分子内多中心反应研究及非均相钯催化剂在偶联反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文论文致力于过渡金属催化的多中心反应和非均相催化反应的研究,旨在以发展一条简洁高效的合成以苯环为中心的多环体系;发展一些具有工业应用价值的稳定高效的非均相催化剂。
     在第一章绪论中,简要概述了以合成为导向的金属有机化学在各方面中的应用和非均相钯催化剂在偶联反应中的应用。在第二章中,我们以多中心反应理念出发,即在底物的设计中通过引入多个反应中心,在反应时一步形成了以苯环为中心的多环化合物。发展了两套从二炔基二羟基苯一步合成苯并二呋喃的方法。并且发现在NaOH参与下,乙酰基保护的二炔基二羟基苯可以直接经过水解和环合两步反应生成苯并二呋喃或苯并呋喃基酮化合物。利用钯催化的烯丙基迁移反应从二烯丙氧基二炔基苯出发,高效地合成了四取代的苯并二呋喃类化合物,并且将含有两个1,7-双烯结构的苯并二呋喃经过RCM反应和氧化反应一锅法合成了苯并五环化合物。进一步发展了一套钯催化的二炔基二羟基苯与烯丙基卤化物的偶联环化反应生成含有多种取代基的苯并二呋喃化合物的方法。在第三章中,我们从多中心反应理念出发,利用分子内多中心烯炔关环复分解反应合成了一系列具有潜在应用价值的苯并氧杂环类三环化合物,特别是以中等产率合成了苯并八员杂环。在第四章中,首先利用已知方法合成了介孔磷酸钛材料,并利用其制备了非均相钯催化剂Pd@meso-TiP。然后探索了Pd@meso-TiP在芳基碘代物和芳基溴代物与芳(烯)基硼酸的Suzuki偶联反应,发现此催化剂具有很高的稳定性和反应性,不但能以很低的催化剂用量有效的催化反应,还能够循环使用多次而催化性能没有明显的失活。另外我们还初步研究了Pd@meso-TiP在Heck反应和Sonogashira反应中的应用。
Organometallic chemistry is not only a division subject of chemistry, but also an interdependent subject with organic and inorganic chemistry, which has a close relationship with petrochemistry industry, pharmaceutical industry and material science. Its development has broken the boundary between traditional organic and inorganic chemistry, and became a rising subject and a front field of modern chemistry. Many metal-catalyzed chemical reactions have played a fundamental role in the chemical industry.
     Carbon-carbon bond-forming reactions are not only the most widely used and important chemical transformation in the organic synthetic chemistry, but also a hot topic which the chemists pay attention to. During the development of organic chemistry, aldol- and Grignard-type reactions, the Diels–Alder and related pericyclic processes, and the Wittig andrelated reactions are such processes that have advanced our ability to construct increasingly complex carbon frameworks and, thus, enabled the syntheses of a myriad of organic compounds. In the past 30 years, metal-catalyzed carbon-carbon bond-forming reaction has enhanced considerably the prowess of synthetic organic chemists to assemble complex molecular frameworks and has changed the way we think about synthesis. In multitudinous transition metal catalyst (Fe, Ni, Cu, Pd, Rh, Ru…), the palladium catalysts have displayed the remarkable catalytic activity.
     Benzofurans and benzodifurans are important classes of oxygen-containing hetercyclic compounds, which play a fundamental role in organic chemistry and life science because of their presence in natural products and their interesting chemical and physiological properties. Benzofurans have been the subject of extensive studies and numerous synthetic methods have been developed for them. Benzodifurans have also received increasing attention because of their biological and pharmacological properties. But the reports on the synthetic method of them are still quite limited. In the chapter 2, we synthesized a series of dihydroxy dialkynylbenzenes and diacetoxy dialkynylbenzenes form hydroquinone and resorcin. we have developed a convenient synthesis of disubstituted benzodifurans in moderate to good yields by using a Pd(OAc)2-catalyzed double cyclization of bis(alkynyl)dihydroxybenzene and a one pot NaOH-mediated hydrolysis and double cyclization of diacetoxy dialkynylbenzenes. we have also developed an easy and efficient route for the synthesis of multi-substituted benzodifurans by using palladium-catalyzed double annulations of bis(allyloxy)bis(alkynylethynyl)- benzenes or bisalkynyldihydroxybenzene in the presence of allylic halides in good yield. It was also demonstrated that the products containing two 1,7-dienes moieties may be further utilized to build two aromatic rings to afford polycyclic conjugated aromatic compound via double RCM and oxidation reaction.
     During the past decade, olefin metathesis has become a very important and effective method for the construction of many functionalized carbocycles and heterocycles with the development of the highly active ruthenium and molybdenum carbene complexes. Enyne metathesis is also very interesting and useful in synthetic organic chemistry because the carbon-carbon double and triple bonds are cleaved forming a conjugated 1,3-diene, which was a useful synthon for various cycloadditions.
     Chromenes have received increasing attention due to their biological properties such as phototoxicity, anti-microbial activity, anti-juvenile hormone, anti-tumor, insecticidal and anti-feedant activities. Benzodipyrans-based compounds were designed as molecular probes for determining the steric restrictions of the agonist binding site of serotonin 5-HT2A and 5-HT2C receptors and have been found in plants. In the chapter 3, we developed an efficient synthesis of benzodipyrans and their analogues via intramolecular double enyne ring-closing metathesis. The difficultly synthesized benzo eight-membered ring products were formed in moderate to good yields when 10 mol % of Grubbs catalyst was added in two portions.
     Homogeneous catalyst generally showed better activity and selectivity than heterogeneous catalyst. However, homogeneous catalyst has two remarkable drawbacks. First, the expensive transition metal catalysts are difficulty to recover and reuse. Second, they often remain in the organic products at the end of the reactions, which is an extremely serious problem in the pharmaceutical industry because the level of heavy metals in active pharmaceutical intermediates is closely regulated. An efficient solution to the issue is the substitution of heterogeneous catalysts for their homogeneous counterparts.
     In chapter 4, we synthesized the mesoporous titanium phosphate (meso-TiP) material and prepared a heterogeneous palladoium catalyst (Pd@meso-TiP) by mixed meso-TiP and Pd(PhCN)2Cl2 in acetone at room temperature, then, explored its application in coupling reaction. First, we used the Suzuki coupling reaction of 4-iodoanisole and phenylboronic acid to optimize the reaction condition. In the research on the reusability of Pd@meso-TiP, we found that this catalyst could be recycled and reused six times without any obvious loss of its catalytic activity, which show remarkable stability and catalytic activity. Simple filtering can retrieve the catalyst from the reaction mixture after extraction with ethyl ether. Then, The scope of Suzuki coupling reaction between iodoarenes and arylboronic acid were studied. It was demonstrated that the catalytic systems have great tolerance. Iodioarenes with either electronwithdrawing substituents, such as NO2, COCH3, or CO2Bn, or electron-donating substituents, such as OMe, Me, or NH2 coupled readily with arylboronic acids in excellent yields. The substituent groups on arene ring in arylboronic acid had not obvious effect. The reactions of arylbromide containing electron-withdrawing substituents with arylboronic acid gave much better yields than the arylbromide containing electron-donating substituents. The coupling reactions of 1-bromonaphthalene or 4-bromobiphenyl with arylboronic acid formed the target products in moderat to excellent yields. The amount of Pd@meso-TiP in the coupling reaction between 4-bromoacetophenone and phenylboronic acid was also studied. It was demonstrated that the reaction could be completed in 97% yield within 8 hours. The catalyst could be reduced to 0.001 mol% and the turnover number (TON) based on Pd reached 99000 within 24 h. Furthermore, this heterogeneous catalyst, Pd@meso-TiP, was efficient for the Sonogashira and Heck reactions.
