基于Lindqvist型钼酸盐衍生物分子器件的性质和应用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子电子学是电子纳米科学的一个重要分支,属于一个多学科交叉领域,主要以研究分子为对象,或者说在分子水平上研究分子在电子学方面的应用。近年来,得益于实验技术的不断革新和量子输运理论的发展和完善,分子电子学研究领域得到了飞速发展。在开始研究分子电子学时,人们主要聚焦于有机分子,而随着对分子器件性质的认识深入和实验技术手段上的进步,为弥补器件中的缺点和不断完善器件的性能,探索新型分子在分子电子学中的潜在应用已成为人们发展的重要部分,其中研究的对象包括有机小分子,无机化合物,以及生物蛋白分子(DNA)等,研究范围已得到了极大的丰富。运用量子输运理论方法在分子尺度上进行数值计算模拟,可加深认识电子传输的基本物理过程。通过不断探索器件的性质和分子结构之间的关系,有助于寻找性能更优异、功能更丰富的分子电子学元件。多金属氧酸盐(简称多酸)作为一类无机类化合物,由于其优异的化学物理特性已在分子电子学领域显示出重要的应用前景。目前在实验上已对多酸化合物在分子电池和分子存储等方面进行了大量探索研究,但是目前相应的理论研究还很缺乏,特别是纯理论研究多酸分子的电子传输机理还未见报道。另外,对于此类化合物,由于结构的特殊性、实验成膜的相对复杂性以及实验表征手段的局限性等,在分子电子学的实验研究方面尚处于起步阶段。为进一步认识和了解这类化合物的性质,从理论上对该类化合物进行模拟研究,以辅助实验研究,就显得紧迫和重要。特别是近年来,由于量子输运理论的发展完善和计算机硬件的不断提升,促使分子电子学在数值模拟方面得到了迅速发展。通过大量的理论模拟分析,已可有效地预测和分析分子的相关电子学性质,这对认识和理解实验现象和结果也起到了积极作用,理论与实验相结合的方法已成为研究分子电子学的重要手段。
     本文以Lindqvist型钼酸盐及其衍生物分子为基础,采用最新发展的DFT+NEGF方法,在理论上对多酸分子在分子电子学中的潜在应用进行了探讨研究,其目的在于:(1)分析解释多酸分子的电子输运特征;(2)设计基于多酸分子的新型有机-无机杂化分子材料,预测其在分子电子学中的应用;(3)分析多酸分子中抗衡离子,如H+在电子传输方面的作用,特别是在分子整流性质方面的调节作用,为分子在制备器件时对实验化学环境的影响提供参考,以助于优化设计器件,以便控制调整相应电子学元件的功能。
     本论文的第一部分对分子电子学,特别是分子存储器和分子整流器的研究进行简要介绍,对多酸化合物的电化学性质进行了小结,并对其在分子电子学中的研究现状进行了概述,重点介绍了其在分子存储方面的实验进展,然后对非平衡格林函数方法在电子学应用方面进行简要介绍,最后对计算程序进行简介。第二部分是本研究工作的主体部分,主要包括以下四个方面:
     (1)采用DFT+NEGF方法对Lindqvist型多酸化合物[H_2M_6O_(19)](M=Mo, W)的电子输运特性进行理论研究,分析了H+在电子输运性质方面的影响。结果表明:钼和钨酸盐分子具有相似的电子输运特性,表现出不同于有机分子的传输机理,主要以电子隧穿效应为主要特征。不同位置的H离子对于电子输运的总体特征的影响较小。
     (2)采用DFT+NEGF方法对单有机胺取代的Lindqvist型钼酸盐的电子输运特征,特别是其在分子二极管方面的应用进行了理论研究与预测。结果表明:此类有机-无机杂化材料具有优异的电子整流比性质,相比有机分子,其整流比有较大的提高。这也是第一类基于多酸的有机-无机杂化的分子二极管模型。
     (3)采用DFT+NEGF方法对反式双有机胺取代的Lindqvist型钼酸盐化合物H_2{trans-[Mo_6O_(17)(NAr)_2]}及衍生物的电子输运性质进行理论分析。结果表明:增加反式取代的共轭链长度可得到明显分子二极管特征,另外通过调节不同的质子位置可得到整流方向和大小可调的分子二极管。
     (4)采用周期性DFT方法,从理论上对Keggin型钨酸盐化合物与石墨烯的相互作用进行了讨论,研究了[PW_(12)O_(40)]~(3-)与石墨烯之间的相互作用形式和可能存在分子结构。通过分析分子间的结合能,电子结构特征和电荷转移性质等,解释了多酸与石墨烯之间的电荷转移特征,并对多酸吸附于石墨烯表面后对其电子传输性质进行了探讨,这也是首次在理论上研究多酸与石墨烯之间的相互作用。
The molecular electronics is a new concept developed from nanoscience. It is an emerging,and multidisciplinary field with focus on the single molecules. In recent years, mainly due tothe fast development of high-tech innovation, especially the rapid developments of quantumtransport theory result in great progress in molecular electronics. In experimental aspect, peo-ple have constantly explored new classed of molecules from small organic (inorganic) mole-cules, to the biological protein molecule. The relationship between the properties and perfor-mance has gained great attention. The POM compounds due to the special stability, diversityand unique chemical and physical properties, have potential application in analytical chemis-try, catalyst, and material science. Using Density Functional Theory (DFT) calculations to re-veal the relationship between the structure and their properties would be helpful to understandthe area and to explore new field applications. Due to the experimental characterization limits,the POM, whose applications on molecular cell and storage (memory) are still in its primarystage. The phenomena and results in experiment have been in-depth understood from the the-oretical aspect. The role of numerical simulation at the molecular scale level has played animportant role in understanding the basic physical processes.
     In current status, very seldom theoretical studies have been carried out on POM based mo-lecular devices. It is important to perform the theoretical investigation of this type of com-pounds to further development of its molecular electronics, and guide the further developmentin molecular electronics. With the development of quantum transport theory and computertechnology, it is possible to perform more efficient numerical simulation and predict theproperties of the molecules. This should be helpful to provide a guide for the experimentalexploration.
     In the present thesis, using DFT+NEGF method, we carried out systematic theoreticalstudies on Lindqvist type molybdate molecule and its derivatives based molecular junction toexplore their application on molecular electronic. The aim of this thesis is that:(1) to explainthe electron transport property of Lindqvist type POM,(2) to design a new type of moleculardevice based on the organic-inorganic hybrid system,(3) to explore the role of H+in the elec-tron transport, especially the effect on molecular rectification.
     Part one of this thesis is a review of molecular electronics, mainly concert in the molecularmemory and rectifier. Then, the electrochemical properties of POM and recent developmentsin molecular electronics have been summarized. Finally, a brief introduction of NEGF methodis derived. The second part is the main body of this thesis; it includes the following four as- pects:
     (1) We report a first study of Lindqvist polyoxometalates (Mo and W) based molecularjunctions by using the DFT+NEGF method. We find that protonation weakly affects thetransport properties, which are also similar for both Mo-and W-based complexes. In particu-lar, the transmission at the Fermi level is dominated by a tunneling mechanism with the firstof the molecular levels available for resonant transport being at least1eV away from Fermienergy of electrode.
     (2) We have designed a new type of molecular diode based on organoimido derivatives ofhexamolybdates and investigated the transport behavior using DFT combined with the NEGFformalism. These new types of inorganic-organic hybrid systems are predicted to show a highand robust rectification ratio, which can be maintained in a large bias range. It is possible toenhance the rectification ratio by increasing the conjugate length of organic part.
