紫铜表面MPTES薄膜的制备及耐腐蚀性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高紫铜的耐腐蚀性能,采用3-巯丙基三乙氧基硅烷(MPTES)对紫铜进行表面硅烷化处理。分别采用不同的硅烷溶液pH值和不同的水解时间在紫铜表面制备MPTES薄膜。利用傅里叶变换红外光谱(FTIR)分析了不同条件下硅烷的水解状态及其对所得MPTES薄膜结构的影响;综合利用极化曲线、电化学阻抗谱(EIS)、循环伏安曲线和盐水浸泡实验分析测试了不同制备工艺对MPTES薄膜耐腐蚀性能的影响规律;利用扫描电镜(SEM)及FTIR分析了MPTES薄膜在3.5%(w) NaCl溶液中浸泡后形貌及结构特征的变化。实验结果表明:
     酸性硅烷溶液中MPTES的水解程度高于碱性溶液,所得的薄膜中硅烷分子以Si-O-Si键相互交联的程度较高。由酸性硅烷溶液制备的MPTES薄膜的耐腐蚀性能优于碱性硅烷溶液中制备的薄膜。
     在酸性溶液中MPTES需要至少24h才能达到较好的水解状态。水解时间为2h的MPTES薄膜中存在较多缺陷;而水解时间较长的薄膜中产生了较多长链的Si-O-Si结构且缺陷较少。与光板相比,水解时间为2h的薄膜使紫铜的腐蚀电流密度降低了1-2个数量级,而水解时间较长的薄膜使其降低了3个数量级。在循环伏安测试和电化学阻抗谱测试过程中水解时间为48 h的MPTES薄膜表现出最佳的耐腐蚀性能。
     水解2h的MPTES薄膜覆盖紫铜样品在3.5%(w) NaCl溶液中浸泡1周后表面即出现点蚀,4周后出现大片腐蚀区域。水解48 h的样品在浸泡1周时无明显腐蚀迹象,4周后出现点蚀。浸泡后的MPTES薄膜中Si-O-Si键发生了断裂。
Films of (3-mercaptopropyl)triethoxysilane (MPTES) with different solution pH value or different hydrolysis time were formed on copper surface. Fourier transform infrared spectroscopy (FTIR) was used for structural characterization of MPTES films. Polarization curves, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry measurements were used for evaluating the corrosion protective performance of MPTES films. Scanning electron microscope (SEM) and FTIR analysis were used for characterization of surface morphology and structures of the films after immersion in 3.5%(w) NaCl solution. The results are as follows:
     The hydrolysis degree of MPTES in acid silane solution is higher than that in basic silane solution. The film obtained in acid silane solution contains more Si-O-Si bonds and shows better corrosion protective performance.
     At least 24 hours are required to obtain a well hydrolyzed silane solution in acid condition. The MPTES film obtained in the 2 h hydrolyzed solution contains a number of defects, while the films obtained in long time hydrolyzed solutions are dominated with long chain Si-O-Si units and contain fewer defects. Compared with the bare copper, the corrosion current density of the specimen covered with 2 h hydrolyzed film is reduced by 1-2 orders of magnitude, while the films with longer hydrolysis time cause a decrease by about 3 orders of magnitude. The MPTES film obtained in 48 h hydrolyzed solution shows the best corrosion protective performance in cyclic voltammetry and EIS measurements.
     After 1 week of immersion in NaCl solution, pitting occurs on the surface of copper covered by 2 h hydrolyzed MPTES film; after 4 weeks the corrosion become more severe. For 48 h hydrolyzed sample no corrosion can be observed after 1 week but pitting occurs after 4 weeks. The Si-O-Si bonds in MPTES films are partly broken after immersion.
