热镀锌板硅烷钝化技术与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热镀锌板被广泛应用于汽车和家电等行业,但在潮湿环境中镀锌层容易受到腐蚀,在表面会形成白色疏松的腐蚀产物,影响镀锌层的外观质量和腐蚀性。钝化处理能有效改善镀锌层表面的耐蚀性和涂装性,提高其表面质量,延长其使用寿命。但是传统的铬酸盐钝化处理对环境污染严重,对人体危害大。现阶段国内拥有自主知识产权且效果达到铬酸盐钝化水平的无铬钝化技术尚属空白,本文研究了以无毒、无污染的BTESPT硅烷为主要成分,以无机添加剂为辅助的有机、无机复合钝化体系,用来取代传统的铬酸盐钝化处理技术。
     本文确立了以BTESPT硅烷为主要成分的无铬钝化体系,通过单因素实验,利用醋酸铅点滴实验、中性盐雾实验等加速腐蚀试验手段对BTESPT硅烷钝化液配方和钝化工艺参数对于钝化膜性能的影响进行了研究,并通过两轮正交实验优化确定了钝化液的组分和钝化工艺参数:BTESPT,5vol.%;水,14 vol.%;乙酸,0.5vol.%;乙醇,80.5%;钝化液水解温度为35℃;钝化时间为5s;固化温度为120℃;固化时间为30min;钝化液水解时间为72h。又分别通过添加0.001mol/L的硝酸铈和0.02g/L的硅溶胶成功改进了此钝化体系,使之钝化性能可以超过铬酸盐钝化体系。
     研究中采用激光共聚焦显微镜、扫描电子显微镜、原子力显微镜对BTESPT硅烷钝化膜表面微观形貌进行了研究。在微观形貌分析中发现钝化膜表面均匀、完整、致密但存在一些微裂纹。在钝化液中加入硝酸铈和硅溶胶改性后,钝化膜微裂纹减少。
     研究中利用傅立叶红外反射光谱FTIR分析了硅烷钝化膜的结构,结果表明膜中含有SiOH、Si-O-Si、Si-O-Zn、CH2、-SiO-等主要有机官能团。利用XPS光电子能谱分析了BTESPT硅烷钝化膜的元素组成及存在形式。结果表明,钝化膜主要含有Zn、Si、O、S、C等元素。经Ar+溅射深度和成膜元素的窄幅扫描结果显示,钝化膜的最外层可能为SiOH、Si-O-Si、Si-O-C等结构,内层可能为Si-O-Si、Si-O-Zn等结构,界面层可能为ZnO、ZnS、ZnSi03等化合物。并推断出该钝化膜的膜厚度约为200nm。
     研究中通过点滴实验、中性盐雾试验、浸泡实验等加速腐蚀实验证明BTESPT硅烷钝化可以显著改善热镀锌板的耐蚀性,但是由于钝化膜薄且没有自我修复能力,所以长期耐腐蚀性能和铬酸盐钝化膜相比还略有差距。添加0.001mol/L的硝酸铈或0.02g/L的硅溶胶改进后的钝化膜的耐蚀性能均有较大的提高,超过了铬酸盐钝化膜
     研究中运用Tafel极化曲线和EIS交流阻抗谱测试了钝化膜的腐蚀电化学性能。结果表明,经过BTESPT硅烷钝化后的热镀锌试样的腐蚀极化过程是阳极控制型,自腐蚀电位明显的正移,自腐蚀倾向显著的降低;交流阻抗谱为第一象限两个半径较大的的容抗弧,在低频区未出现斜率为1的直线,腐蚀体系受电化学控制。
     热镀锌板经BTESPT硅烷钝化后的耐蚀性优于铬酸盐钝化,钝化工艺操作简单、稳定性好且无毒无污染,有望可以替代铬酸盐钝化技术。
Hot dip galvanized steel plate has been widely used all over the world because of better anti-corrosion properties, but it is easy to erode to form white and loose products which can affect the appearance and corrosion resistance in moist environment. The treatment of passivation is an effective method to improve the performance of corrosion resistance and coating. Generally, as a very effective passivated agent, the chromate was used widely in the world for a long time. But the treatment of passivation can bring serious environmental pollution. Now, there isn't any nontoxic passivated agent, which has self-own intellectual property rights, can replace the chromate passivation. In this article, the organic/inorganic composite passive system, which consists of nontoxic and non-contaminative silane(BTESPT) as the main ingredient and the inorganic additive as the accessorial ingredient, was prepared.