     (3) We have studied the molecular junction based on the trans-diorganoimido derivatives ofhexamolybdates by exploring the transport properties using DFT+NEGF. The asymmetriccurrent-voltage characteristics were obtained for the model with different protonation sites.The current magnitude and direction of molecular rectification can be tunable with protona-tion. To increase the conjugate length of one organic group of hexamolybdate could also re-sult in rectifying behavior.
     (4) We have carried out ab initio study on the structure of PW12deposited on a pristinegraphene with periodic DFT and pseudopotential theory. The charge transfers, adsorption en-ergy and electronic structure characteristics between POM and grapheme have been analysedand discussed.
引文
[1]薛增泉,刘惟敏,纳米电子学[M],北京电子工业出版社,2003.
    [2]薛增泉,纳米电子学[J].现代科学仪器,1998,8(1):18-16.
    [3] Szaci owski K, Digital information processing in molecular systems[J]. Chem Rev,2008,108(9):3481.
    [4] Dagani R, Taking baby steps to 'Moletronics'[J]. Chem Eng News,2000,78(1):22-26.
    [5] Joachim C, Gimzewski J, Aviram A, Electronics using hybrid-molecular and mono-molecular devices[J].Nature,2000,408(6812):541-548.
    [6] Sch n J H, Meng H, Bao Z, Self-assembled monolayer organic field-effect transistors[J]. Nature,2001,413(6857):713-716.
    [7]韩汝珊,分子纳电子器件学科导论[M],北京科学出版社,2009.
    [8] Maruccio G, Cingolani R, Rinaldi R, Projecting the nanoworld: concepts, results and perspectives ofmolecular electronics[J]. J Mater Chem,2004,14(4):542-554.
    [9] Reed M A, Zhou C, Muller C J, et al., Conductance of a molecular junction[J]. Science,1997,278(5336):252-254.
    [10] Heath J R, Ratner M A, Molecular electronics[J]. Physics Today,2003,56(5):43-49.
    [11] Feldman A K, Steigerwald M L, Guo X, et al., Molecular Electronic Devices Based on Single-WalledCarbon Nanotube Electrodes[J]. Acc Chem Res,2008,41(12):1731-1741.
    [12] Tao N J, Electron transport in molecular junctions.[J]. Nat Nanotechnol,2006,1(130):1173-181.
    [13] Selzer Y, Allara D L, Single-Molecule Electrical Junctions[J]. Annu Rev Phys Chem,2006,57(1):593-623.
    [14] Metzger R M, Chen B, H pfner U, et al., Unimolecular electrical rectification in hexadecyl-quinolinium tricyanoquinodimethanide[J]. J Am Chem Soc,1997,119(43):10455-10466.
    [15] Datta S, Tian W, Hong S, et al., Current-voltage characteristics of self-assembled monolayers by scan-ning tunneling microscopy[J]. Phys Rev Lett,1997,79(13):2530-2533.
    [16] Jorge M, Zacarias A G, Tour J M, Theoretical study of a molecular resonant tunneling diode[J]. J AmChem Soc,2000,122(13):3015-3020.
    [17] Kornilovitch P, Bratkovsky A, Williams R S, Current rectification by molecules with asymmetric tun-neling barriers[J]. Phys Rev B,2002,66(16):165436.
    [18] Ng M K, Lee D C, Yu L P, Molecular diodes based on conjugated diblock co-oligomers[J]. J Am ChemSoc,2002,124(40):11862-11863.
    [19] Metzger R M, Unimolecular electrical rectifiers[J]. Chem Rev,2003,103(9):3803-3834.
    [20] Metzger R M, Unimolecular rectifiers and proposed unimolecular amplifier[J]. Ann N Y Acad Sci,2003,1006(1):252-276.
    [21] Ashwell G J, Chwialkowska A, High L R H, Au-S-CH2-Q3CNQ: self-assembled monolayers for mo-lecular rectification[J]. J Mater Chem,2004,14(15):2389-2394.
    [22] Ashwell G J, Tyrrell W D, Whittam A J, Molecular rectification: self-assembled monolayers in whichdonor (π-bridge) acceptor moieties are centrally located and symmetrically coupled to both gold elec-trodes[J]. J Am Chem Soc,2004,126(22):7102-7110.
    [23] Elbing M, Ochs R, Koentopp M, et al., A single-molecule diode[J]. Proc Natl Acad Sci USA,2005,102(25):8815-8820.
    [24] Liu R, Ke S H, Yang W T, et al., Organometallic molecular rectification[J]. J Chem Phys,2006,124(2):024718.
    [25] Metzger R M, Unimolecular rectifiers: Present status[J]. Chem Phys,2006,326(1):176-187.
    [26]刘洪梅,赵健伟,分子整流的实验与理论研究进展[J].化学进展,2009,21(6):1154-1163.
    [27] Nijhuis C A, Reus W F, Whitesides G M, Mechanism of rectification in tunneling junctions based onmolecules with asymmetric potential drops[J]. J Am Chem Soc,2010,132(51):18386-18401.
    [28] L rtscher E, Gotsmann B, Lee Y, et al., Transport properties of a single-molecule diode[J]. ACS nano,2012,6(6):4931-4939.
    [29] Staykov A, Nozaki D, Yoshizawa K, Theoretical study of donor π-bridge acceptor unimolecular elec-tric rectifier[J]. J Phys Chem C,2007,111(31):11699-11705.
    [30] Aviram A, Ratner M A, Molecular rectifiers[J]. Chem Phys Lett,1974,29(2):277-283.
    [31] Jiang P, Morales G M, You W, et al., Synthesis of diode molecules and their sequential assembly tocontrol electron transport[J]. Angew Chem Int Ed,2004,43(34):4471-4475.
    [32] Zhao J W, Yu C, Wang N, et al., Molecular rectification based on asymmetrical molecule-electrodecontact[J]. J Phys Chem C,2010,114(9):4135-4141.
    [33] Fan Z Q, Chen K Q, Controllable rectifying performance in a C60molecular device with asymmetricelectrodes[J]. J Appl Phys,2011,109(12):124505.
    [34] Troisi A, Ratner M A, Conformational molecular rectifiers[J]. Nano Lett,2004,4(4):591-595.
    [35] Troisi A, Ratner M A, Molecular rectification through electric field induced conformational changes[J].J Am Chem Soc,2002,124(49):14528-14529.
    [36] Kornilovitch P, Bratkovsky A, Williams R S, Bistable molecular conductors with a field-switchabledipole group[J]. Phys Rev B,2002,66(24):245413.
    [37] Joo N, New functionalized Polyoxometalates (POMs) for molecular memory devices compatible witha CMOS processing[D]:[博士学位论文] Grenoble: UniversitéJoseph-Fourier,2010.
    [38] Rocha A R, García-suárez V M, Bailey S W, et al., Towards molecular spintronics[J]. Nat Mater,2005,4(4):335-339.
    [39] Fert A, The present and the future of spintronics[J]. Thin Solid Films,2008,517(1):2-5.
    [40] Woo Youn Kim Y C C, Seung Kyu Min, Yeonchoo Cho and Kwang S. Kim, Application of quantumchemistry to nanotechnology: electron and spin transport in molecular devices[J]. Chem Soc Rev,2009,38(8):2319-2333.
    [41] Sanvito S, Molecular spintronics[J]. Chem Soc Rev,2011,40(6):3336-3355.
    [42] Li C, Fan W, Lei B, et al., Multilevel memory based on molecular devices[J]. Appl Phys Lett,2004,84(11):1949-1951.
    [43] Li C, Ly J, Lei B, et al., Data storage studies on nanowire transistors with self-assembled porphyrinmolecules[J]. J Phys Chem B,2004,108(28):9646-9649.