引文
1. 钱长涛;戴立信。化学进展 2001, 13, 156.
    2. Ziese, W. C. Pogg. Ann. 1831, 21, 497.
    3. Frankland, E. Ann. 1849, 71, 171.
    4. Grignard, V. Compt. Rend. 1900, 130, 1322.
    5. Wittig, G.; Geissler, G. Justus Liebigs Ann. Chem. 1949, 562, 177.
    6. Fischer, E. O.; Hafner, W., Z. Naturforsch. 1955, 10b, 665.
    7. (a) Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Angew. Chem. 1955, 67, 541. (b) Natta, G.; Pino, P.; Farina, M. Ric. Sci. Suppl. 1955, 25, 120.
    8. Brown, H. C.; Subba Rao, B. C. J. Am. Chem. Soc. 1956, 78, 5694.
    9. Fischer, E. O.; Maasb?l, A. Angew. Chem. Int. Ed. 1964, 3, 580.
    10. Fischer, E. O.; Kreis, C.; Kreiter, C. G.; Müller, J.; Huttner, G; Lorenz, H. Angew. Chem. Int. Ed. 1973, 12, 564.
    11. Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. J. Chem. Soc. A.,1966, 1711.
    12. Knowles, W. S.; Sabacky, M. J. Chem. Commun. 1968, 22, 14.
    13. Miyashtia, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. J. Am .Chem. Soc. 1980, 102, 793.
    14. Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 59.
    15. (a) Hérisson, J. L. ; Chauvin, Y. Makromol. Chem. 1971, 141, 161. (b) Chauvin, Y. Angew. Chem. Int. Ed. 2006, 45, 3740.
    16. (a) Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; Dimare, M.; O’Regan, M. J. Am. Chem. Soc. 1990, 112, 3875. (b) Bazan, G. C.; Khosravi, E.; Schrock, R. R.; Feast, W. J.; Gibson, V. C.; O’Regan, M. B.; Thomas, J. K.; Davis, W. M. J. Am. Chem. Soc. 1990, 112, 8378. (c) Bazan, G. C.; Oskam, J. H.; Cho, H. N.; Park, L. Y.; Schrock, R. R. J. Am. Chem. Soc. 1991, 113, 6899.
    17. (a) Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1992, 114, 3974. (b) Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc.1993, 115, 9858. (c) Fu, G. C.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. 1993, 115, 9856. (d) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2039. (e) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100. (f) Belderrain, T. R.; Grubbs, R. H. Organometallics 1997, 16, 4001. (g) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
    18. 杜灿屏,唐晋。化学进展 1999, 11, 441.
    19. Metal-Catalyzed Cross-Coupling Reaction; de Meijere, A.; Diederich, F., Eds. Wiley-VCH: Weinheim, Germany, 2004. Vols. 1-2.
    20. 有机金属化学――基础与应用;山本明夫。陈惠麟,陆熙炎译;科学出版社,1997。
    21. Palladium Regents and Catalyst ; Tsuji, J., Ed.; John Wiley & Son, 1998.
    22. Herrmann, W. A.; Frey, G. D.; Herdtweck, E.; Steinbeck, M. Adv. Synth. Catal. 2007, 349, 1677.
    23. (a) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1979, 101, 4981. (b) Binger, P.; Doyle, J. H.; Krüger, C., et al. Z. Naturforsch. 1989, 34b, 1289. (c) Gillie, A., Stille, J. K. J. Am. Chem. Soc. 1980, 102, 4933.
    24. Smidt, J.; Hafner, W.; Jira, R.; Sedlmeier, J.; Sabel, J. Angew. Chem. Int. Ed. Engl. 1962, 1, 80.
    25. 韩桂铃;刘桂霞;陆熙炎。有机化学 2005, 25, 1182。
    26. (a) Modern Organonickel Chemistry; Tamaru, Y., Ed. Wiley-VCH: Weinheim, Germany, 2005. (b) Morden Rhodium-Catalyzed Organics Reactions; Evans, P. A., Ed. Wiley-VCH: Weinheim, Germany, 2005. (c) Ruthenium in Organic Synthesis; Murahashi, S. I., Ed. Wiley-VCH: Weinheim, Germany, 2005.
    27. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
    28. (a) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437. (b) Miyaura, N.; Suzuki, A. Chem. Commun. 1979, 866.
    29. Nicolaou, K. C.; Bulger, P. G.; Sarlah, D Angew. Chem. Int. Ed. 2005, 44, 4442.
    30. Liu, S. Y.; Choi, M. J.; Fu, G. C. Chem. Commun. 2001, 2048.
    31. Adjabeng, G.; Brenstrum, T.; Wilson, J.; Frampton, C.; Robertson, A.; Hillhouse, J.; McNulty, J.; Capretta, A. Org. Lett. 2003, 5, 953.
    32. B?hm, V. P. W.; Gst?ttmayr, C. W. K.; Weskamp, T.; Herrmann, W. A. J. Organomet. Chem. 2000, 595, 186.
    33. Bei, X.; Turner, H. W.; Weinberg, W. H.; Guram, A. S.; Petersen, J. L. J. Org. Chem. 1999, 64, 6797.
    34. (a) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685. (b) Billingsley K.; Buchwald, S. L. J. Am. Chem. Soc. 2007 129, 3358. (c) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550.
    35. Anderson, K. W.; Buchwald S. L.; Angew. Chem. Int. Ed. 2005, 44, 2.
    36. (a) Kirchhoff, J. H.; Netherton, M. R.; Hills, I. D. Fu, G. C. J. Am. Chem. Soc. 2002, 124, 13662. (b) Netherton, M. R.; Dai C.; Neuschütz, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 10099.