     The non-contaminative BTESPT passive system was researched in this thesis. The composition and technical parameters of the BTESPT passive solution was systematically studied by single factor experiments using the accelerated test methods of Lead acetate dropping test, neutral salt spray test and so all. The 2-round orthogonal test method were used to determinate the best composition and technical parameters of the BTESPT passive solution. The basic compositions of the BTESPT passive solution were as following:BTESPT,5vol.%; deionised water,14 vol.%; acetic acid,0.5 vol.%; ethanol,81.5vol.%. The technical parameters of the passivation were as following:passive solution temperature,35℃; passive solution hydrolysis time,72h; treatment time,5s; curing temperature,120℃; curing time, 30min. By adding 0.001 mol/L cerium nitrate and 0.02g/L Silica Sol, the non-contaminative BTESPT passive system was successfully improved, which made it better than contaminative passive system.
     The Electron Microscope, Atomic Force Microscope and Metallurgical Microscope were used to character the micromorphology on the surface of silane passive films. It was found that there were some microcracks on the surface of the BTESPT passive films. When adding additives such as cerium nitrate or silica sol to modify the BTESPT passive solution, the microcracks were further covered and suppressed, the passive films become more denser so that it reduced the eroding agents such as O2, H2O and Cl- to enter the surface of the zinc. The electrochemical corrosion of the zinc was controlled to improve the corrosion resistance.
     The characterization of the passive films was performed by Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectroscopy(XPS).The test results showed that passive films consist mainly of such organic functional groups as SiOH, Si-O-Si, Si-O-Zn, CH2,-SiO-. The XPS analysis gave information of the chemical composition of the passive films. The XPS testing results showed that consist mainly of such elements as C,O, Si, S, Zn. Sputtering depth and narrow scanning results showed that the outer layers were SiOH、Si-O-Si、Si-O-C. The inner layers were Si-O-Si, Si-O-Zn, etc. The interface layers might consists of ZnO、ZnS、ZnSiO3. Moreover, it was inferred the thickness of passive films is about 200nm.
     The corrosion performance of the passive films was evaluated by accelerated test methods of Lead acetate dropping test, neutral salt spray test. The silane film could give efficient protect to the HDG, but it was not as better as the contaminative film as the film did not have the self-healing ability. The film improved by 0.001 mol/L cerium nitrate or 0.02g/L Silica Sol acted better.
     The corrosion performance of the passive films was evaluated by Tafel polarization cure and electrochemical impedance spectroscopy (EIS). The results were shown that the self-corrosion potential obviously shifted to positive direction, corrosion polarization was controlled by anode process, self-corrosion tendency is significantly reduced. The EIS spectrums of the passive films were composed of two capacitive loops in first quadrant. The beeline that slope is one does not appear in the low frequency district. The corrosive system was controlled by the electrochemical corrosion control system.
     The corrosion resistance of BTESPT passivating treatment is better than that of chromate treatment, and its technical parameters are simple, the stability of passive solution is good. Therefore, it is the most promising alternative technologies of chromate treatment.
引文
1.刘立炳,孙贺民,赵常就等.高耐蚀镀锌钝化膜的耐蚀机理分析[J],表面技术,1999,28(5):13-16.
    2.李宁,黎德育,袁芳等.明度差法研究电镀锌铬酸盐钝化膜的耐蚀性[J],中国腐蚀与防护学报,2000,20(5):293-297.
    3. 胡传忻.表面处理技术手册[M],北京:北京工业大学出版社,2001.
    4. 卢燕平.铬酸-磷酸体系钝化成膜机理的初步探讨[J],金属制品,1995,21(6):22-23
    5.董炽,储荣邦.镀锌层耐蚀性的影响因素[J],材料保护,1999,32(5):13.
    6. L.Fedrizzi, F.J.Rodriguez, S.Rossi. The use of electrochemical techniques to study the corrosion behaviour of organic coatings on steel pretreated with sol-gel zirconia films[J], Electrochimica Acta,2001,46:3715-3724.