引文
[1]严川伟,何毓番.铜在含S02大气中的腐蚀初期规律和机理.中国有色金属学报,2000,10(005):645-648
    [2]杨敏,王振尧.铜在干湿交替条件下的大气腐蚀.装备环境工程,2007,(004):6-9
    [3]Rahmouni K, Keddam M, Srhiri A, et al. Corrosion of copper in 3% NaCl solution polluted by sulphide ions. Corrosion Science,2005,47(12):3249-3266
    [4]安百刚,张学元,韩恩厚.沈阳大气环境下纯铜的初期腐蚀行为.金属学报,2007,43(001):77-81
    [5]曹楚南.腐蚀电化学原理.北京:化学工业出版社,2004.232-249
    [6]陈玉红.席夫碱自组装膜对铜的缓蚀作用:[硕士学位论文].石家庄:河北师范大学,2003
    [7]Finsgar M, Milosev I. Inhibition of copper corrosion by 1,2,3-benzotriazole:A review. Corrosion Science,2010,52(9):2737-2749
    [8]Abdullah A M, Al-Kharafi F M, Ateya B G. Intergranular corrosion of copper in the presence of benzotriazole. Scripta materialia,2006,54(9):1673-1677
    [9]Guilminot E, Rameau J J, Dalard F, et al. Benzotriazole as inhibitor for copper with and without corrosion products in aqueous polyethylene glycol. Journal of Applied Electrochemistry,2000,30(1):21-28
    [10]Zhou G D, Shao H, Loo B H. A study of the copper electrode behavior in borax buffer solutions containing chloride ions and benzotriazole-type inhibitors by voltammetry and the photocurrent response method. Journal of Electroanalytical Chemistry,1997,421(1-2):129-135
    [11]Zhang D, Gao L, Zhou G. Inhibition of copper corrosion in aerated hydrochloric acid solution by heterocyclic compounds containing a mercapto group. Corrosion Science,2004,46(12):3031-3040
    [12]Antonijevic M M, Petrovic M B. Copper corrosion inhibitors. A review. Int. J. Electrochem. Sci,2008,3:1-28
    [13]Sanyal B. Organic Compounds as Corrosion Inhibitors in Different Environments--A Review. Progress in Organic Coatings,1981,9(2):165-236
    [14]Loo B H, Ibrahim A, Emerson M. Analysis of surface coverage of benzotriazole and 6-tolyltriazole mixtures on copper electrodes from surface-enhanced Raman spectra. Chemical physics letters,1998,287(3-4):449-454
    [15]Wu Y C, Zhang P, Pickering H W, et al. Effect of KI on improving copper corrosion inhibition efficiency of benzotriazole in sulfuric acid electrolytes. Journal of The Electrochemical Society,1993,140:2791
    [16]Villamil R F V, Corio P, Agostinho S M L, et al. Effect of sodium dodecylsulfate on copper corrosion in sulfuric acid media in the absence and presence of benzotriazole. Journal of Electroanalytical Chemistry,1999,472(2):112-119
    [17]Tornkvist C, Thierry D, Bergman J, et al. Methyl substitution in benzotriazole and its influence on surface structure and corrosion inhibition. Journal of The Electrochemical Society,1989,136:58-64
    [18]Aramaki K, Kiuchi T, Sumiyoshi T, et al. Surface enhanced Raman scattering and impedance studies on the inhibition of copper corrosion in sulphate solutions by 5-substituted benzotriazoles. Corrosion Science,1991,32(5-6):593-607
    [19]Ma H, Chen S, Niu L, et al. Inhibition of copper corrosion by several Schiff bases in aerated halide solutions. Journal of Applied Electrochemistry,2002, 32(1):65-72
    [20]Stupnisek-Lisac E, Gazivoda A, Madzarac M. Evaluation of non-toxic corrosion inhibitors for copper in sulphuric acid. Electrochimica Acta,2002,47(26): 4189-4194
    [21]Munoz A I, Anton J G, Guinon J L, et al. Comparison of inorganic inhibitors of copper, nickel and copper-nickels in aqueous lithium bromide solution. Electrochimica Acta,2004,50(4):957-966
    [22]何俊,于萍,罗运柏.铜缓蚀剂的研究现状与进展.材料保护,2006,39(004):42-47
    [23]杨文庆.钼酸盐系缓蚀剂的进展.材料保护,1995,28(008):16-19
    [24]Raja P B, Sethuraman M G. Natural products as corrosion inhibitor for metals in corrosive media--A review. Materials Letters,2008,62(1):113-116
    [25]Ishibashi M, Itoh M, Nishihara H, et al. Permeability of alkanethiol self-assembled monolayers adsorbed on copper electrodes to molecular oxygen dissolved in 0.5 M Na2So4 solution. Electrochimica Acta,1996,41(2):241-248