    37. Shi, Z.; Li, B.; Wan, X.; Cheng, J.; Fang, Z.; Cao, B.; Qin, C.; Wang, Y. Angew. Chem. Int. Ed. 2007, 46, 5554.
    38. Rossi, R.; Carpita, A.; Quirici, M. G. Tetrahedron 1981, 37, 2617.
    39. (a) Armstrong, R.W.; Beau, J.-M.; Cheon, S. H.; Christ, W. J.; Fujioka, H.; Ham, W.-H.; Hawkins, L. D.; Jin, H.; Kang, S. H.; Kishi, Y.; Martinelli, M. J.; McWhorter, W. W.; Mizuno, M.; Nakata, M.; Stutz, A. E.; Talamas, F. X.; Taniguchi, M.; Tino, J. A.; Ueda, K.; Uenishi, J.; White, J. B.; Yonaga, M. J. Am.Chem. Soc. 1989, 111, 7525. (b) Armstrong, R.W.; Beau, J.-M.; Cheon, S. H.; Christ, W. J.; Fujioka, H.; Ham, W.-H.; Hawkins, L. D.; Jin, H.; Kang, S. H.; Kishi, Y.; Martinelli, M. J.; McWhorter, W. W.; Mizuno, M.; Nakata, M.; Stutz, A. E.; Talamas, F. X.; Taniguchi, M.; Tino, J. A.; Ueda, K.; Uenishi, J.; White, J. B.; Yonaga, M. J. Am. Chem. Soc. 1989, 111, 7530. (c) Suh, E. M.; Kishi, Y. J. Am. Chem. Soc. 1994, 116, 11205. (d) Uenishi, J.-I.; Beau, J.-M.; Armstrong, R.W.; Kishi, Y. J. Am. Chem. Soc. 1987, 109, 4756.
    40. de Koning, C. B.; Michael, J. P.; van Otterlo, A. L. J. Chem. Soc., Perkin Trans. 1, 2000, 799.
    41. (a) Hird, M.; Gray, G. W.; Toyne, K. J. Mol. Cryst. Liq. Cryst. 1991, 206, 187. (b) Trollsas, M.; Ihre, H.; Geddle, U. W.; Hult, A. Macromol. Chem. Phys. 1996, 197, 767. (c) Wulff, G.; Schmidt, H.; Witt, H.; Zentel, R. Angew. Chem. Int. Ed. 1994, 33, 188. (d) Hird, M.; Lewis, R. A,; Toyne, K. J.; West, J. J.; Wilson, M. K. J. Chem. Soc., Perkin Trans. 1, 1998, 3479.
    42. (a) Rehahn, M.; Schlüter, A.-D.; Wegner, G.; Feast, W. J. Polymer 1980, 30, 1054. (b) Rehahn, M.; Schlüter, A.-D.; Wegner, G.; Feast, W. J. Polymer 1980, 30, 1060.
    43. Wallow, T. I.; Novak, B. M. J. Am. Chem. Soc. 1991, 113, 7411.
    44. (a) Goldfinger, M. B.; Swager, T. M. J. Am. Chem. Soc. 1994, 116, 7895. (b) Goldfinger, M. B.; Crawford, K. B.; Swager, T. M. J. Am. Chem. Soc. 1997, 119, 4578.
    45. (a) Heck, R. F. Acc. Chem. Res. 1979, 12, 146; (b) Heck, R. F. Org. React. 1982,
    27, 345; (c) Heck, R. F. in Palladium Reagents in Organic Synthesis, Academic Press, New York, 1985; (d) Tsuji, J. In Palladium Reagents and Catalysts; Innovations in Organic Synthesis; Chichester, Wiley, 1996. (e) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.
    46. Dieck, H. A.; Heck, F. R. J. Organomet. Chem. 1975, 93, 259.
    47. Grigg, R.; Sridharan, V.; Stevenson, P.; Sukirthalingam, S. Tetrahedron 1989, 45, 3557.
    48. Abelman, M. M.; Overman L. E. J. Am. Chem. Soc. 1988, 110, 2328.
    49. (a) Rawal, V. H.; Michoud, C.; Monestel, R. F. J. Am. Chem. Soc. 1993, 115, 3030. (b) Rawal, V. H.; Michoud, C. J. Org. Chem. 1993, 58, 5583.
    50. (a) Danishefsky, S. J.; Masters, J. J.; Young, W. B.; Link, J. T.; Snyder, L. B.; Magee, T. V.; Jung, D. K.; Isaacs, R. C. A.; Bornmann, W. G.; Alaimo, C. A.; Coburn, C. A.; Di Grandi, M. J. J. Am. Chem. Soc. 1996, 118, 2843. (b) Masters, J. J.; Link, J. T.; Snyder, L. B.; Young, W. B.; Danishefsky, S. J. Angew. Chem. Int. Ed. Engl. 1995, 34, 1723.
    51. Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874.
    52. (a) Diek, H. A.; Heck, F. R. J. Organomet. Chem. 1975, 93, 295. (b) Cassar, L. J. Organomet. Chem. 1975, 93, 253. (c) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.
    53. Sonogashira, K. J. Organomet. Chem. 2002, 653, 46.
    54. Donovan, P. M.; Scott, L. T. J. Am. Chem. Soc. 2004, 126, 3108.
    55. (a) Rodríguez, D.; Martínez-Esperón, M. F.; Navarro-Vázquez, A.; Castedo, L.; Domínguez, D.; Saá, C. J. Org. Chem. 2004, 69, 3842. (b) González- Cantalapiedra, E.; de Frutos, O.; Atienza, C.; Mateo, C.; Echavarren, A. M. Eur. J. Org. Chem. 2006, 1430.
    56. Nicolaou, K. C.; Webber, S. E. J. Am. Chem. Soc. 1984, 106, 5734.
    57. (a) Taunton, J.; Wood, J. L.; Schreiber, S. L. J. Am. Chem. Soc. 1993, 115, 10378. (b) Wood, J. L.; Porco, J. A.; Taunton, J.; Lee, A. Y.; Clardy, J.; Schreiber, S. L.; J. Am. Chem. Soc. 1992, 114, 5898. (c) Chikashita, H.; Porco, J. A.; Stout, T. J.; Clardy, J.; Schreiber, S. L. J. Org. Chem. 1991, 56, 1692; (d)Porco, J. A.; Schoenen, F. J.; Stout, T. J.; Clardy, J.; Schreiber, S. L. J. Am. Chem. Soc. 1990, 112, 7410.
    58. (a) Cacchi, S.; J. Organomet. Chem. 1999, 576, 42. (b) Cacchi, S.; Fabrizi, G.; Goggipmani, A. Heterocycles, 2002, 56, 613. (c) Larock, R. C. J. Organomet. Chem. 1999, 576, 111.
    59. (a) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285. (b) Cacchi S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873.
    60. (a) Fournet, G.; Blame, G.; Vanhemelryck, B.; Gore, J. Tetrahedron Lett. 1990,
    31, 5147. (b) Fournet, G.; Blame, G.; Gore, J. Tetrahedron 1991, 47, 6293. (c) Bouyssi, D.; Blame, G.; Gore, J. Tetrahedron Lett. 1991, 32, 6541.
    61. (a) Roesch, K. R.; Larock, R. C. Org. Lett. 1999, 1, 553. (b) Roesch, K. R.; Larock, R. C. J. Org. Chem. 2002, 67, 8
    62. (a)Zhang, H.; Larock, R. C. Tetrahedron Lett. 2002, 43, 1359. (b) Zhang, H.; Larock R. C. J. Org. Chem. 2002, 67, 7048.
