]. Proceedings of the National Academy of Sciences,1986,83(3),p715.
    [126].雷勃钧,尹光初,卢翠华,外源DNA直接导入大豆的研究[J].大豆科学,1991,10(1),pp58-62.
    [127].丁群星,谢友菊,戴景瑞, etc.,用子房注射法将Bt毒蛋白基因导入玉米的研究[J].中国科学B辑,1993,23(7),pp707-713.
    [128]. Shou, H.,Palmer, R. G.,Wang, K., Irreproducibility of the soybeanpollen-tube pathway transformation procedure[J]. Plant molecular biology reporter,2002,20(4),pp325-334.
    [129]. Chilton, M. D.,Tepfer, D. A.,Petit, A., etc., Agrobacterium rhizogenes insertsT-DNA into the genomes of the host plant root cells[J].1982.
    [130]. Ooms, G.,Twell, D.,Bossen, M. E., etc., Developmental regulation of RiTL-DNA gene expression in roots, shoots and tubers of transformed potato (Solanumtuberosum cv. Desiree)[J]. Plant molecular biology,1986,6(5),pp321-330.
    [131]. Verpoorte, R.,Contin, A.,Memelink, J., Biotechnology for the production ofplant secondary metabolites[J]. Phytochemistry Reviews,2002,1(1),pp13-25.
    [132]. Fowler, M. W., Plants, medicines and man[J]. Journal of the Science of Foodand Agriculture,2006,86(12),pp1797-1804.
    [133]. Georgiev, M. I.,Pavlov, A. I.,Bley, T., Hairy root type plant in vitro systems assources of bioactive substances[J]. Applied microbiology and biotechnology,2007,74(6),pp1175-1185.
    [134]. Guillon, S.,Trémouillaux-Guiller, J.,Pati, P. K., etc., Hairy root research:recent scenario and exciting prospects[J]. Current opinion in plant biology,2006,9(3),pp341-346.
    [135].张献龙,唐克轩,植物生物技术[M].科学出版社:2004.
    [136]. Shen, W. H.,Petit, A.,Guern, J., etc., Hairy roots are more sensitive to auxinthan normal roots[J]. Proceedings of the National Academy of Sciences,1988,85(10),p3417.
    [137]. Shkryl, Y. N.,Veremeichik, G. N.,Bulgakov, V. P., etc., Individual andcombined effects of the rolA, B, and C genes on anthraquinone production in Rubiacordifolia transformed calli[J]. Biotechnology and bioengineering,2008,100(1),pp118-125.
    [138]. Stachel, S. E.,Messens, E.,Van Montagu, M., etc., Identification of the signalmolecules produced by wounded plant cells that activate T-DNA transfer inAgrobacterium tumefaciens[J]. Nature,1985,318pp624-629.
    [139]. Sevon, N.,Oksman-Caldentey, K. M., Agrobacterium rhizogenes-mediatedtransformation: root cultures as a source of alkaloids[J]. Planta medica,2002,68(10),pp859-868.
    [140]. Kumar, V.,Jones, B.,Davey, M., Transformation by Agrobacteriumrhizogenes and regeneration of transgenic shoots of the wild soybean Glycineargyrea[J]. Plant Cell Reports,1991,10(3),pp135-138.
    [141]. Zhi, B. H.,Alfermann, A., Diterpenoid production in hairy root cultures ofSalvia miltiorrhiza[J]. Phytochemistry,1993,32(3),pp699-703.
    [142]. Pavlov, A.,Kovatcheva, P.,Georgiev, V., etc., Biosynthesis and radicalscavenging activity of betalains during the cultivation of red beet (Beta vulgaris)hairy root cultures[J]. Zeitschrift fur Naturforschung C-Journal of Biosciences,2002,57(7-8),pp640-644.
    [143]. Rahman, L.,Ikenaga, T.,Kitamura, Y., Penicillin derivatives induce chemicalstructure-dependent root development, and application for plant transformation[J].Plant Cell Reports,2004,22(9),pp668-677.