    [44] Li Q, Mathur G, Gowda S, et al., Multibit Memory Using Self‐Assembly of MixedFerrocene/Porphyrin Monolayers on Silicon[J]. Adv Mater,2004,16(2):133-137.
    [45] Li Q, Surthi S, Mathur G, et al., Multiple-bit storage properties of porphyrin monolayers on SiO2[J].Appl Phys Lett,2004,85(10):1829-1831.
    [46] Ladd T D, Jelezko F, Laflamme R, et al., Quantum computers[J]. Nature,2010,464(7285):45-53.
    [47] Li Q, Hybrid silicon-molecular electronics[J]. Mod Phys Lett B,2008,22(12):1183-1202.
    [48] Haiss W, Wang C, Grace I, et al., Precision control of single-molecule electrical junctions[J]. Nat Ma-ter,2006,5(12):995-1002.
    [49] Street R A, Thin-film transistors[J]. Adv Mater,2009,21(20):2007-2022.
    [50] Nitzan A, Electron transmission through molecules and molecular interfaces[J]. Annu Rev Phys Chem,2001,52(1):681-750.
    [51] Adams D M, Brus L, Chidsey C E D, et al., Charge transfer on the nanoscale: Current status[J]. J PhysChem B,2003,107(28):6668-6697.
    [52] Figueira-Duarte T M, Müllen K, Pyrene-based materials for organic electronics[J]. Chem Rev,2011,111(11):7260-7314.
    [53] Zimbovskaya N A, Pederson M R, Electron transport through molecular junctions[J]. Phys Rep,2011,509(1):1-87.
    [54] Cronin L, Müller A, From serendipity to design of polyoxometalates at the nanoscale, aestheticbeauty and applications[J]. Chem Soc Rev,2012,41(22):7333-7334.
    [55] Hill C T, Chem Rev,1998,98(1):1-2.
    [56] Izarova N V, Pope M T, Kortz U, Noble metals in polyoxometalates[J]. Angew Chem Int Ed,2012,51(38):9492-9510.
    [57] Lv H, Geletii Y V, Zhao C, et al., Polyoxometalate water oxidation catalysts and the productionof green fuel[J]. Chem Soc Rev,2012,41(22):7572-7589.
    [58] Katsoulis D E, A Survey of applications of polyoxometalates[J]. Chem Rev,1998,98(1):359-387.
    [59] Pope M T, In comprehensive coordination chemistry II[M], Wed, A G, Elsevier: Oxford, U. K., Editonedn.,2004, vol.4, pp.21-135.
    [60] Pope M T, Polyoxo anions: synthesis and structure[M], Wedd, A G, Elsevier, Oxford, Editon edn.,2004, vol.4, pp.635-678.
    [61]王恩波,李阳光,鹿颖, et al.,多酸化学概论[M],长春东北师范大学出版社,2009.
    [62] Oms O, Dolbecq A, Mialane P, Diversity in structures and properties of3d-incorporatingpolyoxotungstates[J]. Chem Soc Rev,2012,41(22):7497-7536.
    [63] Miras H N, Yan J, Long D L, et al., Engineering polyoxometalates with emergent properties[J].Chem Soc Rev,2012,41(22):7403-7430.
    [64] Lopez X, Carbo J J, Bo C, et al., Structure, properties and reactivity of polyoxometalates: a theo-retical perspective[J]. Chem Soc Rev,2012,41(22):7537-7571.
    [65] Li D, Yin P, Liu T, Supramolecular architectures assembled from amphiphilic hybrid polyoxo-metalates[J]. Dalton Trans,2012,41(10):2853-2861.
    [66] Sadakane M, Steckhan E, Electrochemical properties of polyoxometalates as electrocatalysts.[J].Chem Rev,1998,98(1):219-238.
    [67] Wang H, Hamanaka S, Nishimoto Y, et al., In operando X-ray absorption fine structure studies ofpolyoxometalate molecular cluster batteries: Polyoxometalates as electron sponges[J]. J Am Chem Soc,2012,134(10):4918-4924.
    [68] Keita B, Nadjo L, New aspects of the electrochemistry of heteropolyacids: Part IV. Acidity dependentcyclic voltammetric behaviour of phosphotungstic and silicotungstic heteropolyanions in water andN,N-dimethylformamide[J]. J Electroanal Chem Interfacial Electrochem,1987,227(1–2):77-98.
    [69] Keita B, Nadjo L, New aspects of the electrochemistry of heteropolyacids: Part II. Coupled electronand proton transfers in the reduction of silicoungstic species[J]. J Electroanal Chem Interfacial Electrochem,1987,217(2):287-304.
    [70] Keita B, Lucas T, Nadjo L, New aspects of the electrochemistry of heteropolyacids: Reduction cur-rents as a probe of solvent-electrolyte interactions[J]. J Electroanal Chem Interfacial Electrochem,1986,208(2):343-356.
    [71] Agustin D, Dallery J, Coelho C, et al., Synthesis, characterization and study of the chromogenic prop-erties of the hybrid polyoxometalates [PW311O39(SiR)2O](R=Et,(CH2)nCH=CH2(n=0,1,4),CH2CH2SiEt3, CH2CH2SiMe2Ph)[J]. J Organomet Chem,2007,692(4):746-754.
    [72] Liu S, Tang Z, Polyoxometalate-based functional nanostructured films: Current progress and futureprospects[J]. Nano Today,2010,5(4):267-281.
    [73] He T, He J, Lu M, et al., Controlled modulation of conductance in silicon devices by molecular mono-layers[J]. J Am Chem Soc,2006,128(45):14537-14541.
    [74] Lu M, Nolte W M, He T, et al., Direct covalent grafting of polyoxometalates onto Si surfaces[J]. ChemMater,2009,21(3):442-446.
    [75] Kaba M S, Song I K, Barteau M A, Ordered array formation and negative differential resistance be-havior of cation-exchanged heteropoly acids probed by scanning tunneling microscopy[J]. J Phys Chem,1996,100(50):19577-19581.
    [76] Song I K, Barteau M A, Correlation of negative differential resistance (NDR) peak voltages ofnanostructured heteropolyacid (HPA) monolayers with one electron reduction potentials of HPA catalysts[J].Langmuir,2004,20(5):1850-1855.
    [77] Glezos N, Argitis P, Velessiotis D, et al., Tunneling transport in polyoxometalate based composite ma-terials[J]. Appl Phys Lett,2003,83(3):488-490.
    [78] Glezos N, Velessiotis D, Chaidogiannos G, et al., Transport properties of polyoxometalate containingpolymeric materials[J]. Synth Met,2003,138(1-2):267-269.
    [79] Chaidogiannos G, Velessiotis D, Argitis P, et al., Tunneling and negative resistance effects for compo-site materials containing polyoxometalate molecules[J]. Microelectron Eng,2004,73-74,746-751.
    [80] Douvas A M, Makarona E, Glezos N, et al., Polyoxometalate-based layered structures for chargetransport control in molecular devices[J]. ACS nano,2008,2(4):733-742.
    [81] Liu S, M hwald H, Volkmer D, et al., Polyoxometalate-based electro-and photochromic dual-modedevices[J]. Langmuir,2006,22(5):1949-1951.
    [82] Kapetanakis E, Douvas A M, Velessiotis D, et al., Molecular storage elements for proton memory de-vices[J]. Adv Mater,2008,20(23):4568-4574.
    [83] Kapetanakis E, Douvas A M, Velessiotis D, et al., Hybrid organic–inorganic materials for molecularproton memory devices[J]. Org Electron,2009,10(4):711-718.