    [26]Laibinis P E, Whitesides G M. Self-assembled monolayers of n-alkanethiolates on copper are barrier films that protect the metal against oxidation by air. Journal of the American Chemical Society,1992,114(23):9022-9028
    [27]Laibinis P E, Whitesides G M, Allara D L, et al. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. Journal of the American Chemical Society,1991,113(19):7152-7167
    [28]Yamamoto Y, Nishihara H, Aramaki K. Self-Assembled Layers of Alkanethiols on Copper for Protection Against Corrosion. Journal of The Electrochemical Society,1993,140(2):436-443
    [29]Ma H Y, Yang C, Chen S H, et al. Electrochemical investigation of dynamic interfacial processes at 1-octadecanethiol-modified copper electrodes in halide-containing solutions. Electrochimica Acta,2003,48(28):4277-4289
    [30]Ma H Y, Yang C, Yin B S, et al. Electrochemical characterization of copper surface modified by n-alkanethiols in chloride-containing solutions. Applied Surface Science,2003,218(1-4):143-153
    [31]Hutt D A, Liu C Q. Oxidation protection of copper surfaces using self-assembled monolayers of octadecanethiol. Applied Surface Science,2005,252(2):400-411
    [32]Quan Z, Wu X, Zhao S, et al. Self-assembled monolayers of Schiff bases on copper surfaces. Corrosion,2001,57(03):
    [33]Quan Z L, Chen S H, Li S L. Protection of copper corrosion by modification of self-assembled films of Schiff bases with alkanethiol. Corrosion Science,2001, 43(6):1071-1080
    [34]Quan Z L, Chen S H, Li L, et al. Adsorption behaviour of Schiff base and corrosion protection of resulting films to copper substrate. Corrosion Science, 2002,44(4):703-715
    [35]Ehteshamzade M, Shahrabi T, Hosseini M G. Inhibition of copper corrosion by self-assembled films of new Schiff bases and their modification with alkanethiols in aqueous medium. Applied Surface Science,2006,252(8): 2949-2959
    [36]Plueddemann E P. Silane coupling agents, the second edition. New York:Plenum Press,1991.
    [37]Zhu D Q. Corrosion protection of metals by silane surface treatment:[Ph. D.]. Cincinnati:University of Cincinnati,2005
    [38]van Ooij W J. Replacement of Chromates By Silanes-An Overview, the International Conference on Environmental Friendly Pre-treatments for Aluminium and Other Metals. on website:http://www.sintef.no.2004.
    [39]Pohl E R, Chaves A, Danehey C T, et al. Sterically hindered silanes for waterborne systems:a model study of silane hydrolysis. In:Mittal K L, eds. Silanes and other coupling agents. Utrecht, the Netherlands:VSP,2000.15-25
    [40]Osterholtz F D, Pohl E R. Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes:a review. Journal of Adhesion Science and Technology,1992,6:127-149
    [41]Arkles B, Steinmetz J R, Zazyczny J, et al. Factors contributing to the stability of alkoxysilanes in aqueous solution. Journal of Adhesion Science and Technology, 1992,6:193-206
    [42]van Ooij W J, Zhu D Q, Palanivel V, et al. Overview:The Potential of silanes for chromate replacement in metal finishing industries. Silicon Chemistry,2006, 3(1):11-30
    [43]Cabral A M, Duarte R G, Montemor M F, et al. A comparative study on the corrosion resistance of AA2024-T3 substrates pre-treated with different silane solutions:Composition of the films formed. Progress in Organic Coatings,2005, 54(4):322-331
    [44]Zucchi F, Grassi V, Frignani A, et al. Influence of a silane treatment in the corrosion resistance of a WE43 magnesium alloy. Surface & Coatings Technology,2006,200(12-13):4136-4143
    [45]Cabral A, Duarte R G, Montemor M F, et al. Analytical characterisation and corrosion behaviour of bis-[triethoxysilylpropyl]tetrasulphide pre-treated AA2024-T3. Corrosion Science,2005,47(3):869-881