    [144]. Palazón, J.,Moyano, E.,Cusido, R., etc., Alkaloid production inDuboisia hybrid hairy roots and plants overexpressing the h6h gene[J].Plant science,2003,165(6),pp1289-1295.
    [145]. Flem-Bonhomme, V. L.,Laurain-Mattar, D.,Fliniaux, M., Hairy rootinduction of Papaver somniferum var. album, a difficult-to-transform plant, by A.rhizogenes LBA9402[J]. Planta,2004,218(5),pp890-893.
    [146]. Xie, D.,Zou, Z.,Ye, H., etc., Selection of hairy root clones of Artemisia annuaL. for artemisinin production[J]. Israel Journal of Plant Sciences,2001,49(2),pp129-134.
    [147]. Crane, C.,Wright, E.,Dixon, R. A., etc., Transgenic Medicago truncatulaplants obtained from Agrobacterium tumefaciens-transformed roots andAgrobacterium rhizogenes-transformed hairy roots[J]. Planta,2006,223(6),pp1344-1354.
    [148]. Park, S. U.,Facchini, P. J., Agrobacterium rhizogenes‐mediatedtransformation of opium poppy, Papaver somniferum L., and California poppy,Eschscholzia californica Cham., root cultures[J]. Journal of experimental botany,2000,51(347),pp1005-1016.
    [149]. Kieran, P.,MacLoughlin, P.,Malone, D., Plant cell suspension cultures: someengineering considerations[J]. Journal of biotechnology,1997,59(1),pp39-52.
    [150]. Ramachandra Rao, S.,Ravishankar, G., Plant cell cultures: Chemicalfactories of secondary metabolites[J]. Biotechnology Advances,2002,20(2),pp101-153.
    [151]. Chattopadhyay, S.,Farkya, S.,Srivastava, A. K., etc., Bioprocessconsiderations for production of secondary metabolites by plant cell suspensioncultures[J]. Biotechnology and Bioprocess Engineering,2002,7(3),pp138-149.
    [152]. Giri, A.,Narasu, M. L., Transgenic hairy roots:: recent trends andapplications[J]. Biotechnology Advances,2000,18(1),pp1-22.
    [153]. Bais, H.,Sudha, G.,George, J., etc., Influence of exogenous hormones ongrowth and secondary metabolite production in hairy root cultures of Cichoriumintybus L. cv. Lucknow local[J]. In Vitro Cellular&Developmental Biology-Plant,2001,37(2),pp293-299.
    [154]. Shi, H. P.,Kintzios, S., Genetic transformation of Pueraria phaseoloides withAgrobacterium rhizogenes and puerarin production in hairy roots[J]. Plant CellReports,2003,21(11),pp1103-1107.
    [155]. Farkya, S.,Bisaria, V. S., Exogenous Hormones Affecting Morphology andBiosynthetic Potential of Hairy Root Line (LYR2i) of Linum album[J].Journal of bioscience and bioengineering,2008,105(2),pp140-146.
    [156]. Chang, C. K.,Chang, K. S.,Lin, Y. C., etc., Hairy root cultures ofGynostemma pentaphyllum (Thunb.) Makino: a promising approach for theproduction of gypenosides as an alternative of ginseng saponins[J]. Biotechnologyletters,2005,27(16),pp1165-1169.
    [157]. Wink, M.,Alfermann, A. W.,Franke, R., etc., Sustainable bioproduction ofphytochemicals by plant in vitro cultures: anticancer agents[J]. Plant GeneticResources: Characterization and Utilization,2005,3(02),pp90-100.
    [158]. Weathers, P.,Bunk, G.,McCoy, M., The effect of phytohormones on growthand artemisinin production in Artemisia annua hairy roots[J]. In Vitro Cellular&Developmental Biology-Plant,2005,41(1),pp47-53.
    [159]. Dhakulkar, S.,Ganapathi, T.,Bhargava, S., etc., Induction of hairy roots in Gmelina arborea Roxb. and production of verbascoside in hairy roots[J].Plant science,2005,169(5),pp812-818.