    [84] Ferrer J, García-Suárez V M, From microelectronics to molecular spintronics: an explorer's travellingguide[J]. J Mater Chem,2009,19(12):1696-1717.
    [85] Lehmann J, Gaita-Ari o A, Coronado E, et al., Spin qubits with electrically gated polyoxometalatemolecules[J]. Nat Nanotechnol,2007,2(5):312-317.
    [86] Lehmann J, Gaita-Ari o A, Coronado E, et al., Quantum computing with molecular spin systems[J]. JMater Chem,2009,19(12):1672-1677.
    [87] Clemente-Juan J M, Coronado E, Gaita-Ari o A, Magnetic polyoxometalates: from molecularmagnetism to molecular spintronics and quantum computing[J]. Chem Soc Rev,2012,41(22):7464-7478.
    [88] Camarero J, Coronado E, Molecular vs. inorganic spintronics: the role of molecular materials and sin-gle molecules[J]. J Mater Chem,2009,19(12):1678-1684.
    [89] Yuan M, Li Y, Wang E, et al., Modified polyoxometalates: hydrothermal syntheses and crystal struc-tures of three novel reduced and capped Keggin derivatives decorated by transition metal complexes[J].Inorg Chem,2003,42(11):3670-3676.
    [90] Shi Z, Gu X, Peng J, Hydrothermal assembly of a new hydrogen-bonded network featuring bicappeddimerized [Si2Mo24O80(VO)84]polyanion[J]. Inorg Chem Commun,2005,8(10):886-889.
    [91] Müller A, Beugholt C, K gerler P, et al.,[MoV12O30(μI2-OH)10H2{NiI(H2O)3}4], a Highly Symmetrical-Keggin Unit Capped with Four NiIICenters: Synthesis and Magnetism[J]. Inorg Chem,2000,39(23):5176-5177.
    [1] Economou E N, Green's functions in quantum physics[M], Springer Berlin,1979.
    [2] Datta S, Electronic transport in mesoscopic systems[M], Cambridge, U.K. Cambridge University Press,1995.
    [3] Datta S, Quantum Transport: Atom to Transistor[M], New York Cambridge University Press,2005.
    [4] Di Ventra M, Electrical transport in nanoscale systems[M], New York Cambridge University Press,2008.
    [5] Haug H, Jauho A P, Quantum Kinetics in Transport and Optics of Semiconductors[M], Second, Sub-stantially Revised Edition edn., New York Springer Berlin Heidelberg,2008.
    [6] Schr dinger E, An Undulatory Theory of the Mechanics of Atoms and Molecules[J]. Phys Rev,1926,28(6):1049-1070.
    [7] Sanvito S, Giant magnetoresistance and quantum transport in magnetic hybrid nanostructures[D]:
    [博士学位论文], University of Lancaster,1999.
    [8] Paulsson M, Non Equilibrium Green's Functions for Dummies: Introduction to the One Particle NEGFequations[J]. arXiv: cond-mat/0210519,2002,
    [9] Rocha A R, Theoretical and computational aspects of electronic transport at the nanoscale[D]:[博士学位论文], Trinity College Dublin,2007.
    [10] Ordejón P, Artacho E, Soler J, Self-consistent order-N density-functional calculations for very largesystems[J]. Phys Rev B,1996,53(16): R10441-R10444.
    [11] Sánchez-Portal D, Ordejón P, Artacho E, et al., Density-functional method for very large systems withLCAO basis sets[J]. Int J Quantum Chem,1997,65453-65461.
    [12] Artacho E, Sánchez-Portal D, Ordejón P, et al., Linear-Scaling ab-initio Calculations for Large andComplex Systems[J]. Phys Status Solidi B,1999,215(1):809-817.
    [13] Ordejón P, Linear Scaling ab initio Calculations in Nanoscale Materials with SIESTA[J]. Phys StatusSolidi B,2000,217(1):335-356.
    [14] Junquera J, Paz ó, Sánchez-Portal D, et al., Numerical atomic orbitals for linear-scaling calculations[J].Phys Rev B,2001,64(23):235111.
    [15] Anglada E, M. Soler J, Junquera J, et al., Systematic generation of finite-range atomic basis sets forlinear-scaling calculations[J]. Phys Rev B,2002,66(20):205101.
    [16] Soler J M, Artacho E, Gale J D, et al., The SIESTA method for ab initio order-N materials[J]. J Phys:Condns Matter,2002,142745-2779.
    [17] Giannozzi P, Baroni S, Bonini N, et al., QUANTUM ESPRESSO: a modular and open-source softwareproject for quantum simulations of materials[J]. J Phys: Condns Matter,2009,21(39):395502.(http://www.quantum-espresso.org/)
    [18] Sanvito S, Lambert C J, Jefferson J H, et al., General Green's-function formalism for transport calcula-tions with spd Hamiltonians and giant magnetoresistance in Co-and Ni-based magnetic multilayers[J].Phys Rev B,1999,59(18):11936.
    [19] Rocha A R, Garcia-Suarez V, Bailey S W, et al., Towards Molecular Spintronics[J]. Nat Mater,2005,4335-339.
    [20] Rocha A R, García-Suárez V M, Bailey S, et al., Spin and molecular electronics in atomically generat-ed orbital landscapes[J]. Phys Rev B,2006,73(8):085414.
    [21] Rungger I, Sanvito S, Algorithm for the construction of self-energies for electronic transport calcula-tions based on singularity elimination and singular value decomposition[J]. Phys Rev B,2008,78(3):035407.
    [22] Brandbyge M, Mozos J-L, Ordejón P, et al., Density-functional method for nonequilibrium electrontransport[J]. Phys Rev B,2002,65(16):165401.
    [23] Ozaki T, Nishio K, Kino H, Efficient implementation of the nonequilibrium Green function method forelectronic transport calculations[J]. Phys Rev B,2010,81(3):035116(http://www.openmx-square.org).
    [24] Palaciosa J, Pérez-Jiménezc A, Louisa E, et al., Molecular electronics with Gaussian98/03[J].2005,http://alacant.dfa.ua.es
    [25] http://www.ciss.iis.u-tokyo.ac.jp/rss21/en/index.html
    [26] http://www.icmm.csic.es/jcerda/index.html, or http://www.nanotimes-corp.com
    [27] http://www.quantumwise.com
    [28] Zheng X, Wang F, Yam C, et al., Time-dependent density-functional theory for open systems[J]. PhysRev B,2007,75(19):195127.
    [29] Yam C, Mo Y, Wang F, et al., Dynamic admittance of carbon nanotube-based molecular electronicdevices and their equivalent electric circuit[J]. Nanotechnology,2008,19(49):495203.
    [30] Wen S Z, Koo S K, Yam C Y, et al., Time-dependent current distributions of a two-terminal carbonnanotube-based electronic device.[J]. J Phys Chem B,2011,115(18):5519-5525.
    [31] Zheng X, Yam C Y, Wang F, et al., Existence of time-dependent density-functional theory for openelectronic systems: Time-dependent holographic electron density theorem[J]. Physical Chemistry ChemicalPhysics,2011,13(32):14358-14364.
    [32] Stefanucci G, Bound states in ab initio approaches to quantum transport: A time-dependent formula-tion[J]. Phys Rev B,2007,75(19):195115.
    [33] Di Ventra M, D’Agosta R, Stochastic Time-Dependent Current-Density-Functional Theory[J]. PhysRev Lett,2007,98(22):226403.
    [1] Aviram A, Ratner M A, Molecular rectifiers[J]. Chem Phys Lett,1974,29(2):277-283.
    [2] Reed M A, Zhou C, Muller C J, et al., Conductance of a molecular junction[J]. Science,1997,278(5336):252-254.