    63. Kawasaki, T.; Yamamoto Y. J. Org. Chem. 2002, 67, 5138.
    64. Stille, J. K.; Angew. Chem. Int. Ed. Engl. 1986, 25, 508.
    65. Duncton, M. A. J.; Pattenden, G.; J. Chem. Soc. Perkin Trans. 1 1999, 1235.
    66. (a) Nicolaou, K. C.; Chakraborty, T. K.; Piscopio, A. D.; Minowa, N.; Bertinato, P. J. Am. Chem. Soc. 1993, 115, 4419; (b) Nicolaou, K. C.; Piscopio, A. D.; Bertinato, P.; Chakraborty, T. K.; Minowa, N.; Koide, K. Chem. Eur. J. 1995, 1, 318.
    67. (a) Baba, S.; Nehishi, E. J. Am. Chem. Soc. 1976, 98, 6729; (b) Negishi, E.; Takahashi, T.; Baka, S. Org. Synth. 1987, 66, 60.
    68. (a) Ma, S.; He, Q. Angew. Chem. Int. Ed. 2004, 43, 988. (b) Ma, S.; He, Q.; Zhang, X. J. Org. Chem. 2005, 70, 3336.
    69. (a) Pour, M.; Negishi, E. Tetrahedron Lett. 1996, 37, 4679. (b) Pour, M.;Negishi, E. Tetrahedron Lett. 1997, 38, 525.
    70. (a) Negishi, E.; Kobayashi, M. J. Org. Chem. 1980, 45, 5223. (b) Negishi, E.; Valente, L. F.; Kobayashi, M. J. Am. Chem. Soc. 1980, 102, 3298.
    71. Zeng, F.; Negishi, E. Org. Lett. 2001, 3, 719.
    72. (a) Trost, B. M.; Verhoeven, T. R. J. Am. Chem. Soc. 1978, 100, 3435. (b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
    73. Tsuji, J.; Takahashi, H. Tetrahedron Lett. 1965, 6, 4387.
    74. Hatanaka, Y.; Hiyama T. J. Org. Chem. 1988. 53, 918.
    75. Hatanaka, Y.; Hiyama T. J. Org. Chem. 1989. 54, 268.
    76. Hatanaka, Y.; Ebina, Y.; Hiyama T. J. Am. Chem. Soc. 1991, 113, 7075.
    77. Yang, S.; Li, B.; Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 6066.
    78. (a) Hartwig, J. F. Angew. Chem. Int. Ed. Engl. 1998, 37, 2046. (b) Beilfeid, A. J.; Brown, G. R.; Fobiser, A. J. Tetrahedron 1999, 55, 11399. (c) Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125.
    79. Kosugi, M. L.; Ameyama, M.; Migita, T. Chem. Lett. 1983, 927.
    80. Paul, F.; Patt, J.; Hartwig, J. F. J. Am. Chem. Soc. 1994, 116, 5969.
    81. Guram, A. S.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 7901.
    82. Guram, A. S.; Rennels, R. A.; Buchwald, S. L. Angew. Chem. Int. Ed. Engl. 1995, 34, 1348.
    83. (a) Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim, Germany, 2003; Vols. 1-3. For recent reviews, see: (b) Fürstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012. (c) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18. (d) Schrock, R. R. In Carbene Chemistry; Bertrand, G., Ed.; Marcel Dekker: New York, 2002; pp 205-230. (e) Grubbs, R. H.; Trnka, T. M.; Sanford, M. S. In Current Methods in Inorganic Chemistry; Kurokawa, H., Yamamoto, A., Eds.; Elsevier: Amsterdam, 2003; Vol. 3, pp 187-231. (f) Arjona,O.; Csák?, A. G.; Plumet, J. Eur. J. Org. Chem. 2003, 611. (g) Connon, S. J.; Blechert, S. Angew. Chem., Int. Ed. 2003, 42, 1900. (h) Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592. (i) Hoveyda, A. H.; Gillingham, D. G.; Van Veldhuizen, J. J.; Kataoka, O.; Garber, S. B.; Kingsbury, J. S.; Harrity, J. P. A. Org. Biomol. Chem. 2004, 2, 8. (j) Deiters, A.; Martin, S. F. Chem. Rev 2004, 104, 2199. (k) McReynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Chem. Rev. 2004, 104, 2239. (l) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4490.
    84. (a) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (b) Diver, S. T.; Giessert, A. J. Synthesis 2004, 466. (c) Poulsen, C. S.; Madsen, R. Synthesis 2003, 1. (d) Mori, M. Topics in Organomeallic Chemistry 1998, 1, 133.
    85. Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 791.
    86. Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168.
    87. Grela, K.; Harutyunyan, S.; Michrowska, A. Angew. Chem. Int. Ed. 2002, 41, 4038.
    88. (a) Wakamatsu, H.; Blechert, S. Angew. Chem. Int. Ed. 2002, 41, 2403. (b) Wakamatsu, H.; Blechert, S. Angew. Chem. Int. Ed. 2002, 41, 749.
    89. (a) Noshay, A .; McGrath, J .E. Block Copolymers Academics,New York , 1977. (b) Novak, B. M.; Risse, W.; Grubbs, R. H. Adv. Polym. Sci. 1992, 102, 47.
    90. (a) Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921. (b) Coca, S.; Paik, H.; Matyjaszewski, K. Macromolecules 1997, 30, 6513.
    91. Kanoaka, S.; Grubbs, R. H. Macromolecules 1995, 28, 4707.
    92. Morita, T.; Maughon, B. R.; Bielawski, C. W.; Grubbs, R. H. Macromolecules 2000, 33, 6621.
    93. (a) Maughon, B. R.; Morita, T.; Bielawski, C. W. Grubbs, R. H. Macromolecules 2000, 33, 1929. (b) Scherman, O. A.; Kim, H. M.; Grubbs, R. H. Macromolecules 2002, 35, 5366.
    94. Fu, G. C.; Grubbs, R. H. J. Am. Chem. Soc. 1993, 115. 3800.
    95. Miller, S. J.; Kim, S.-H.; Chen, Z.-R.; Grubbs, R. H. J. Am. Chem. Soc. 1995, 117, 2108.
    96. Fürstner, A.; Langemann, K. J. J. Org. Chem. 1996, 61, 8746.
    97. Yoshida, K.; Imamoto, T. J. Am. Chem. Soc. 2005, 127. 10470.
    98. Fu, G. C.; Grubbs, R. H. J. Am. Chem. Soc. 1992,114. 5426.
    99. Fujimura, O.; Fuand, G. C.; Grubbs, R. H. J. Org. Chem. 1994, 59, 4029.
    100. van Otterlo, W. A. L.; Ngidi, E. L.; Coyanis, E. M.; de Koning, C. B. Tetrahedron Lett. 2003, 44, 311.
