立式储罐应力分析与弱顶结构评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油化工行业的迅猛发展以及能源安全问题重要性的增加,世界各国都已建造了数量相当的大型原油储罐。立式储罐是我国石油石化企业广泛使用的储罐形式,这类设备一旦发生事故后果不堪设想。在工程中,通常把罐顶设计成弱顶结构,使储罐遭到意外超压情况下,破坏发生在罐顶与罐壁连接处,避免带来更大的次生灾害。锥顶储罐是国外大量使用的储罐形式,通常认为锥顶储罐会在罐顶形成受压区,因而具有弱顶保护的效果;拱顶储罐是我国大量使用的储罐形式,通常认为,由于其罐顶结构的自限性不具有弱顶保护效果;因此,对其进行安全性研究是很重要的。本文以2×104m3立式储罐为研究对象,以储罐设计中常用的三种设计标准API-650、GB-50341、SH-3046为基础,设计符合标准定义的弱顶储罐,采用有限元数值模拟技术,对其进行应力强度和稳定性分析。本文建立2×104m3锥顶储罐强度分析和稳定性分析的有限元模型,计算结果表明:三种标准设计的弱顶储罐,在内压作用下强度破坏均发生在罐顶与罐壁连接处,随着锥顶坡度下降,破坏压力降低,采用API-650设计的弱顶结构发生强度破坏压力最大、与理论公式计算结果误差低于63Pa,采用SH-3046设计的弱顶结构强度破坏压力最小。三种标准设计的弱顶储罐,内压失稳破会均发生在罐顶与罐壁连接区域的边缘板和包边角钢,失稳破坏内压随锥顶坡度的下降而减小,采用API-650、GB-50341设计的弱顶结构失稳破坏内压均小于强度破坏压力,先发生失稳破坏;采用SH-3046设计的弱顶结构在坡度1/6~1/8之间,失稳破坏内压大于强度破坏压力,先发生强度破坏;在坡度1/9是先发生失稳破坏。建立2×104m3拱顶储罐强度分析和稳定性分析的有限元模型,计算结果表明:采用SH-3046设计的弱顶结构也具有弱顶保护效果。罐顶曲率半径为1.2*D~1.1*D之间,具有弱顶保护效果;罐顶曲率半径为0.8*D时,储罐在空载工况下,罐底会产生提离,当储罐为满载工况时,会在罐底处发生强度破坏,储罐发生失稳的临界压力大于储罐发生强度破坏和提离的压力。
With the rapid economic development of petroleum and chemical industry and the increasing importance of energy security, many countries have constructed a big number of large storage tanks. Vertical storage tank was widely used in our country. If the accident happens, it would produce great losses. In the project, usually designed tank as the weak-proof structure to protect tank when subjected over-pressure, make the breakage broken at the top of the tank instead of broken at the bottom of the tank. Cone-roof tank was widely used abroad, it considered at the top would form of compression zone, therefore, have protective effect. Dome-roof tank was widely used in our country. Generally, because of its top structure of self-limited, it does not have a protective effect. Therefore, it is very important to study on its safety. In this paper, make the 2×104m3 vertical storage tank as the object, three kinds of design standards were used to storage tank design, such as, API-650, GB-50341, SH-3046. We designed to meet the standard definition of weak roof storage tank, using FEA method, offered strength and stability analysis. In this paper, bulit 2×104m3 cone-roof storage tank’s strength and stability model, as the results shown, damage have occurred in the top and wall’s junction. As the decline in cone roof slope, undermining the pressure to reduce. Using API-650 standards, intensity-break pressure was the biggest of all, maximum error was bellow 63Pa. Using SH-3046 standards, intensity-break pressure was the lowest of all. All kinds of weak-proof structures were broken at the top of the tank. Buckling pressure was lower than intensity-break pressure of all three standards. Between 1/6~1/8 intensity-break was the first place by SH-3046. Bulit 2×104m3 dome-roof storage tank’s strength and stability model, as the results shown, Radius of curvature between 1.2*D~1.1*D, meet the standard definition of weak roof storage tank. Radius of curvature 0.8*D, was uplift at empty load, and intensity-break on bottom at full load. Buckling pressure was the biggest of all.