    [3] Datta S, Electronic transport in mesoscopic systems[M], Cambridge, U.K. Cambridge UniversityPress,1995.
    [4] Stefanucci G, Almbladh C O, Time-dependent quantum transport: An exact formulation based onTDDFT[J]. Europhys Lett,2004,67(1):14-20.
    [5] Stefanucci G, Almbladh C O, Time-dependent partition-free approach in resonant tunneling systems[J].Phys. Rev. B,2004,69(19):195318.
    [6] Kurth S, Stefanucci G, Almbladh C O, et al., Time-dependent quantum transport: A practical schemeusing density functional theory[J]. Phys Rev B,2005,72(3):035308.
    [7] Zheng X, Chen G-H, First-principles method for open electronic systems[J]. arXiv,2005: phys-ics/0502021v1.
    [8] Stefanucci G, Almbladh C O, An exact ab initio theory of quantum transport using TDDFT andnonequilibrium Green's functions[J]. J Phys Conf Ser,2006,35(1):17-24.
    [9] Gabelli J, Fève G, Berroir J M, et al., Violation of Kirchhoff's laws for a coherent RC circuit[J]. Science,2006,313(5786):499-502.
    [10] Zheng X, Wang F, Yam C, et al., Time-dependent density-functional theory for open systems[J]. PhysRev B,2007,75(19):195127.
    [11] Yuen-Zhou J, Tempel D G, Rodríguez-Rosario C a, et al., Time-dependent density functional theoryfor open quantum systems with unitary propagation[J]. Phys Rev Lett,2010,104(4):043001.
    [12] Zheng X, Chen G, Mo Y, et al., Time-dependent density functional theory for quantum transport[J]. JChem Phys,2010,133(11):114101.
    [13] Wen S Z, Koo S K, Yam C Y, et al., Time-dependent current distributions of a two-terminal carbonnanotube-based electronic device.[J]. J Phys Chem B,2011,115(18):5519-5525.
    [14] Pope M T, In comprehensive coordination chemistry II, Wed, A G, Elsevier: Oxford, U. K., Editonedn.,2004, vol.4.
    [15] Kapetanakis E, Douvas A M, Velessiotis D, et al., Hybrid organic–inorganic materials for molecularproton memory devices[J]. Org Electron,2009,10(4):711-718.
    [16] Kapetanakis E, Douvas A M, Velessiotis D, et al., Molecular storage elements for proton memory de-vices[J]. Adv Mater,2008,20(23):4568-4574.
    [17] Coronado E, Gimenezsaiz C, Gomezgarcia C, Recent advances in polyoxometalate-containing molec-ular conductors[J]. Coord Chem Rev,2005,249(17-18):1776-1796.
    [18] Glezos N, Argitis P, Velessiotis D, et al., Tunneling transport in polyoxometalate based compositematerials[J]. Appl Phys Lett,2003,83(3):488.
    [19] Glezos N, Velessiotis D, Chaidogiannos G, et al., Transport properties of polyoxometalate containingpolymeric materials[J]. Synth Met,2003,138(1-2):267-269.
    [20] Chaidogiannos G, Velessiotis D, Argitis P, et al., Tunneling and negative resistance effects for compo-site materials containing polyoxometalate molecules[J]. Microelectron Eng,2004,73-74:746-751.
    [21] Velessiotis D, Glezos N, Ioannou-Sougleridis V, Tungstate polyoxometalates as active components ofmolecular devices[J]. J Appl Phys,2005,98(8):084503.
    [22] He T, He J, Lu M, et al., Controlled modulation of conductance in silicon devices by molecular mono-layers[J]. J Am Chem Soc,2006,128(45):14537-14541.
    [23] Ordejón P, Artacho E, Soler J, Self-consistent order-N density-functional calculations for very largesystems.[J]. Phys Rev B,1996,53(16): R10441-R10444.
    [24] Li J, Electronic Structures,(d-p) conjugation effects, and spectroscopic Properties of polyoxometalates:M2-6O19(M=Cr, Mo, W)[J]. J Cluster Sci,2002,13(1):137-163.
    [25] Troullier N, Martins J L, Efficient pseudopotentials for plane-wave calculations. II. Operators for fastiterative diagonalization[J]. Phys Rev B,1991,43(11):8861-8869.
    [26] Khoo K H, Neaton J B, Son Y W, et al., Negative differential resistance in carbon atomic wire-carbonnanotube junctions[J]. Nano Lett,2008,8(9):2900-2905.
    [27] Rocha A R, Garcia-Suarez V, Bailey S W, et al., Towards molecular spintronics[J]. Nat Mater,2005,4(4):335-339.
    [28] Rungger I, Sanvito S, Algorithm for the construction of self-energies for electronic transport calcula-tions based on singularity elimination and singular value decomposition[J]. Phys Rev B,2008,78(3):035407.
    [29] Allcock H R, Bissell E C, Shawl E T, Crystal and molecular structure of a new hexamolybdate-cyclophosphazene complex[J]. Inorg Chem,1973,12(12):2963-2968.
    [30] Guan W, Yan L, Su Z, et al., Electronic properties and stability of dititanium(IV) substituted al-pha-Keggin polyoxotungstate with heteroatom phosphorus by DFT[J]. Inorg Chem,2005,44(1):100-107.
    [31] Guan W, Yan L, Su Z, et al., Density functional study of protonation sites of a-Keggin isopoly-anions[J]. Int J Quantum Chem,2006,106(8):1860-1864.
    [1] Reed M A, Zhou C, Muller C J, et al., Conductance of a molecular junction[J]. Science,1997,278(5336):252-254.
    [2] Heath J R, Ratner M A, Molecular electronics[J]. Physics Today,2003:43-49.
    [3] Datta S, Electronic transport in mesoscopic systems[M], Cambridge, U.K. Cambridge University Press,1995.
    [4] Sanvito S, Lambert C J, Jefferson J H, et al., General Green's-function formalism for transport calcula-tions with spd Hamiltonians and giant magnetoresistance in Co-and Ni-based magnetic multilayers[J].Phys Rev B,1999,59(18):11936.
    [5] Xue Y, Datta S, Ratner M A, First-principles based matrix Green's function approach to molecular elec-tronic devices: General formalism[J]. Chem Phys,2002,281(2-3):151-170.
    [6] Brandbyge M, Mozos J L, Ordejón P, et al., Density-functional method for nonequilibrium electrontransport[J]. Phys Rev B,2002,65(16):165401.
    [7] Chen J, Reed M A, Rawlett A M, et al., Large on-off ratios and negative differential resistance in a mo-lecular electronic device[J]. Science,1999,286(5444):1550-1552.
    [8] Ng M K, Lee D C, Yu L P, Molecular diodes based on conjugated diblock co-oligomers[J]. J Am ChemSoc,2002,124(40):11862-11863.
    [9] Metzger R M, Unimolecular electrical rectifiers[J]. Chem Rev,2003,103(9):3803-3834.
    [10] Metzger R M, Unimolecular rectifiers: Present status[J]. Chem Phys,2006,326(1):176-187.
    [11] Metzger R M, Unimolecular electronics[J]. J Mater Chem,2008,18(37):4364-4396.
    [12] Liu Y J, Yu H Z, Alkyl Monolayer-passivated metal–semiconductor diodes: Molecular tunability andelectron transport[J]. ChemPhysChem,2002,3(9):799-802.
    [13] McCreery R, Dieringer J, Solak A O, et al., Molecular rectification and conductance switching in car-bon-based molecular junctions by structural rearrangement accompanying electron injection[J]. J Am ChemSoc,2003,125(35):10748-10758.