    7. H.Motoaki, I.Ryoichi, O.Masazumi. Corrosion protection property of colloidal silicate film on galvanized steel[J], Surface and Coatings Technology,2003,169:679-681.
    8. A.Kunitsugu. Preparation of chromate-free, self-healing polymer films containing sodium silicate on zinc pretreated in a cerium(Ⅲ) nitrate solution for preventing zinc corrosion at scratches in 0.5 M NaCl[J], Corrosion Science,2002,44:1375-1389.
    9. Hinton. International Patent, WO88/06639,1987.
    10.蒋馥华,张萍.锌镀层稀土钝化处理及其在氯化钠溶液中的溶解[J],电镀与涂饰,1999,18(4):1-5.
    11.李鸿宾,陈建设,刘辉等.热镀锌表面铈盐钝化[J],材料与冶金学报,2002,1(3):203-205.
    12.周谟银.钼酸盐在金属表面处理中的应用(1)[J],材料保护,2000,33(10):45-47.
    13.周谟银.钼酸盐在金属表面处理中的应用(2)[J],材料保护,2000,33(11):52-55.
    14.陈锦虹,卢锦堂,许乔瑜等.镀锌层钼酸盐钝化的研究进展[J],电镀与环保,2000,20(1):21-24.
    15. D.Bijimi, D.R.Gabe. Passivation Studies Using Group VIA Anions. Part 1:Anodic Treatment of Tin[J], British Corrosion Journal,1983,18(2):88.
    16. D.Bijimi, D.R.Gabe. Passivation Studies Using Group VIA Anions. Part 2:Cathodic Treatment of Tin[J], British Corrosion Journal,1983,18(2):93.
    17. D.Bijimi, D.R.Gabe. Passivation Studies Using Group VIA Anions. Part 3:Anodic Treatment of Zinc[J], British Corrosion Journal,1983,18(3):138.
    18. GD.Wilcox, D.R.Gabe. Passivation Studies Using Group VIA Anions. Part 4:Cathodic Redox Reactions and Film Formation[J], British Corrosion Journal,1984,19(4):196.
    19. GD.Wilcox, D.R.Gabe.. Passivation Studies Using Group VIA Anions. Part 5:Cathodic Treatment of Zinc[J], British Corrosion Journal,1987,22(4):254.
    20. US Pat 4385940,1983.
    21. UK Pat 2070073,1981.
    22. P.T.Tang, G.Bech-Nielson, Moller. Molybdate Based Alternatives to Chromating as a Passivation Treatment for Zinc[J], Plat and Surface Finishing,1994,81(11):20-28.
    23. P.T.Tang, GBech-Nielson, Moller. Molybdate Based Passivation of Zinc[J], Trans IMF, 1997,75(4):144-152.
    24.李道华,叶向荣等.锌表面Mo(W)-S-Zn簇合物转化膜的XPS和AES研究[J],材料保护,1999,32(4):3-6.
    25. Ke Ping Han, Jing Li Fang. A protective coating of P-Mo-V heteropoly acid on steel [J], Journal of Electron Spectroscopy and Related Phenomena,1997,83:93-98.
    26.周渝生.无铬钝化技术研究的进展[J],钢铁,2003,38(4):68-71.
    27.郑环宇,安茂忠,赖勤志.镀锌层无铬钝化工艺的研究[J],材料保护,2005,38(9):18-22.
    28.张鉴清.富锌涂层的电化学阻抗谱特性[J],中国腐蚀与防护学报,1996,16(3):175-180.
    29. D.R.Cowieson, A.R.Scholefield. Passivation of Tin-Zinc Alloy Coated Steel[J], Trans IMF,1985,63(2):56-67.
    30.肖鑫,龙有前,钟萍.锌镀层钼酸盐-氟化锆体系钝化工艺研究[J],腐蚀科学与防护技术,2005,17(3):184-186.
    31.陈锦虹,卢锦堂,许乔瑜等.镀锌层无铬钝化研究的进展[J],腐蚀科学与防护技术,2003,15(5):277-281.