引文
[1]武同柱.大型立式油罐发展综述[J].石油化工设备技术,2004,25(3):56~58.
    [2]时铭显.我国化工过程装备技术的发展与展望[J].当代石油化工,2005,13(12):3~7.
    [3] Hoarun.Vibration studies and tests of liquid storage-tanks[J].Earthquake Engineering & Structural Dynamics,1983,11(2):179~206.
    [4] Housne.Behavior of Unanchoerd Storage-tanks[J].Journal of Technical Topics in Civil Engineering,1983,10(2):17~20.
    [5]孙建刚,周丽.立式钢制圆柱储罐的动提离控制[J].大庆石油学院报,2001,25(3):102~105.
    [6]戴鸿哲.立式储液罐提离机理及象足变形产生原因[J].哈尔滨工业大学学报,2008,40(8):191~195.
    [7] Slone.Dynamics fluid-structure interaction using finite volume unstructured mesh procedures[J].Computers and Structures,2002,80(5):371~380.
    [8] Hamdan.Behavior of cylindrical steel liquid storage tanks[J].Journal of Constructional steel research,2000,53(12):307~333.
    [9] Slone . Finite element analysis of fluid flows coupled by structural interaction [J].Computers and Structures,1999,72(3):1~16.
    [10] Aghajari. Buckling and post-buckling behavior of thin Thin-Walled Structures [J].2006,44(8):904~909.
    [11] LEE J K. Finite element techniques for the free vibration and seismic analysis of liquid storage tanks[J].Finite Elements in Analysis and Design,2001,37(6):467-483.
    [12] Malhotra.Uplifting response of unanchored liquid storage tanks[J].Journal of Structural Engineering,1994,20(12):525~546.
    [13]刘巨保,张学鸿,王树东.10000m3拱顶油罐顶板应力与腐蚀的分析[J].油气储运,1995,14(6):24~27.
    [14] M.W.Lu. Two step Approach of Stress Classification and Primary Structure Method [J].Pressure Vessel Technology,2000,22(1):2~8.
    [15]薛明德,殷雅俊.大型拱顶储罐的模型实验研究[J].压力容器,2003,20(3):30~34.
    [16]尹晔昕,王瑜.大型拱顶储罐的有限元计算[J].油气储运器,2003,22(1):23~26.
    [17]薛明德,尹晔昕.拱顶储罐承压圈型式与承载能力的关系[J].压力容器,2002,19(10):25~29.
    [18]黄文霞.渣油拱顶罐拱顶失稳的有限元分析[J].化工机械,2007,34(4):193~196.
    [19]黄龙波.渣油拱顶失稳分析及修复探讨[J].石油化工设备技术,2008,29(1):25~34.
    [20]马玉红,邹君.大型圆筒形储罐有限元设计计算[J].炼油与化工,2002,13(3):12~15.
    [21]黄勇力.大型储罐罐壁的强度计算[J].石油化工设备技术,1999,20(5):35~39.
    [22]惠虎,宋虎堂.大型原油储罐的有限元强度分析[J].油气储运,2004,23(12):21~25.
    [23]李多民,宋虎堂.12.5×104m3原油储罐应力测试及分析[J].压力容器,2005,22(3):42~46
    [24]葛颂,沈建民.大型非锚固立式储油罐有限元结构分析[C].第六届全国压力容器学术会议压力容器先进技术精选集,2005.
    [25]段媛媛,刘义君.15×104m3超大型石油储罐结构优化分析[J].压力容器,2006,23(12):23~27.
    [26]陆明万,徐鸿.分析设计中若干重要问题的讨论(一)[J].压力容器,2006,23(1):15~19.
    [27]陆明万,徐鸿.分析设计中若干重要问题的讨论(二)[J].压力容器,2006,23(2):28~32.
    [28]陆明万,徐鸿.分析设计中若干重要问题的讨论(三)[J].压力容器,2006,23(4):2~7.