    [14] Pan J B, Zhang Z H, Deng X Q, et al., The transport properties of D--A molecules: A strikingly oppo-site directional rectification[J]. Appl Phys Lett,2011,98(1):013503.
    [15] Kornyshev A A, Kuznetsov A M, A new type of in Situ single-molecule rectifier[J]. ChemPhysChem,2006,7(5):1036-1040.
    [16] Matino F, Arima V, Piacenza M, et al., Rectification in supramolecular zinc porphyrin/fullero-pyrrolidine dyads self-organized on gold(111)[J]. ChemPhysChem,2009,10(15):2633-2641.
    [17] Armstrong N, Hoft R C, McDonagh A, et al., Exploring the performance of molecular rectifiers: Limi-tations and factors affecting molecular rectification[J]. Nano Lett,2007,7(10):3018-3022.
    [18] L rtscher E, Gotsmann B, Lee Y, et al., Transport properties of a single-molecule diode[J]. ACS nano,2012,6(6):4931-4939.
    [19] Qiu M, Liew K M, Odd-even effects of electronic transport in carbon-chain-based molecular devic-es[J]. J Phys Chem C,2012,116(21):11709-11713.
    [20] Guo C, Zhang Z H, Kwong G, et al., Enormously enhanced rectifying performances by modification ofcarbon chains for D–A molecular devices[J]. J Phys Chem C,2012,116(23):12900-12905.
    [21] Pan J B, Zhang Z H, Deng X Q, et al., Rectifying performance of D-π-A molecules based oncyanovinyl aniline derivatives[J]. Appl Phys Lett,2010,97(20):203104.
    [22] Yee S K, Sun J, Darancet P, et al., Inverse rectification in donor–acceptor molecular heterojun-ctions[J]. ACS nano,2011,5(11):9256-9263.
    [23] Kapetanakis E, Douvas A M, Velessiotis D, et al., Molecular storage elements for proton memory de-vices[J]. Adv Mater,2008,20(23):4568-4574.
    [24] Lehmann J, Gaita-Ari o A, Coronado E, et al., Spin qubits with electrically gated polyoxometalatemolecules[J]. Nat Nanotechnol,2007,2(5):312-317.
    [25] Coronado E, Gimenezsaiz C, Gomezgarcia C, Recent advances in polyoxometalate-containing molec-ular conductors[J]. Coord Chem Rev,2005,249(17-18):1776-1796.
    [26] Douvas A M, Makarona E, Glezos N, et al., Polyoxometalate-based layered structures for chargetransport control in molecular devices[J]. ACS nano,2008,2(4):733-742.
    [27] Lehmann J, Gaita-Ari o A, Coronado E, et al., Quantum computing with molecular spin systems[J]. JMater Chem,2009,19(12):1672-1677.
    [28] Clemente-Juan J M, Coronado E, Gaita-Ari o A, Magnetic polyoxometalates: from molecular mag-netism to molecular spintronics and quantum computing[J]. Chem Soc Rev,2012,41(22):7464-7478.
    [29] Wei Y G, Xu B B, Barnes C L, et al., An efficient and convenient reaction protocol to organoimidoderivatives of polyoxometalates[J]. J Am Chem Soc,2001,123(17):4083-4084.
    [30] Zhang J, Yin P, Hao J, et al., Synthesis and assembly of a difunctional core POM cluster with two Ap-pended POM cluster caps[J]. Chem Eur J,2012,18(43):13596-13599.
    [31] Zhang J, Xiao F P, Hao J, et al., The chemistry of organoimido derivatives of polyoxometalates[J].Dalton Trans,2012,41(13):3599-3615.
    [32] Yan L K, Yang G C, Guan W, et al., Density functional theory study on the first hyperpolarizabilities oforganoimido derivatives of hexamolybdates[J]. J Phys Chem B,2005,109(47):22332-22336.
    [33] Janjua M R S A, Quantum mechanical design of efficient second-order nonlinear optical materialsbased on heteroaromatic imido-substituted hexamolybdates: First theoretical framework of POM-basedheterocyclic aromatic rings[J]. Inorg Chem,2012,51(21):11306-11314.
    [34] Wen S Z, Koo S K, Yam C Y, et al., Time-dependent current distributions of a two-terminal carbonnanotube-based electronic device.[J]. J Phys Chem B,2011,115(18):5519-5525.
    [35] Wen S Z, Guan W, Su Z M, et al., First principle investigation transport properties of Lindqvist deriva-tives based molecular junction[J]. J Mol Graph Modell,2012,38:220-225.
    [36] Zhang G P, Hu G C, Li Z L, et al., The effects of contact configurations on the rectification ofdipyrimidinyl—diphenyl diblock molecular junctions[J]. Chin Phys B,2011,20(12):127304.
    [37] Larade B, Taylor J, Zheng Q R, et al., Renormalized molecular levels in a Sc3N@C80molecular elec-tronic device[J]. Phys Rev B,2001,64(19):195402.
    [38] Ke S H, Baranger H, Yang W T, Electron transport through molecules: Gate-induced polarization andpotential shift[J]. Phys Rev B,2005,71(11):113401.
    [39] Barone V, Cacelli I, Ferretti A, et al., Theoretical study of a molecular junction with asymmetric cur-rent/voltage characteristics[J]. Chem Phys Lett,2012,549:1-5.
    [40] Zhang C, Du M H, Cheng H P, et al., Coherent electron transport through an azobenzene molecule: Alight-driven molecular switch[J]. Phys Rev Lett,2004,92(15):158301.
    [41] Hao H, Zheng X H, Song L L, et al., Electrostatic spin crossover in a molecular junction of a sin-gle-molecule magnet Fe2[J]. Phys Rev Lett,2012,108(1):017202.
    [42] Ordejón P, Artacho E, Soler J, Self-consistent order-N density-functional calculations for very largesystems.[J]. Phys Rev B,1996,53(16): R10441-R10444.
    [43] Sánchez-Portal D, Ordejón P, Artacho E, et al., Density-functional method for very large systems withLCAO basis sets[J]. Int J Quantum Chem,1997,65(5):453-461.
    [44] Junquera J, Pazó, Sánchez-Portal D, et al., Numerical atomic orbitals for linear-scaling calculations[J].Phys Rev B,2001,64(23):235111.
    [45] Soler J M, Artacho E, Gale J D, et al., The SIESTA method for ab initio order-N materials[J]. J Phys:Condns Matter,2002,14(11):2745-2779.
    [46] Anglada E, M. Soler J, Junquera J, et al., Systematic generation of finite-range atomic basis sets forlinear-scaling calculations[J]. Phys Rev B,2002,66(20):205101.
    [47] Troullier N, Martins J L, Efficient pseudopotentials for plane-wave calculations[J]. Phys Rev B,1991,43(3):1993-2006.
    [48] Troullier N, Martins J L, Efficient pseudopotentials for plane-wave calculations. II. Operators for fastiterative diagonalization[J]. Phys Rev B,1991,43(11):8861-8869.
    [49] García-Gil S, García A, Lorente N, et al., Optimal strictly localized basis sets for noble metal surfac-es[J]. Phys Rev B,2009,79(7):075441.
    [50] Kostyrko T, Lambert C J, Bu ka B R, Current rectification in molecular junctions produced by localpotential fields[J]. Phys Rev B,2010,81(8):085308.
    [51] Zhang G P, Hu G C, Li Z L, et al., Theoretical studies on protonation induced inversion of the rectify-ing direction in dipyrimidinyl-diphenyl diblock molecular junctions[J]. J Phys Chem C,2012,116(5):3773-3778.