    32.孙克宁,李敏,石伟.镀锌无铬钝化工艺研究进展[J],电子工艺技术,2003,24(1):1-3.
    33.卢燕平,屈祖玉.钛离子对低铬钝化膜的改性[J],中国有色金属学报,2001,11(1): 148-152.
    34.梁红野,陈彦泽.金属表面植酸钝化处理试验研究[J],石油化工腐蚀与防护,2004,21(6):5-8.
    35.胡会利,李宁,程瑾宁.镀锌植酸钝化膜耐蚀性的研究[J],电镀与环保,2005,25(6):21-25.
    36.张洪生,杨晓蕾,陈熹.植酸在金属防护中的应用[J],腐蚀科学与防护技术,2002,14(4):238-243.
    37.张洪生.无毒植酸在金属防护中的应用[J],电镀与涂饰,1999,18(4):38-41.
    38.朱传方,胡腊生.植酸在镀锌钝化中的应用[J],精细化工,1995,12(5):54-55.
    39.朱传方,李中华,熊云.羟乙叉基二膦酸在镀锌及无铬钝化中的作用[J],1994,27(7):9-11.
    40.植酸与亚硝酸二环已胺气相缓蚀性能的比较[J],材料保护,2002,35(8):44-45.
    41.王国良.植酸在腐蚀与防护中应用研究的进展[J],武钢技术,1996,3:44-47.
    42. JP Pat 6256598[P].1996-7-3.
    43. US Pat 4341558.1997-9-5.
    44.方景礼等.镀锌层表面H4PMo11V040杂多酸转化膜的研究[J],表面技术,1996,25(4):37-41.
    45. Wharton J A, Wilcox G D, Baldwin K R, Non-Chromate Conversion Coating Treatments for Electrodeposited Zinc-Nickel Alloys. Trans IMF,1996,74(6):2-5.
    46. Tang P T, Bech-Nielson G, Moller. Molybdate Based Passivation of Zinc. WO,93/10278, 1993.
    47. K.Wippermann, J.W.SCHUITZE, R.Kessel, J.Penninger. The Inhibition of Zinc Corrosion by Bisaminotriazole and Other Triazole Derivatives[J].Corrosion Science,1991, 32(2):205.
    48. L.Sziraki, A.Cziraki, Z.Vertesy. Zn and Zn-Sn alloy coatings with and without chromate layers.Part I:Corrosion resistance and structural analysis[J], Journal of Applied Electrochemistry,1999,29:927-937.
    49.梁启民,张丽娜.镀锌层单宁酸钝化[J],电镀与精饰,1986,(1):26-28.
    50.陈锦虹,许乔瑜,毕君等.镀锌层有机物无铬钝化[J],电镀与环保,2000,20(6):7-10.
    51. C.Gabrielli, A.A.O.Magalhaes, I.C.P. Margarit. Study of chromate-zinc conversion process through microbalance/electroacoustic impedance coupling measurements[J], Electrochemistry Communications,2004,6:492-498.
    52. B.h.McConkey. Tannin-Based Rust Conversion Coatings[J], Corros Australas,1995, 20(5):17-21.
    53.周宁林.有机硅聚合物导论[M].北京:科学出版社,2000.169-173
    54. M.F.Montemor, A.Rosqvist, H.Fagerholm. The early corrosion behaviour of hot dip galvanised steel re-treated with bis-1,2-(triethoxysilyl)ethane[J]. Progress in Organic Coatings,2004(51):188-194.
    55. D.Q.Zhu, W.J. van Ooij. Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylproply]amine vinyltriacetoxysilane[J], Progress in Organic Coating, 2004,49:42-53.
    56. M. F. Montemor, M G. S. Ferreira. Corrosion performance of a two-step pre-treatment for galvanized steel based on lanthanum nitrate and silanes. Surf. Interface Anal.2004; 36: 773-776.
    57. M.F. Montemor, A.M. Cabral, M.L. Zheludkevich, M.GS. Ferreira. The corrosion resistance of hot dip galvanized steel pretreated with Bis-functional silanes modified with microsilica. Surface & Coatings Technology 200 (2006) 2875-2885.