    101. Fu, G. C.; Grubbs, R. H. J. Am. Chem. Soc. 1992,114. 7324.
    102. Fu, G. C.; Grubbs, R. H. J. Am. Chem. Soc. 1992,114. 5426.
    103. (a) Martin, S. F.; Liao, Y.; Chen, H.-J.; P?tzel, M.; Ramser, M. Tetrahedron Lett. 1994, 35, 6005. (b) Martin, S. F.; Chen, H.-J.; Courtney, A. K.; Liao, Y.; Patzel, M.; Ramser, M. N.; Wagman, A. S. Tetrahedron 1996, 52, 7251.
    104. Arisawa, M.; Terada, Y.; Nakagawa, M.; Nishida, A. Angew. Chem., Int. Ed. 2002, 41, 4732.
    105. Forbes, M. D. E.; Patton, J. T.; Myers, T. L.; Maynard, H. D.; Smith, D. W.; Schulz, G. R.; Wagener, K. B. J. Am. Chem. Soc. 1992,114. 10978.
    106. Gierasch, T. M.; Chytil, M.; Didiuk, M. T.; Park, J. Y.; Urban, J. J.; Nolan, S. P.; Verdine, G. L. Org. Lett. 2000, 2, 3999.
    107. (a) Hanson, P. R.; Stoianova, D. S. Tetrahedron Lett. 1998, 39, 3939. (b) Hanson, P. R.; Stoianova, D. S. Tetrahedron Lett. 1999, 40, 3297.
    108. Hanson, P. R.; Probst, D. A.; Robinson, R. E.; Yau, M. Tetrahedron Lett. 1999,40, 4761.
    109. Wanner, J.; Harned, A. M.; Probst, D. A.; Poon, K. W. C.; Klein, T. A.; Snelgrove, K. A.; Hanson, P. R. Tetrahedron Lett. 2002, 43, 917.
    110. Fürstner, A.; Langemann, K. J. Org. Chem. 1996, 61, 3942.
    111. (a) Yang, Z.; He, Y.; Vourloumis, D.; et al. Angew. Chem. Int. Ed. Engl. 1997, 36, 166; (b). Schinzer, D.; Limberg, A.; Bauer, A.; et al. Angew. Chem. Int. Ed. Engl. 1997, 36, 523.
    112. (a) Magnier, E.; Langlois, Y. Tetrahedron Lett. 1998, 39, 837. (b) Baldwin, J. E.; Claridge, T. D. W.; Culshaw, A. J.; Heupel, F. A.; Lee. V. Spring, D. R.; Whitehead, R. C. Chem. Eur. J. 1999, 5, 3154. (c) Humphrey, J. M.; Liao, Y.; Ali, A.; Rein, T.; Wong, Y. L.; Chen, H. J.; Courtney, A. K.; Martin, S. F. J. Am. Chem. Soc. 2002, 124, 8584.
    113. Martin, S. F.; Humphrey, J. M.; Ali, A.; Hillier, M. C. J. Am. Chem. Soc. 1999, 121, 866.
    114. Wipf, P.; Rector, S. R.; Takahashi, H. J. Am. Chem. Soc. 2002, 124, 14848.
    115. (a) Miller, S. J.; Blackwell, H. E.; Grubbs, R. H. J. Am. Chem. Soc. 1996, 117, 9606. (b) Miller, S. J.; Grubbs, R. H. J. Am. Chem. Soc. 1995, 117, 5855.
    116. Kazmaier, U.; Maier, S. Org. Lett. 1999, 1, 1763.
    117. Arakawa, K.; Eguchi, T.; Kakinuma, K. J. Org. Chem. 1998, 63, 4741.
    118. Wu, Y. S.; Esser, L.; Brabander, J. K. Angew. Chem. Int. Ed. 2000, 39, 4308.
    119. (a) Schultz, L. G.; Zhao, Y.; Zimmerman, S. C. Angew. Chem. Int. Ed. 2001, 40, 1962. (b) Wendland, M. S.; Zimmerman, S. C. J. Am. Chem. Soc. 1999, 121, 1389.
    120. Connon, S. J.; Blechert, S. Angew. Chem. Int. Ed. 2003, 42, 1900.
    121. Smith, III, A. B.; Adams, C. M.; Kozmin, S. A.; Paone, D. V. J. Am. Chem. Soc. 2001, 123, 5925.
    122. Rosillo, M; Domínguez, G.; Casarrubios, L.; Amador, U.; Pérez-Castells, J. J. Org. Chem. 2004, 69, 2084.
    123. (a) Banti, D.; North, M. Tetrahedron Lett. 2002, 43, 1561. (b) Moreno-Manas, M.; Pleixats, R.; Santamaria, A. Synlett 2001, 1784. (c) Zheng, G.; Dougherty, T. J.; Pandey, R. K. Chem. Commun. 1999, 2469. (d) Schürer, S. C.; Blechert, S. Chem. Commun. 1999, 1203. (e) Fringluelli, F.; Taticchi, A. Dienes in the Diels-Alder Reaction; John Wiley & Sons Inc.: New York, 1990. (f) Wender, P. A.; Nuss, J. M.; Smith, D. B.; Suárez-Sobrino, A.; V?gberg, J.; Decosta, D.; Bordner, J. J. Org. Chem. 1997, 62, 4908. (g) Harmata, M. Acc. Chem. Res. 2001, 34, 595 and references therein.
    124. (a) Zuercher, W. J.; Scholl, M.; Grubbs, R. H. J. Org. Chem. 1998, 63, 4291. (b) Kim, S.-H.; Bowden, N.; Grubbs, R. H. J. Am. Chem. Soc. 1994, 116, 10801.
    125. Saito, N.; Sato, Y.; Mori, M. Org. Lett. 2002, 4, 803.
    126. Kinoshita, A.; Mori, M. J. Org. Chem. 1996, 61, 8356.
    127. Boyer, F.-D.; Hanna, I.; Ricard, L. Org. Lett. 2004, 6, 1817.
    128. (a) Fujimura, O.; Grubbs, R. H. J. Org. Chem. 1998, 63, 824. (b) Fujimura, O.; Grubbs, R. H. J. Am. Chem. Soc. 1996, 118, 2499.
    129. Alexander, J. B.; La, D. S.; Cefalo, D. R.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 1998, 120, 4041.
    130. Zhu, S. S.; Cefalo, D. R.; La, D. S.; Jamieson, J. Y.; Davis, W. M.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 1999, 121, 8251.
    131. Seiders, T. J.; Ward, D.W.; Grubbs, R. H. Org. Lett. 2001, 3, 3225.
    132. (a) Van Veldhuizen, J. J.; Garber, S. B.; Kingsbury, J. S.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 4954. (b) Van Veldhuizen, J. J.; Gillingham, D. G.; Garber, S. B.; Kataoka, O.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 125, 12502.
    133. (a) Garrett, C. E.; Prasad, K. Adv. Synth. Catal. 2004, 346, 889. (b) Welch, C.J.; Albaneze-Walker, J.; Leonard, W. R.; Biba, M.; DaSilva, J.; Henderson, D.; Laing, B.; Mathre, D. J.; Spencer, S.; Bu, X.; Wang, T. Org. Process Res. Dev. 2005, 9, 198.