    [52] Perdew J P, Burke K, Ernzerhof M, Generalized gradient approximation made simple[J]. Phys RevLett,1996,77(18):3865-3868.
    [53] Wen S Z, Guan W, Wang J P, et al., Theoretical investigation of structural and electronic properties of
    [PW312O40]-on graphene layer[J]. Dalton Trans,2012,41(15):4602-4607.
    [54] Rocha A R, Garcia-Suarez V, Bailey S W, et al., Towards molecular spintronics[J]. Nat Mater,2005,4:335-339.
    [55] Rocha A R, García-Suárez V M, Bailey S, et al., Spin and molecular electronics in atomically generat-ed orbital landscapes[J]. Phys Rev B,2006,73(8):085414.
    [56] Parr R G, Yang W T, Density functional approach to the frontier-electron theory of chemical reactivi-ty[J]. J Am Chem Soc,1984,106(14):4049-4050.
    [57] Lu T, Chen F W, Multiwfn: A multifunctional wavefunction analyzer[J]. J Comput Chem,2012,33(5):580.
    [58] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian09W, Gaussian, Inc, Pittsburgh PA,2009.
    [59] Cheng Z L, Skouta R, Vazquez H, et al., In situ formation of highly conducting covalent Au-C contactsfor single-molecule junctions[J]. Nat Nanotechnol,2011,6(6):353-357.
    [60] Xu B B, Wei Y G, Barnes C L, et al., Hybrid molecular materials based on covalently linked inorganicpolyoxometalates and organic conjugated systems[J]. Angew Chem Int Ed,2001,40(12):2290-2292.
    [61] He H Y, Pandey R, Mallick G, et al., Asymmetric currents in a donor bridge acceptor single molecule:Revisit of theAviram Ratner diode[J]. J Phys Chem C,2009,113(4):1575-1579.
    [1] Aviram A, Ratner M A, Molecular rectifiers[J]. Chem Phys Lett,1974,29(2):277-283.
    [2] Datta S, Electronic transport in mesoscopic systems[M], Cambridge, U.K. Cambridge University Press,1995.
    [3] Reed M A, Zhou C, Muller C J, et al., Conductance of a molecular junction[J]. Science,1997,278(5336):252-254.
    [4] Haiss W, Wang C, Grace I, et al., Precision control of single-molecule electrical junctions[J]. Nat Mater,2006,5(12):995-1002.
    [5] L rtscher E, Gotsmann B, Lee Y, et al., Transport Properties of a Single-Molecule Diode[J]. ACS nano,2012,6(6):4931-4939.
    [6] Paulsson M, Zahid F, Datta S, eds., Handbook of nanoscience, engineering and technology[M], CRCPress,2002.
    [7] Kornilovitch P E, Bratkovsky A M, Stanley Williams R, Current rectification by molecules with asym-metric tunneling barriers[J]. Phys Rev B,2002,66(16):165436.
    [8] Metzger R M, Unimolecular Electrical Rectifiers[J]. Chem Rev,2003,103(9):3803-3834.
    [9] Nijhuis C A, Reus W F, Whitesides G M, Mechanism of rectification in tunneling junctions based onmolecules with asymmetric potential drops[J]. J Am Chem Soc,2010,132(51):18386-18401.
    [10] Morales G M, Jiang P, Yuan S, et al., Inversion of the rectifying effect in diblock molecular diodes byprotonation[J]. J Am Chem Soc,2005,127(30):10456-10457.
    [11] Metzger R M, Chen B, H pfner U, et al., Unimolecular electrical rectification in hexadecylquino-linium tricyanoquinodimethanide[J]. J Am Chem Soc,1997,119(43):10455-10466.
    [12] Zhao J W, Yu C, Wang N, et al., Molecular rectification based on asymmetrical molecule-electrodecontact[J]. J Phys Chem C,2010,114(9):4135-4141.
    [13] Troisi A, Ratner M A, Molecular rectification through electric field induced conformational changes[J].J Am Chem Soc,2002,124(49):14528-14529.
    [14] Troisi A, Ratner M A, Conformational molecular rectifiers[J]. Nano Lett,2004,4(4):591-595.
    [15] Zhang G P, Hu G C, Li Z L, et al., Theoretical studies on protonation induced inversion of the rectify-ing direction in dipyrimidinyl-diphenyl diblock molecular junctions[J]. J Phys Chem C,2012,116(5):3773-3778.
    [16] Cronin L, Müller A, From serendipity to design of polyoxometalates at the nanoscale, aestheticbeauty and applications[J]. Chem Soc Rev,2012,41(22):7333-7334.
    [17] Zhang J, Xiao F P, Hao J, et al., The chemistry of organoimido derivatives of polyoxometalates[J].Dalton Trans,2012,41(13):3599.
    [18] Wen S Z, Yang G C, Yan L K, et al., Theoretical study on rectifying performances of organoimido de-rivatives of hexamolybdates[J]. ChemPhysChem,2012, DOI:10.1002/cphc.201200770.
    [19] Xia Y, Wei Y, Wang Y, et al., A kinetically controlled trans-bifunctionalized organoimido derivative ofthe Lindqvist-type hexamolybdate: Synthesis, Spectroscopic Characterization, and Crystal Structure of(n-Bu4N)2{trans-[Mo6O17(NAr)2]}(Ar=2,6-dimethylphenyl)[J]. Inorg Chem,2005,44(26):9823-9828.
    [20] Hu Y, Zhu Y, Gao H, et al., Conductance of an ensemble of molecular wires: A statistical analysis[J].Phys Rev Lett,2005,95(15):156803.
    [21] Taylor J, Guo H, Wang J, Ab initio modeling of open systems: Charge transfer, electron conduction,and molecular switching of a C60device[J]. Phys Rev B,2001,63(12):121104(R).
    [22] Larade B, Taylor J, Zheng Q R, et al., Renormalized molecular levels in a Sc3N@C80molecular elec-tronic device[J]. Phys Rev B,2001,64(19):195402.
    [23] Ke S H, Baranger H, Yang W T, Electron transport through molecules: Gate-induced polarization andpotential shift[J]. Phys Rev B,2005,71(11):113401.
    [24] Zhang C, He Y, Cheng H P, et al., Current-voltage characteristics through a single light-sensitive mol-ecule[J]. Phys Rev B,2006,73(12):125445.
    [25] Zhang C, Du M H, Cheng H P, et al., Coherent electron transport through an azobenzene molecule: Alight-driven molecular switch[J]. Phys Rev Lett,2004,92(15):158301.
    [26] Hao H, Zheng X H, Song L L, et al., Electrostatic spin crossover in a molecular junction of a sin-gle-molecule magnet Fe2[J]. Phys Rev Lett,2012,108(1):017202.
    [27] Ordejón P, Artacho E, Soler J, Self-consistent order-N density-functional calculations for very largesystems.[J]. Phys Rev B,1996,53(16): R10441-R10444.
    [28] Sánchez-Portal D, Ordejón P, Artacho E, et al., Density-functional method for very large systems withLCAO basis sets[J]. Int J Quantum Chem,1997,65:453-461.
    [29] Artacho E, Sánchez-Portal D, Ordejón P, et al., Linear-scaling ab-initio calculations for large and com-plex systems[J]. Phys Status Solidi B,1999,215(1):809-817.
    [30] Ordejón P, Linear scaling ab initio calculations in nanoscale materials with SIESTA[J]. Phys StatusSolidi B,2000,217(1):335-356.
    [31] Junquera J, Paz ó, Sánchez-Portal D, et al., Numerical atomic orbitals for linear-scaling calculations[J].Phys Rev B,2001,64(23):235111.