    [46]Chen M A., Xie X, Zhang X M. Interactions of BTESPT silane and maleic anhydride grafted polypropylene with epoxy and application to improve adhesive durability between epoxy and aluminium sheet. Progress in Organic Coatings,2009,66(1):40-51
    [47]陈明安,杨汐,张新明,等. Mg-Gd-Y-Zr合金表面含硫硅烷薄膜的结构与耐蚀性能.中国有色金属学报,2008,18(001):24-29
    [48]van Ooij W J, Zhu D Q. Electrochemical impedance spectroscopy of bis-[triethoxysilypropyl]tetrasulfide on Al 2024-T3 substrates. Corrosion,2001, 57(5):413-427
    [49]Ferreira M G S, Duarte R G, Montemor M F, et al. Silanes and rare earth salts as chromate replacers for pre-treatments on galvanised steel. Electrochimica Acta, 2004,49(17-18):2927-2935
    [50]Trabelsi W, Triki E, Dhouibi L, et al. The use of pre-treatments based on doped silane solutions for improved corrosion resistance of galvanised steel substrates. Surface and Coatings Technology,2006,200(14-15):4240-4250
    [51]Palanivel V, Huang Y, van Ooij W J. Effects of addition of corrosion inhibitors to silane films on the performance of AA2024-T3 in a 0.5 M NaCl solution. Progress in Organic Coatings,2005,53(2):153-168
    [52]Palanivel V, Zhu D Q, van Ooij W J. Nanoparticle-filled silane films as chromate replacements for aluminum alloys. Progress in Organic Coatings,2003,47(3-4): 384-392
    [53]Montemor M F, Ferreira M G S. Analytical and microscopic characterisation of modified bis-[triethoxysilylpropyl] tetrasulphide silane films on magnesium AZ31 substrates. Progress in Organic Coatings,2007,60(3):228-237
    [54]Montemor M F, Trabelsi W, Zheludevich M, et al. Modification of bis-silane solutions with rare-earth cations for improved corrosion protection of galvanized steel substrates. Progress in Organic Coatings,2006,57(1):67-77
    [55]Montemor M F, Ferreira M G S. Electrochemical study of modified bis-[triethoxysilylpropyl] tetrasulfide silane films applied on the AZ31 Mg alloy. Electrochimica Acta,2007,52(27):7486-7495
    [56]Palomino L M, Suegama P H, Aoki I V, et al. Electrochemical study of modified non-functional bis-silane layers on Al alloy 2024-T3. Corrosion Science,2008, 50(5):1258-1266
    [57]Montemor M F, Ferreira M G S. Analytical characterisation and corrosion behaviour of bis-aminosilane coatings modified with carbon nanotubes activated with rare-earth salts applied on AZ31 Magnesium alloy. Surface and Coatings Technology,2008,202(19):4766-4774
    [58]Montemor M F, Pinto R, Ferreira M G S. Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles. Electrochimica Acta,2009,54(22):5179-5189
    [59]Montemor M F, Ferreira M G S. Cerium salt activated nanoparticles as fillers for silane films:Evaluation of the corrosion inhibition performance on galvanised steel substrates. Electrochimica Acta,2007,52(24):6976-6987
    [60]Zhu D Q, van Ooij W J. Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl] amine and vinyltriacetoxysilane. Progress in Organic Coatings,2004,49(1):42-53
    [61]Thompson W R, Pemberton J E. Surface Raman scattering of self-assembled monolayers of (3-mercaptopropyl) trimethoxysilane on silver:orientational effects of hydrolysis and condensation reactions. Chemistry of Materials,1993, 5(3):241-244
    [62]Thompson W R, Cai M, Ho M, et al. Hydrolysis and Condensation of Self-Assembled Monolayers of (3-Mercaptopropyl)trimethoxysilane on Ag and Au Surfaces. Langmuir,1997,13(8):2291-2302
    [63]Tremont R, de Jesus-Cardona H, Garcia-Orozco J, et al. 3-Mercaptopropyltrimethoxysilane as a Cu corrosion inhibitor in KCl solution. Journal of Applied Electrochemistry,2000,30(6):737-743
    [64]Beccaria A M, Bertolotto C. Inhibitory action of 3-trimethoxysilylpropanethiol-1 on copper corrosion in NaCl solutions. Electrochimica Acta,1997,42(9): 1361-1371
    [65]Sinapi F, Julien S, Auguste D, et al. Monolayers and mixed-layers on copper towards corrosion protection. Electrochimica Acta,2008,53(12):4228-4238