    134. (a) Zapf, A.; Beller, M. Top. Catal. 2002, 19, 101. (b) Blaser, H.-U.; Indolese, A.; Schnyder, A.; Steiner, H.; Studer, M. J. Mol. Catal. A: Chem. 2001, 173, 3. (c) Tucker, C. E.; De Vries, J. G. Top. Catal. 2002, 19, 111. (d) Bhanage, B. M.; Arai, M. Catal. Rev. 2001, 43, 315.
    135. Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133.
    136. Heidenreich, R. G.; K?hler, K.; Krauter, J. G. E.; Pietsch, J. Synlett 2002, 1118.
    137. (a) Kvhler, K.; Heidenreich, R. G.; Krauter, J. G. E.; Pietsch, J. Chem. Eur. J. 2002, 8, 622. (b) Heidenreich, R. G.; Krauter, J. G. E.; Pietsch, J.; K?hler, K. J. Mol. Catal. A: Chem. 2002, 182-3, 499.
    138. De-la-Rosa, M. A.; Velarde, E.; Guzmán, A. Synth. Commun. 1990, 20, 2059.
    139. (a) Gruber, M.; Chouzier, S.; Koehler, K.; Djakovitch, L. Appl. Catal. A: Gen 2004, 265, 161. (b) Gruber, M.; Chouzier, S.; Koehler, K.; Djakovitch, L. Appl. Catal. A: Gen 2004, 265, 161. (c) Pal, M.; Subramanian, V.; Batchu, V. R.; Dager, I. Synlett 2004, 1965. (d) Hong, K. B.; Lee, C. W.; Yum, E. K. Tetrahedron Lett. 2004, 45,693. (e) Arcadi, A.; Marinelli, F. Synthesis 1986, 749. (f) Lütjens, H.; Scammells, P. J. Synlett 1999, 1079. (g) Lütjens, H.; Scammells, P. J. Tetrahedron Lett. 998, 39, 6581. (f) Kundu, N. G.; Pal, M.; Mahanty, J. S.; Dasgupta, S. K. J. Chem. Soc., Chem. Commun. 1992, 41. (g) Pal, M.; Subramanian, V.; Yeleswarapu, K. R. Tetrahedron Lett. 2003, 44, 8221.
    140. Mori, K.; Yamaguchi, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2002, 124, 11572.
    141. Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.; Sreedhar, B. J.Am. Chem. Soc. 2002, 124, 14127.
    142. Kim, S.-W.; Kim, M.; Lee, W. Y.; Hyeon, T. J. Am. Chem. Soc. 2002, 124, 7642.
    143. Crudden, C. M.; Sateesh, M.; Lews, R. J. Am. Chem. Soc. 2005, 127, 10045.
    144. Kim, N.; Kwon, M. S.; Park, C. M.; Park, J. Tetrahedron Lett. 2004, 45, 7057.
    145. Yang, Q.; Ma, S.; Li, J.; Xiao, F.; Xiong, H. Chem. Commun. 2006, 2495.
    146. Stevens, P. D.; Fan, J. D.; Gardimalla, H. M. R.; Yen, M.; Gao, Y. Org. Lett. 2005, 7, 2085.
    147. Stevens, P. D.; Li, G.; Fan, J.; Yen, M.; Gao, Y. Chem. Commun. 2005, 4435.
    148. Glego?a, K.; Framery, E.; Pietrusiewicz, K. M.; Sinou, D. Adv. Synth. Catal. 2006, 348, 1728.
    149. Sayah, R.; Glego?a, K.; Framery, E.; Dufauda, V. Adv. Synth. Catal. 2007, 349, 373.
    150. (a) Arcadi, A.; Cacchi, S.; Del Rosario, M.; Fabrizi, G. Marinelli, F. J. Org. Chem., 1996, 61, 9280 and references therein. (b) Monteiro, N.; Balme G. Synlett, 1998, 746. (c) Monteiro, N.; Arnold, A.; Balme, G. Synlett, 1998, 1111. (d) Cacchi, S.; Fabrizi, G.; Moro, L. Synlett, 1998, 741. (e) Liao, Y.; Smith, J. Fathi, R.; Yang, Z. Org. Lett. 2005, 7, 2707. (f) Liang, Y.; Tang, S.; Zhang, X. D.; Mao, L. Q.; Xie, Y. X.; Li, J. H. Org. Lett. 2006, 8, 3017. (g) Nakamura, M.; Ilies, L.; Otsubo, S.; Nakamura, E. Org. Lett. 2006, 8, 2803. (h) Youn, S. W.; Eom, J. I. Org. Lett. 2005, 7, 3355 and references therein. (i) Katritzky, A. R.; Ji, Y.; Fang, Y.; Prakash, I. J. Org. Chem. 2001, 66, 5613.
    151. (a) Proksch, P.; Proksch, M.; Towers, G. H. N.; Rodriguez, E. J. Nat. Prod. 1983, 46, 331. (b) Proksch, P.; Rodriguez, E. Phytochem. 1983, 22, 2335. (c) Bowers, W. S.; Ohta, T.; Cleeve, T. S.; Marsella, P. A. Science 1976, 193, 542. (d) Howard, B. M.; Clarkson, K.; Bernstein, R. L. Tetrahedron Lett. 1979, 4449. (e) Proksch,P.; Isman, M. B.; Witte, L., Hartmann, T. Phytochem. 1987, 26, 2227.
    152. (a) Rene, L.; Buisson, J. P.; Royer, R.; Averbeck, D. Eur. J. Med. Chem. Chim. Ther. 1977, 12, 31. (b) Royer, R.; Bisagni, E.; Hudry, C.; Cheutin, A.; Desvoye, M.L. Bull. Soc. Chim. Fr. 1963, 1003. (c) Chambers, J.J.; Kurrasch-Orbaugh, D.M.; Parker, M. A.; Nichols, D. E. J. Med. Chem. 2001, 44, 1003. (d) Chawla, H. P. S.; Grover, P. K.; Anand, N.; Kamboj, V. P.; Kar, A. B. J. Med. Chem. 1970, 13, 54.
    1. (a) Cagniant, P.; Cagniant, D. Adv. Heterocycl. Chem., 1975, 18, 343. (b) Donnelly, D. M. X. and Meegan, M. J. in Comprehensive Heterocyclic Chemistry, vol.4, pp. 657-712, A.R. Katritzky and C.W. Rees, Eds., Pergamon Press, Oxford, 1984. (c) Bird, C. W. in "Progress in Heterocyclic Chemistry", Vol. 5, pp. 129-142, Suschitzky, H.; Scriven, E. F. V. Eds., Pergamon Press, 1993. (d) Ono, M.; Kawashima, H.; Nonaka, A.; Kawai, T.; Haratake, M.; Mori, H.; Kung, M. P.; Kung, H. F.; Saji, H.; Nakayama, M. J. Med. Chem. 2006, 49, 2725.