    58. P.Vignesh, Z.Danqing, W. J. van Ooij. Nanoparticle-filled silane films as chromate replacements for aluminum alloys. Progress in Organic Coatings 47 (2003) 384-392.
    59. M.F. Montemo, W. Trabelsi, M. Zheludevich, M.GS. Ferreira. Modification of bis-silane solutions with rare-earth cations for improved corrosion protection of galvanized steel substrates. Progress in Organic Coatings 57 (2006) 67-77.
    60. R.Shacham, D.Avnir, D.Mandler. Electrode position of methylated sol-gel films on conducting surfaces[J]. Adv. Mater,1999,11:384-390.
    61. M.Sheffer, A.Groysman, D.Mandler. Electrode position of sol-gel films on Al for corrosion protection[J]. Corrosion. Sci.,2003,45:2893-2898.
    62.张卫民,胡吉明.硅烷膜的阴极电化学辅助沉积及其防护性能[J].金属学报,2006,42(3):295-298.
    63.许越, 李英杰, 吕祖舜.Sol-gel法制备耐蚀涂层的技术及应用[J].材料科学与工艺,2005,13(2):200-204.
    64.游咏, 匡加才.溶胶—凝胶法在材料制备中的研究进展[J].高科技纤维与应用, 2002,27(2):12-15.
    65.乔俊娟, 袁坚.溶胶—凝胶法制备有机—无机复合材料[J].佛山陶瓷,2001,4:1-2.
    66. V.Subramanian, W.J.Van Ooij. Effect of amine functional group on corrosion rate of iron coated with films of organofunctional silanes [J]. Corrosion,1998,54:204.
    67. D.Q.Zhu, W.J.Van Ooij. Enhanced corrosion resistance of AA2024-T3 and hot-dip galvanized steel using a mixture of bis-[tri2ethoxysilylpropyl] tetrasulfide and bis-[trimethoxysilylpropyl] amine[J]. Electrochim. Acta,2004,49:1113.
    68. G.E.Kozerski, R.HGallavan, M.JZiemelis. Investigation of tri-alkoxy silane hydrolysis kinetics using liquid chromatography with inductively coupled plasm a atomic emission spectrometric detection and non-linear regression modeling [J]. Anal. Chim. Acta,2003,489: 103.
    69. O.Satoshi, F.Naokatsu. The oretical study of hydrolysis and condensation of silicon alkoxides[J].J.Phys.Chem.A,1998,102:3991.
    70. V.Subramanian, W.J.van Ooij. Silane based metal pretreatments as alternatives to chromating [J]. Surf. Eng.1999,15:168.
    71. D.Q.Zhu, W.J.van Ooij. Corrosion protection of AA2024-T3 by bis-[3-(triethoxysilyl)propyl] tetrasulfide in neutral sodium chromride solution. Part1: corrosion of AA2024-T3 [J]. Corrosion. Sci.,2003,45:2177.
    72. A.Franquet, H.Terryn, J.Vereecken. Composition and thickness of non-functional organosilane films coated on aluminium studied by means of infra-redspectroscopic ellipsometry [J]. Thin Solid Films,2003,441:76.
    73. J.M.Hu, L.Liu, J.T.Zhang. Studies of protective treatment on aluminium alloys by BTSE silane agent [J]. Acta Metall. Sin.,2004,40:1189.
    74. A.Franquet, C.LePen, H.Terryn. Effect of bath concentration and curing time on the structure of non-functional thin organo silane layers on aluminium[J]. Electrochim. Acta, 2003,48:1245.
    75. A.Franquet, L.J De, T.Schram. Determination of the thickness of thin silane films on aluminium surfaces by means of spectroscopic ellipsometry [J]. Thin Solid Films,2001, 384:37.
    76. A.Franquet, C.Pen, H.Terryn. Effect of bath concentration and curing time on the structure of non-functional thin organosilane layers on aluminium[J], Electrochimica Acta, 2003,48(9):1245-1255.
    77. C.M.Bertelsen, F.JBoerio. Linking mechanical properties of silanes to their chemical structure:an analytical study of y-APS solutions and films[J], Progress in Organic Coatings,2001,41(4):239-246.
    78. M.Abel, J.F.Watts, R.P.Digby. The adsorption of alkoxysilanes on Oxidized aluminium substrates[J], International Journal of Adhesion and Adhesives,1998,18(3):179-192.