    [160]. Fu, C. X.,Xu, Y.,Zhao, D. X., etc., A comparison between hairy root culturesand wild plants of Saussurea involucrata in phenylpropanoids production[J]. PlantCell Reports,2006,24(12),pp750-754.
    [161]. Georgiev, M.,Heinrich, M.,Kerns, G., etc., Production of iridoids andphenolics by transformed Harpagophytum procumbens root cultures[J]. Engineeringin Life Sciences,2006,6(6),pp593-596.
    [162]. Pavlov, A.,Bley, T., Betalains biosynthesis by Beta vulgaris L. hairyroot culture in a temporary immersion cultivation system[J]. Process Biochemistry,2006,41(4),pp848-852.
    [163]. Sung, L. S.,Huang, S. Y., Lateral root bridging as a strategy to enhance L‐DOPA production in Stizolobium hassjoo hairy root cultures by using a meshhindrance mist trickling bioreactor[J]. Biotechnology and bioengineering,2006,94(3),pp441-447.
    [164]. Schmidt, J. F.,Moore, M. D.,Pelcher, L. E., etc., High efficiencyAgrobacterium rhizogenes-mediated transformation of Saponaria vaccariaL.(Caryophyllaceae) using fluorescence selection[J]. Plant Cell Reports,2007,26(9),pp1547-1554.
    [165]. Jayaraj, J.,Devlin, R.,Punja, Z., Metabolic engineering of novelketocarotenoid production in carrot plants[J]. Transgenic research,2008,17(4),pp489-501.
    [166]. Magnotta, M.,Murata, J.,Chen, J., etc., Expression ofdeacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots[J].Phytochemistry,2007,68(14),pp1922-1931.
    [167]. Kim, O. T.,Bang, K. H.,Shin, Y. S., etc., Enhanced production of asiaticosidefrom hairy root cultures of Centella asiatica (L.) Urban elicited by methyljasmonate[J]. Plant Cell Reports,2007,26(11),pp1941-1949.
    [168]. Tiwari, R. K.,Trivedi, M.,Guang, Z. C., etc., Genetic transformation ofGentiana macrophylla with Agrobacterium rhizogenes: growth and production ofsecoiridoid glucoside gentiopicroside in transformed hairy root cultures[J]. PlantCell Reports,2007,26(2),pp199-210.
    [169]. Higa, A.,Miyamoto, E.,Kitamura, Y., Root tip-dependent, active riboflavinsecretion by Hyoscyamus albus hairy roots under iron deficiency[J]. PlantPhysiology and Biochemistry,2008,46(4),pp452-460.
    [170]. Chintapakorn, Y.,Hamill, J. D., Antisense-mediated reduction in ADCactivity causes minor alterations in the alkaloid profile of cultured hairy roots andregenerated transgenic plants of Nicotiana tabacum[J]. Phytochemistry,2007,68(19),pp2465-2479.
    [171]. Cho, H. J.,Farrand, S. K.,Noel, G. R., etc., High-efficiency induction ofsoybean hairy roots and propagation of the soybean cyst nematode[J]. Planta,2000,210(2),pp195-204.
    [172]. Qu, X.,CHRIST, B. J., In Vitro Culture of the Obligate Parasite Spongosporasubterranea (Cercozoa; Plasmodiophorida) Associated with Root‐InducingTransferred‐DNA Transformed Potato Hairy Roots[J]. Journal of EukaryoticMicrobiology,2007,54(6),pp465-467.
    [173]. Lozovaya, V. V.,Lygin, A. V.,Zernova, O. V., etc., Isoflavonoid accumulationin soybean hairy roots upon treatment with Fusarium solani[J]. PlantPhysiology and Biochemistry,2004,42(7),pp671-679.
    [174]. Lozovaya, V. V.,Lygin, A. V.,Zernova, O. V., etc., Modification of phenolicmetabolism in soybean hairy roots through down regulation of chalcone synthase orisoflavone synthase[J]. Planta,2007,225(3),pp665-679.
    [175]. Mingliang, C.,Bingliang, W., The Status and Prospects of GeneticTransformation in Several Flowers[J]. Acta Horticulturae Sinica,2002, p S1.