    2. (a) Rene, L.; Buisson, J. P.; Royer, R.; Averbeck, D. Eur. J. Med. Chem. Chim. Ther. 1977, 12, 31. (b) Royer, R.; Bisagni, E.; Hudry, C.; Cheutin, A.; Desvoye, M. L. Bull. Soc. Chim. Fr. 1963, 1003. (c) Chambers, J. J.; Kurrasch-Orbaugh, D. M.; Parker, M. A.; Nichols, D. E. J. Med. Chem. 2001, 44, 1003. (d) Chawla, H. P. S.; Grover, P. K.; Anand, N.; Kamboj, V. P.; Kar, A. B. J. Med. Chem. 1970, 13, 54.
    3. (a) Nakamura, I.; Mizushima, Y.; Yamamoto Y. J. Am. Chem. Soc. 2005, 127, 15022. (b) Fürstner, A.; Davies, P. W. J. Am. Chem. Soc. 2005, 127, 15024. (c) Nakamura, I.; Sato, T.; Yamamoto Y. Angew. Chem., Int. Ed. 2006, 45, 4473. (d) Fürstner, A.; Heilmann, E. K.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46 4760.
    4. (a) Arcadi, A.; Cacchi, S.; Del Rosario, M.; Fabrizi, G. Marinelli, F. J. Org. Chem., 1996, 61, 9280 and references therein. (b) Monteiro, N.; Balme G. Synlett, 1998, 746. (c) Monteiro, N.; Arnold, A.; Balme, G. Synlett, 1998, 1111. (d) Cacchi, S.; Fabrizi, G.; Moro, L. Synlett, 1998, 741. (e) Liao, Y.; Smith, J.; Fathi, R.; Yang, Z. Org. Lett. 2005, 7, 2707. (f) Liang, Y.; Tang, S.; Zhang, X. D.; Mao, L. Q.; Xie, Y. X.; Li, J. H. Org. Lett. 2006, 8, 3017. (g) Nakamura, M.; Ilies, L.; Otsubo, S.; Nakamura, E. Org. Lett. 2006, 8, 2803. (h) Youn, S. W.; Eom, J. I. Org. Lett. 2005, 7, 3355 and references therein. (i) Katritzky, A. R.; Ji, Y.; Fang, Y.; Prakash, I. J. Org. Chem. 2001, 66, 5613.
    5. (a) Park, K. K.; Lim, H.; Kim, S.-H.; Bae, D. H. J. Chem. Soc., Perkin Trans. 1, 2002, 310. (b) Park, K. K.; Kim, S.-H.; Park, J. W. J. Photochem. Photobiol. A: Chem. 2004, 163, 241. (c) Abdul-Azizl, M.; Auping, J. V.; Meador, M. A. J. Org. Chem. 1995, 60, 1303.
    6. L. R. Worden, A. W. Burgstahler, K. D. Kaufman, J. A. Weis and T. K. Schaaf, J. Heterocycl. Chem., 1969, 6, 191.
    7. Koradin, C.; Dohle, W.; Rodrigeuz, A. L.; Schmid, B.; Knochel, P. Tetrahedron 2003, 59, 1571 and references therein.
    8. (a) Nakamura, I.; Yamamoto Y. Chem. Rev. 2004, 104, 2127. (b) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2258.
    9. For reviews, see: (a) Cacchi, F.; Fabrizi, G. Chem. Rev. 2005, 105, 2873. (b) Battistuzzi, G.; Cacchi, S.; Fabrizi, G. Eur. J. Org. Chem. 2002, 2671. (c) Cacchi, S.; Fabrizi, G.; Goggiomani, A. Heterocycles 2002, 56, 613. (d) Balme, G.; Bouyssi, D.; Lomberget, T.; Monteiro, N. Synthesis 2003, 2115.
    10. Cacchi, S.; Fabrizi, G.; Goggiamani, A. Curr. Org. Chem. 2006, 10, 1423.
    11. (a) Ma, S.; Xu, B. J. Org. Chem. 1998, 63, 9156. (b) Ma, S.; Xu, B.; Ni, B. J. Org. Chem. 2000, 65, 8532.
    12. Ma, S.; Ni, B. J. Org. Chem. 2002, 67, 8280.
    13. Ma, S.; Ni, B.; Lin, S.; Liang, Z. J. Organometal. Chem. 2005, 690, 5389.
    14. Thomsen, I.; Torssell, K. B. G. Acta Chem. Scand. 1991, 45, 539.
    15. Coumbarides, G. S.; Dingjan, M.; Eames, J.; Weerasooriya, N. Bull. Chem. Soc. Jpn. 2001, 74, 179.
    16. Rosillo, M.; Domínguez, G.; Casarrubios, L.; Amador, U.; Pérez-Castells, J. J.Org. Chem. 2004, 69, 2084.
    17. (a) Johnson, J. R.; Jacobs, T. L.; Schwartz, A. M. J. Am. Chem. Soc. 1938, 60, 1885. (b) Johnson, J. R.; Schwartz, A. M.; Jacobs, T. L. J. Am. Chem. Soc. 1938, 60, 1882.
    18. (a) Li, Z.; Sun, W.; Jin, X.; Shao, C. Synlett. 2001, 1947; (b) Elmorsy, S. S.; Pelter, A. Smith, K. Tetrahedron Lett. 1991, 32, 4175.
    19. (a) Siegel, J. S.; Sieders, T. J. Chem. Br. 1995, 31, 313; (b) Rabideau, P. W.; Sygula, A. Acc. Chem. Res. 1996, 29, 235; (c) Faust, R. Angew. Chem. Int. Ed. Engl. 1995, 34, 1429.
    20. (a)Boudreault, P.-L. T.; Wakim, S.; Blouin, N.; Simard, M.; Tessier, C.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2007, 129, 9125. (b) Kawaguchi, K.; Nakano, K.; Nozaki, K. J. Org. Chem. 2007, 72, 5119. (c) Bergman, J.; Washlstr?m, N.; Yudina, L. N.; Tholander, J.; Lidgren, G. Tetrahedron 2002, 58, 1443. (d) Kn?lker, H.-J.; Reddy, K. R. Tetrahedron 2000, 56, 4733.
    21. Schmidt, B.; Hermanns, J. Curr. Org. Chem. 2006, 10, 1363 and references cited therein.
    22. (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. Eng. 1995, 34, 2039. (b) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100. (c) Belderrain, T. R.; Grubbs, R. H. Organometallics 1997, 16, 4001. (d) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
    23. (a) Kotha, S.; Mandal, K. Tetrahedron Lett. 2004, 45, 2585. (b) Kotha, S.; Shah, V. R.; Mandal, K. Adv. Synth. Catal. 2007, 349, 1159. (c) Ma, S.; Yu, F.; Zhao, J. Synlett 2007, 583.
    24. (a) Iritani, K.; Matsubara, S.; Utimoto, K. Tetrahedron Lett. 1988, 29, 1799. (b) Yu, Z.; Ma, S. J. Org. Chem. 2003, 68, 6149.