    [29]张进国.风载荷作用下圆桩形罐的有限元分析[J].油气储运,1998,17(8):11~14.
    [30]刘力涛,苏文献.内压和轴向载荷作用下开孔薄壁短圆筒屈曲的数值研究[J].石油化工设备,2008,37(4):14~17.
    [31] BDenham,Jrussell.How to Design a600,000-Bbl Tank[J].Hydrocarbon Processing,1968,47(5):137~142.
    [32]李国深.大型变截面圆柱罐壁和罐底的应力分析[J].力学与实践,1978,(10):38~41.
    [33] Wu T Y.More accurate method devised of tank-bottom annular plate design[J].Journal of Oil & Gas,1996,94(21):81~83.
    [34] Wu T Y,Liu G R.Comparison of design methods of a tank-bottom annular Plate and correct ring-wall International[J].Journal of pressure vessels and Piping,2000,77(9):511~517.
    [35]缪平.API650和GB50341锚栓储罐的设计比较[J].炼油技术与工程,2007,37(6):55~57.
    [36]朱国栋,陈世鸣.胀锚型锚栓锚固破坏及承载力研究[J].炼油技术与工程,2005,27(6):29~31.
    [37]赵凌志,赵阳.不均匀沉降下的大型钢储罐结构[J].空间结构,2003,9(3):50~54.
    [38]贾庆山.储罐地基允许变性值[J].特种结构,2002,19(3):38~41.
    [39]陈志平,蒋伟华.大型油罐大角焊缝处峰值应力分析[J].压力容器,2003,22(5):12~15.
    [40]陈志平,段媛媛,蒋家羚.大型石油储罐安全可靠性研究[C].2006年中国机械工程学会年会暨中国工程院机械与运载工程学部首届年会论文集,2006.
    [41]赵福军,张荣花,张亮.大型浮顶原油储罐的静力有限元分析[J].油气田地面工程,2008,27(8):15~16.
    [42]应宏伟.大型油罐地基现场试验分析[J].岩土工程学报,2005,27(2):32~36.
    [43]祁志江,梁冰.国内首例15×104m3双盘浮顶油罐壁板热处[J].大众科技,2005,8(1):3~7.
    [44]王卫东,梁冰,徐国华.15×104m3双盘浮顶油罐底板焊接工艺[J].油气储运.2005,24(4):17~19.
    [45]陈学武,梁冰.15×104m3大型钢制储油罐底板焊接[J].焊接技术,2005,34(4):45~48.
    [46]李奋昆,杜永前,王旭东.十万立方米原油储罐底板组焊质量控制方法[J].甘肃科技,2005,21(2):51~53.
    [47] Wang J H.Improvement in Numerical Accuracy and Stability of 3-D FEM Analysis in Welding[J].Welding Journal,1996,75(4):1295~1345.
    [48] Wang J H.An FEM Model of Buckling Distortion During Welding of Thin Plate[J].Shanghai University,1999,E-4(2):69~72.
    [49]张立玲,高峰,张庆.差厚拼焊板自由弯曲力的计算[J].锻压装备与制造技术,2006,30(4):62~64.
    [50]黄小兵,张平.大型储罐倒装法组装环焊缝残余应力试验研究[J].石油天然气学报,2008,30(2):369~371.
    [51]陈学武.15×104m3储油罐底圈开口接管壁板预制与焊后热处理技术[J].压力容器,2006,23(2):52~54.
    [52] SH3046-92.石油化工立式圆筒形钢制焊接储罐设计规范[S].1992.
    [53] API650-2008.钢制焊接油罐[S].2008.
    [54] GB50341-2003.立式圆筒形钢制焊接油罐设计规范[S].2003.
    [55]孙永生.高油价下亚洲石化业的困扰与出路[J].环球石化,2005,(10):26~28.
    [56]王丽娟.我国石油战略储备体系的构建[J].中国金融,2004,(23):10~13.
    [57] JB4732-95.钢制压力容器分析设计标准[S].1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700