    [176]. Mitiouchkina, T. Y.,Dolgov, S. Modification of chrysanthemum plant andflower architecture by rolC gene from Agrobacterium rhizogenes introduction[A], In1998; pp163-172.
    [177]. Hartman, G. L.,West, E. D.,Herman, T. K., Crops that feed the World2.Soybean—worldwide production, use, and constraints caused by pathogens andpests[J]. Food Security,2011,3(1),pp5-17.
    [178]. Hartman, G. L.,Sinclair, J. B.,Rupe, J. C., Compendium of soybeandiseases[M]. American Phytopathological Society (APS Press):1999.
    [179]. Widholm, J. M.,Finer, J. J.,Vodkin, L. O., etc., Soybean[J]. Geneticmodification of plants,2010, pp473-498.
    [180]. Paxton, J., Phytoalexins, phenolics and other antibiotics in roots resistant tosoil-borne fungi[J]. Biology and Control of Soil-Borne Plant Pathogens. GW Bruehl,ed. American Phytopathological Society, St. Paul, MN,1974, pp185-192.
    [181]. Albersheim, P.,Valent, B. S., Host-pathogen interactions in plants. Plants,when exposed to oligosaccharides of fungal origin, defend themselves byaccumulating antibiotics[J]. The Journal of cell biology,1978,78(3),pp627-643.
    [182]. Paxton, J. D.,Groth, J.,Graham, D. T., Constraints on pathogens attackingplants[J]. Critical reviews in plant sciences,1994,13(1),pp77-95.
    [183]. Tian, L.,Pang, Y.,Dixon, R. A., Biosynthesis and genetic engineering ofproanthocyanidins and (iso) flavonoids[J]. Phytochemistry Reviews,2008,7(3),pp445-465.
    [184].马鹏鹏,薛社普,韩代书, RNA干扰技术的原理与应用[J].中国组织化学与细胞化学杂志,2004,12(2),pp201-207.
    [185].向太和,王利琳,庞基良, etc.,发根农杆菌K599对大豆,黄瓜和凤仙花活体感染生根的研究[J].遗传,2006,27(5),pp783-786.
    [186].沈忠伟,许昱,夏犇, etc.,植物类黄酮次生代谢生物合成相关转录因子及其在基因工程中的应用[J].分子植物育种,2008,6(3),pp542-548.
    [187]. Dixon, R.,Harrison, M.,Lamb, C., Early events in the activation of plantdefense responses[J]. Annual Review of Phytopathology,1994,32(1),pp479-501.
    [188]. Hahlbrock, K.,Scheel, D., Physiology and molecular biology ofphenylpropanoid metabolism[J]. Annual Review of Plant Biology,1989,40(1),pp347-369.
    [189]. Koch, W.,Wagner, C.,Seitz, H. U., Elicitor-induced cell death and phytoalexinsynthesis in Daucus carota L[J]. Planta,1998,206(4),pp523-532.
    [190]. Dixon, R. A.,Paiva, N. L., Stress-induced phenylpropanoid metabolism[J].The Plant Cell,1995,7(7),p1085.
    [191]. Aly, A. H.,Debbab, A.,Kjer, J., etc., Fungal endophytes from higher plants: aprolific source of phytochemicals and other bioactive natural products[J]. FungalDiversity,2010,41(1),pp1-16.
    [192]. Molnár, K.,Farkas, E., Current results on biological activities of lichensecondary metabolites: a review[J]. Zeitschrift fur Naturforschung—Section CJournal of Biosciences,2010,65(3-4),pp157-173.
    [193]. Abdallah, H. H.,Mavri, J.,Repi, M., etc., Chemical Reaction of SoybeanFlavonoids with DNA: A Computational Study Using the Implicit Solvent Model[J].International Journal of Molecular Sciences,2012,13(2),pp1269-1283.
    [194]. Jiang, Y. N.,Wang, B.,Li, H., etc., Flavonoid Production Is EffectivelyRegulated by RNAi Interference of Two Flavone Synthase Genes from Glycinemax[J]. Journal of Plant Biology,2010,53(6),pp425-432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700