    79. W.J.van Ooij, Zhu D. Electrochemical impedance spectroscopy of bis-[triethoxysilyl propyl]-tetrasulfide on Al 2024-T3 substrates[J], Corrosion,2001,57(5):413-427.
    [80]D.Q. Zhu, W.J.van Ooij, Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine.[J] Electrochim.Acta.2004 (49):1113-1125.
    [81]D.Q. Zhu, W.J.van Ooij, Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane [J]. Prog. Org. Coat.2004(49): 42-53.
    [82]B.Ulf. O.Mikael. Time-of-flight SIMS characteriza-tion of hydrolysed organofunc-tional and non-organofunctional silanes deposited on Al, Zn and Al-43.4Zn-1.6Si alloy-coated steel [J]. SURFACE AND INTERFACE ANALYSIS,2003,35:880-887.
    [83]M.F.Montrmor, A.M.Simoes. The corrosion performance of organosilane based pre-treatments for coating on galvanized steel [J]. Progress in Organic Coating,2000,38: 17-26.
    [84]A. CONDE, J. DE DAMBORENEA. Protective Properties of a Sol-Gel Coating on Zinc Coated Steel [J]. Journal of Sol-Gel Science and Technology,2006,37:79-85.
    [85]Kunitsugu Aramaki, Tadashi Shimura. Complete protection of a passive film on iron from breakdown in a borate buffer containing 0.1M of Cl- by coverage with an ultrathin film of two-dimensional polymer [J]. Corrosion Science,2006,48:209-225.
    [86]Kunitsugu Aramaki. Preparation of chromate-free, self-healing polymer films containing sodium silicate on zinc pretreated in a cerium(III) nitrate solution for preventing zinc corrosion at scratches in 0.5M NaCl[J]. Corrosion Science,2002,44:1375-1389.
    [87]Y.K.Song, Development of a Molybdate-Phosphate-Silane-Silicate (MPSS) coating process for electrogalvanized steel[J]. Corrosion Science,2006,48:154-164.
    [88]W.Trabelsi, P.Cecilio. Electrochemical assessment of the self-healing properties of Ce-doped silane solutions for the pre-treatment of galvanized steel substrates[J]. Progress in Organic Coatings,2005,54:276-284.
    [89]W.Trabelsi, E.Triki, L.Dhouibi. The use of pre-treatments based on doped silane solutions for improved corrosion resistance of galvanized steel substrates[J]. Surface & Coatings Technology,2006,200:4240-4250.
    [90]M.F.Montemor, A.M.Cabral, M.L.Zheludkevich, M.G.S.Ferreira, The corrosion resistance of hot dip galvanized steel pretreated with Bis-functional silanes modified with microsilica [J]. Surface & Coatings Technology,2006,200:2875-2885.
    [91]W.J.van Ooij, D.Zhu, M.Stacy. Corrosion Protection Properties of Organfunctional Silanes—An Overview [J]. TSINGHUA SCIENCE AND TECHNOLOGY,2005, 10(6):639-664.
    [92]Kevin Brown. Method of treating metals using amino silanes and multi-silyl-functional silanes in admixture [P].Pat:US6,596,835B1.
    [93]E.Almeida, L.Fedrizzi, T.C.Diamantinio. Oxidizing alternative species to chromium VI in zinc-galvanized steel surface treatment. Part 2-An electrochemical study [J]. Surface and Coatings Technology,1998,105(1-2):97-101.
    [94]I.M.Zin, S.B.Lyon, A.Hussain. Under-film corrosion of epoxy-coated galvanised steel An EIS and SVET study of the effect of inhibition at defects[J].Progress in Organic Coatings,2005,52(2):126-135.
    [95]I.M.Baghnia, S.B.Lyonb, B.F.Ding. The effect of strontium and chromate ions on the inhibition of zinc[J],Surface & Coatings Technology,2004,185(2-3):194-198.
    [96]刘燕平,段晓楠.镀锌低铬军绿色钝化膜的研究[J].腐蚀与防护,1998,19(3):125-126
    [97]F.X.Perrin, M.P.Gigandet, M.Wery. Chromium phosphate conversion coatings on zinc electroplates:cathodic formation and characterisation[J], Surface and Coatings Technology,1998,105:135-140.