    [66]Sinapi F, Delhalle J, Mekhalif Z. XPS and electrochemical evaluation of two-dimensional organic films obtained by chemical modification of self-assembled monolayers of (3-mercaptopropyl)trimethoxysilane on copper surfaces. Materials Science & Engineering C-Biomimetic and Supramolecular Systems,2002,22(2):345-353
    [67]Zucchi F, Grassi V, Frignani A, et al. Inhibition of copper corrosion by silane coatings. Corrosion Science,2004,46(11):2853-2865
    [68]Zucchi F, Frignani A, Grassi V, et al. The formation of a protective layer of 3-mercapto-propyl-trimethoxy-silane on copper. Corrosion Science,2007,49(3): 1570-1583
    [69]陈明安,谢玄,戚海英,等.2A12-T6铝合金表面双-(γ-三乙氧基硅丙基)四硫化物薄膜的特性.物理化学学报,2006,22(008):1025-1029
    [70]Zhu D Q, van Ooij W J. Structural characterization of bis-triethoxysilylpropyltetrasulfide and bis-trimethoxysilylpropylamine silanes by Fourier-transform infrared spectroscopy and electrochemical impedance spectroscopy. Journal of Adhesion Science and Technology,2002,16: 1235-1260
    [71]Li Y S, Lu W J, Wang Y, et al. Studies of (3-mercaptopropyl)trimethoxylsilane and bis(trimethoxysilyl)ethane sol-gel coating on copper and aluminum. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2009, 73(5):922-928
    [72]Li Y S, Wang Y, Tran T, et al. Vibrational spectroscopic studies of (3-mercaptopropyl)trimethoxylsilane sol-gel and its coating. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2005,61(13-14): 3032-3037
    [73]Appa Rao B V, Yakub Iqbal M, Sreedhar B. Self-assembled monolayer of 2-(octadecylthio) benzothiazole for corrosion protection of copper. Corrosion Science,2009,51(6):1441-1452
    [74]Guo W J, Chen S H, Huang B D, et al. Protection of self-assembled monolayers formed from triethyl phosphate and mixed self-assembled monolayers from triethyl phosphate and cetyltrimethyl ammonium bromide for copper against corrosion. Electrochimica Acta,2006,52(1):108-113
    [75]Sherif E S M. Effects of 2-amino-5-(ethylthio)-1,3,4-thiadiazole on copper corrosion as a corrosion inhibitor in 3% NaCl solutions. Applied Surface Science,2006,252(24):8615-8623
    [76]Pu Z C, van Ooij W J, Mark J E. Hydrolysis kinetics and stability of bis (triethoxysilyl) ethane in water-ethanol solution by FTIR spectroscopy. Journal of Adhesion Science and Technology,1997,11(1):29-47
    [77]Tan Y S, Srinivasan M, Pehkonen S O, et al. Effects of ring substituents on the protective properties of self-assembled benzenethiols on copper. Corrosion Science,2006,48(4):840-862
    [78]Zhang D Q, Cai Q R, He X M, et al. The corrosion inhibition of copper in hydrochloric acid solutions by a tripeptide compound. Corrosion Science,2009, 51(10):2349-2354
    [79]Liu T, Yin Y S, Chen S G, et al. Super-hydrophobic surfaces improve corrosion resistance of copper in seawater. Electrochimica Acta,2007,52(11):3709-3713
    [80]Deslouis C, Tribollet B, Mengoli G, et al. Electrochemical behaviour of copper in neutral aerated chloride solution. Ⅱ. Impedance investigation. Journal of Applied Electrochemistry,1988,18(3):384-393
    [81]Curkovic H O, Stupnisek-Lisac E, Takenouti H. Electrochemical quartz crystal microbalance and electrochemical impedance spectroscopy study of copper corrosion inhibition by imidazoles. Corrosion Science,2009,51(10):2342-2348
    [82]Wu X J, Ma H Y, Chen S H, et al. General equivalent circuits for faradaic electrode processes under electrochemical reaction control. Journal of The Electrochemical Society,1999,146(5):1847-1853
    [83]Deflorian F, Rossi S, Fedrizzi L, et al. Integrated electrochemical approach for the investigation of silane pre-treatments for painting copper. Progress in Organic Coatings,2008,63(3):338-344

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700