    25. Cacchi, S.; Fabrizi, G.; Pace, P. J. Org. Chem. 1998, 63, 1001.
    26. Ma, S.; Gao, W. J. Org. Chem. 2002, 67, 6104.
    
    1. Proksch, P.; Proksch, M.; Towers, G. H. N.; Rodriguez, E. J. Nat. Prod. 1983, 46, 331.
    2. Proksch, P.; Rodriguez, E. Phytochem. 1983, 22, 2335.
    3. Bowers, W. S.; Ohta, T.; Cleere, T. S.; Marsella, P. A. Science 1976, 193, 542.
    4. Howard, B. M.; Clarkson, K.; Bernstein, R. L. Tetrahedron Lett. 1979, 4449.
    5. Proksch, P.; Isman, M. B.; Witte, L.; Hartmann, T. Phytochem. 1987, 26, 2227.
    6. Whiteside, M. S.; Kurrasch-Orbaugh, D.; Marona-Lewicka, D.; Nichols, D. E.; Monte, A. Bioorg. Med. Chem. 2002, 10, 3301, and references therein.
    7. (a) Kamperdick, C.; Van, N. H.; Sung, T. V.; Adam, G. Phytochem. 1997, 45, 1049. (b) Muyard, F.; Bissoue, A. N.; Bevalot, F.; Tillequin, F.; Cabalion, P.; Vaquette, J. Phytochem. 1996, 42, 1175.
    8. (a) Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim, Germany, 2003; Vols. 1-3. For recent reviews, see: (b) Fürstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012. (c) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18. (d) Schrock, R. R. In Carbene Chemistry; Bertrand, G., Ed.; Marcel Dekker: New York, 2002; pp 205-230. (e) Grubbs, R. H.; Trnka, T. M.; Sanford, M. S. In Current Methods in Inorganic Chemistry; Kurokawa, H., Yamamoto, A., Eds.; Elsevier: Amsterdam, 2003; Vol. 3, pp 187-231. (f) Arjona, O.; Csa′ky, A. G.; Plumet, J. Eur. J. Org. Chem. 2003, 611. (g) Connon, S. J.; Blechert, S. Angew. Chem., Int. Ed. 2003, 42, 1900. (h) Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592. (i) Hoveyda, A. H.; Gillingham, D. G.; Van Veldhuizen, J. J.; Kataoka, O.; Garber, S. B.; Kingsbury, J. S.; Harrity, J. P. A. Org. Biomol. Chem. 2004, 2, 8. (j) Deiters, A.; Martin, S. F. Chem. Rev 2004, 104, 2199. (k) McReynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Chem. Rev. 2004, 104, 2239. (l) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew.Chem., Int. Ed. 2005, 44, 4490.
    9. For reviews on enyne metathesis, see: (a) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (b) Diver, S. T.; Giessert, A. J. Synthesis 2004, 466. (c) Poulsen, C. S.; Madsen, R. Synthesis 2003, 1. (d) Mori, M. Topics in Organomeallic Chemistry 1998, 1, 133.
    10. Schmidt, B.; Hermanns, J. Curr. Org. Chem. 2006, 10, 1363 and references cited therein.
    11. (a) Bassindale, M. J.; Hamley, P.; Leitner, A.; Harrity, J. P. A. Tetrahedron Lett. 1999, 40, 324. (b) Bassindale, M. J.; Edwards, A. S.; Hamley, P.; Adams, A.; Harrity, J. P. A. J. Chem. Soc. Chem. Commun. 2000, 1035.
    12. (a) Schmidt, B.; Westhus, M. Tetrahedron 2000, 56, 2421; (b) Schmidt, B.; Wildemann, H. J. Org. Chem, 2000, 65, 5817.
    13. Lautens, M.; Hughes, G. Angew. Chem. Int. Ed. Engl. 1999, 38, 129.
    14. Heck, M. P.; Baylon, C.; Nolan, S. P.; Mioskowski, C. Organic Letters, 2001, 3, 1989.
    15. Wallace, D. J. Tetrahedron Lett. 2003, 44, 2145.
    16. Ma, S.; Ni, B. Org. Lett. 2002, 4, 639.
    17. Ma, S.; Ni, B. Chem. Eur. J. 2004, 10, 3286.
    18. Ma, S.; Ni, B.; Liang, Z. J. Org. Chem. 2004, 69, 6305.
    19. For synthesis of eight-membered ring compounds using olefin metathesis, see: (a) Miller, S. J.; Kim, S.-H.; Chen, Z.-R.; Grubbs, R. H. J. Am. Chem. Soc. 1995, 117, 2108; (b) Martin, S. F.; Humphrey, J. M.; Ali, A.; Hillier, M. C. J. Am. Chem. Soc. 1999, 121, 866; (c) Crimmins, M. T.; Choy, A. L. J. Am. Chem. Soc. 1999, 121, 5653; (d) Fürstner, A.; Langemann, K. J. Org. Chem. 1996, 61, 8746; (e) Boyer, F.-D.; Hanna, I.; Ricard, L. Org. Lett. 2001, 3, 3095; (f) Crimmins, M.T.; Tabet, E. A. J. Am. Chem. Soc. 2000, 122, 5473; (g) Fujiwara, K.; Goto, A.; Sato, D.; Kawai, H.; Suzuki, T. Tetrahedron Lett. 2005, 46, 3465.
    20. (a) Mori, M.; Kitamura, T.; Sakakibara, N.; Sato, Y. Org. Lett. 2000, 4, 543. (b) Mori, M.; Kitamura, T.; Sato, Y. Synthesis 2001, 654.
    1. 徐如人,庞文琴等编,《分子筛与多孔材料化学》,2004.
    2. Everett, D. H. in IUPAC Mannul of Symbols and Terminology, Pure Appl. Chem. 1972, 31, 578.
    3. Corma, A. Chem. Rev. 1995, 95, 559-614.
    4. DiRenzo, F.; Cambon, H.; Dutartre, R. Microporous Mater. 1997, 10, 283.
    5. Kanagsiwa, T.; Shimizu, T.; Kuroda, K.; Kato, C. Bull. Chem. Soc. Jpn. 1990, 63, 988.
    6. (a) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S.; Nature 1992, 359, 710. (b) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.
    7. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science, 1998, 279,548.
    8. 李亮,施剑林。催化学报, 2005, 26, 159.
    9. Taguchi, A.; Schüth, F. Micro. Meso. Mater. 2005, 77, 1.
    10. Li, C.; Zhang, H.; Jiang, D.; Yang, Q. Chem. Commun. 2007, 547.
    11. Song, C. E.; Lee, S. Chem. Rev. 2002, 102, 3495.
    12. Bhaumik, A.; Inagaki, S. J. Am. Chem. Soc. 2001, 123, 691.
    13. Tian, B.; Liu, X.; Tu, B.; Yu, C.; Fan, J.; Wang, L.; Xie, S.; Stucky, G. D.; Zhao, D. Nature Materials 2003, 2, 159.
    14. Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874.
    15. (a) Heck, R. F. Acc. Chem. Res. 1979, 12, 146; (b) Heck, R. F. Org. React. 1982,
    27, 345; (e) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700