    [98]GB9791-2003,锌和镉上铬酸盐转化膜试验方法
    [99]GB/T10125—1997,金属覆盖层盐雾腐蚀实验方法
    [100]虞莹莹.预涂卷材涂料的测试方法[J].涂料工业,2004,34(4):45-49
    [101]徐溢,徐铭熙,王楠,李德祥.金属表面硅烷试剂防腐涂层性能测试[J].应用化学,2000,17(3):331-333
    [102]王雪明,李爱菊,李国丽,管从胜.硅烷偶联剂在防腐涂层金属预处理中的应用研究[J]. 材料科学与工程学报,2005,23(1):146-150
    [103]徐溢,唐守渊,陈立军.铁表面硅烷试剂膜的反射吸收红外光谱[J].分析测试学报,2002,21(2):72-74
    [104]A.Franquet, C.Le Pen, H.Terryn, Vereecken J.Effect of bath concentration and curing time on the structure of nonfunctional thin organosilane layers on aluminium[J]. Electrochemical Acta,2003,48(9):1245-1255.
    [105]胡吉明,刘惊,张金涛.铝合金表面BTSE硅烷化处理研究[J].金属学报,2004,40(11):1189-1194.
    [106]陈明安,谢玄,戚海英,张新明,李慧中,杨汐.2A12-T6铝合金表面双-(γ-三乙氧基硅丙基)四硫化物薄膜的特性[J].物理化学学报,2006,22(8):125-1029.
    [107]A.M.Beccaria, L.Chiaruttini. The inhibitive action of Metacryloxypropyl Methoxy-silane(MAOS) on aluminum corrosion in NaCl solutions[J], Corrosion Science,1999,41(5):885-899.
    [108]M.FMontemor, A.M.Cabral, M.L.Zheludkevich, M.G.S.Ferreira. The corrosion resistance of hot dip galvanized steel pretreated with Bis-functional silanes modified with microsilica[J], Surface & Coatings Technology,2006,200(9):2875-2885.
    [109]M.G.S.Ferreira, R.GDuarte, M.FMontemor. Silanes and rare earth salts as chromate replacers for pre-treatments on galvanised steel [J]. Electrochimica Acta,2004,49 (17-18):2927-2935.
    [110]K.Aramaki. The inhibition effects of cation inhibitors on corrosion of zinc in aerated 0.5M NaCl[J].Corrosion science,2001,43 (8):1573-1588.
    [111]左演声,陈文哲,梁伟.材料现代分析方法[M].北京:北京工业大学出版社,2003,223-234.
    [112]S.Feliu Jr., V.Barranco. Comparative EIS and XPS studies of the protective character of thin lacquer films containing CR or P salts formed on galvanised steel, galvanneal and galfan substrates[J], Electrochimica Acta,2004,49:951-964.
    [113]刘秀晨,安成强.金属腐蚀学[M],北京:国防工业出版社,2002(9):84-82
    [114]林碧兰,卢锦堂,孔纲,刘军.钼酸钠对热镀锌钢板表面磷化膜电化学行为的影响[J],材料保护,2006,39(10):5-9.
    [115]郝建军,安成强,刘常升.不同添加剂对镀锌层钼酸盐钝化膜腐蚀电化学性能的影响[J],材料保护,2006,39(10):23-26.
    [116]V.Barranco, S.Feliu Jr, S.Feliu. EIS study of the corrosion behaviour of zinc-based coatings on steel in quiescent 3% NaCl solution. Part 1:directly exposed coatings[J], Corrosion Science,2004,46:2203-2220.
    [117]V.Barranco, S.Feliu Jr, S.Feliu. EIS study of the corrosion behaviour of zinc-based coatings on steel in quiescent 3% NaCl solution. Part 2:coatings covered with an inhibitor-containing lacquer[J], Corrosion Science,2004,46:2221-2240.
    [118]M.A.Arenas, J.Damborenea, J.Growth mechanisms of cerium layers on galvanised steel[J]. Electrochemical Acta,2003,48 (24):3693-3698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700