    [32] Anglada E, M. Soler J, Junquera J, et al., Systematic generation of finite-range atomic basis sets forlinear-scaling calculations[J]. Phys Rev B,2002,66(20):205101.
    [33] Soler J M, Artacho E, Gale J D, et al., The SIESTA method for ab initio order-N materials[J]. J Phys:Condns Matter,2002,14(11):2745-2779.
    [34] Troullier N, Martins J L, Efficient pseudopotentials for plane-wave calculations. II. Operators for fastiterative diagonalization[J]. Phys Rev B,1991,43(11):8861-8869.
    [35] Troullier N, Martins J L, Efficient pseudopotentials for plane-wave calculations[J]. Phys Rev B,1991,43(3):1993-2006.
    [36] Zheng X, Wang X, Dai Z, et al., Tuning the transport properties of a (C60)2bridge with electron andhole dopings[J]. J Chem Phys,2011,134(4):044708.
    [37] Kostyrko T, Lambert C J, Bu ka B R, Current rectification in molecular junctions produced by localpotential fields[J]. Phys Rev B,2010,81(8):085308.
    [38] Perdew J P, Burke K, Ernzerhof M, Generalized gradient approximation made simple[J]. Phys RevLett,1996,77(18):3865-3868.
    [39] Wen S Z, Guan W, Su Z M, et al., First principle investigation transport properties of Lindqvist deriva-tives based molecular junction[J]. J Mole Graphics Modell,2012,38,220-225.
    [40] Wen S Z, Guan W, Wang J P, et al., Theoretical investigation of structural and electronic properties of
    [PW12O40]3-on graphene layer[J]. Dalton Trans,2012,41(15):4602-4607.
    [41] Sanvito S, Lambert C J, Jefferson J H, et al., General Green's-function formalism for transport calcula-tions with spd Hamiltonians and giant magnetoresistance in Co-and Ni-based magnetic multilayers[J].Phys Rev B,1999,59(18):11936.
    [42] Rocha A R, García-Suárez V M, Bailey S W, et al., Towards molecular spintronics[J]. Nat Mater,2005,4335-339.
    [43] Rocha A R, García-Suárez V M, Bailey S, et al., Spin and molecular electronics in atomically generat-ed orbital landscapes[J]. Phys Rev B,2006,73(8):085414.
    [44] Rungger I, Sanvito S, Algorithm for the construction of self-energies for electronic transport calcula-tions based on singularity elimination and singular value decomposition[J]. Phys Rev B,2008,78(3):035407.
    [45] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian09W, Gaussian, Inc, Pittsburgh PA,2009.
    [46] Cheng Z L, Skouta R, Vazquez H, et al., In situ formation of highly conducting covalent Au-C contactsfor single-molecule junctions[J]. Nat Nanotechnol,2011,6(6):353-357.
    [1] Schedin F, Geim A K, Morozov S V, et al., Detection of individual gas molecules adsorbed on graph-ene[J]. Nat Mater,2007,6(9):652-655.
    [2] Wehling T O, Novoselov K S, Morozov S V, et al., Molecular doping of graphene[J]. Nano Lett,2008,8(1):173-177.
    [3] Robinson J T, Perkins F K, Snow E S, et al., Reduced graphene oxide molecular sensors[J]. Nano Lett,2008,8(10):3137-3140.
    [4] Wu J, Pisula W, Müllen K, Graphenes as potential material for electronics[J]. Chem Rev,2007,107(3):718-747.
    [5] Castro Neto A H, Guinea F, Peres N M R, et al., The electronic properties of graphene[J]. Rev ModPhys,2009,81(1):109-162.
    [6] Saha S K, Baskey M, Majumdar D, Graphene quantum sheets: A new material for spintronic applica-tions[J]. Adv Mater,2010,22(48):5531-5536.
    [7] Wu J, Becerril H A, Bao Z, et al., Organic solar cells with solution-processed graphene transparent elec-trodes[J]. Appl Phys Lett,2008,92(26):263-302.
    [8] Wang X, Zhi L, Müllen K, Transparent, conductive graphene electrodes for dye-sensitized solar cells[J].Nano Lett,2008,8(1):323-327.
    [9] Xu Y, Liu Z, Zhang X, et al., A graphene hybrid material covalently functionalized with porphyrin: Syn-thesis and optical limiting property[J]. Adv Mater,2009,21(12):1275-1279.
    [10] Li X, Zhu H, Wang K, et al., Graphene-on-silicon schottky junction solar cells[J]. Adv Mater,2010,22(25):2743-2748.
    [11] Dong X, Fu D, Fang W, et al., Doping single-layer graphene with aromatic molecules[J]. Small,2009,5(12):1422-1426.
    [12] Gong J R, Graphene Simulation[M], Croatia InTech,2011.
    [13] Leenaerts O, Partoens B, Peeters F M, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: Afirst-principles study[J]. Phys Rev B,2008,77(12):125416.
    [14] Zhang Y, Zhou K, Xie K, et al., Tuning the electronic structure and transport properties of graphene bynoncovalent functionalization: effects of organic donor, acceptor and metal atoms[J]. Nanotechnology,2010,21(6):065201.
    [15] K nzel D, Tonigold K, Ku era J, et al., Adsorption of supramolecular building blocks on graphite: Aforce field and density functional theory study[J]. ChemPhysChem,2011,12(12):2242-2245.
    [16] Pope M T, Müller A, Polyoxometalate Chemistry: An old field with new dimensions in several disci-plines[J]. Angew Chem Int Ed,1991,30(1):34-48.
    [17] Mizuno N, Misono M, Heterogeneous catalysis[J]. Chem Rev,1998,98(1):199-217.
    [18] Kim W B, Voitl T, Rodriguez-Rivera G J, et al., Powering fuel cells with CO via aqueous polyoxo-metalates and gold catalysts[J]. Science,2004,305(5688):1280-1283.
    [19] Katsoulis D E, A survey of applications of polyoxometalates[J]. Chem Rev,1998,98(1):359-387.
    [20] Aparicio-Anglès X, Clotet A, Bo C, et al., Towards the computational modelling of polyoxoanions onmetal surfaces: IR spectrum characterisation of [SiW412O40]-on Ag(111)[J]. Phys Chem Chem Phys,2011,13(33):15143-15147.
    [21] Ge M, Zhong B, Klemperer W G, et al., Self-assembly of silicotungstate anions on silver surfaces[J]. JAm Chem Soc,1996,118(24):5812-5813.
    [22] Lee L, Wang J X, Ad i R R, et al., Adsorption configuration and local ordering of silicotungstate an-ions on Ag(100) electrode surfaces[J]. J Am Chem Soc,2001,123(36):8838-8843.
    [23] Teague C M, Li X, Biggin M E, et al., Vibrational spectroscopy of a Keggin polyoxometalate on metalelectrode surfaces[J]. J Phys Chem B,2004,108(6):1974-1985.
    [24] Kim J, Lee L, Niece B K, et al., Formation of ordered multilayers from polyoxometalates and silver onelectrode surfaces[J]. J Phys Chem B,2004,108(23):7927-7933.
    [25] Ma F J, Liu S X, Sun C Y, et al., A sodalite-type porous metal-organic framework withpolyoxometalate templates: Adsorption and decomposition of dimethyl methylphosphonate[J]. J Am ChemSoc,2011,133(12):4178-4181.
    [26] Li H, Pang S, Feng X, et al., Polyoxometalate assisted photoreduction of graphene oxide and itsnanocomposite formation[J]. Chem Commun,2010,46(34):6243-6245.
    [27] Li H, Pang S, Wu S, et al., Layer-by-layer assembly and UV photoreduction of graphene-poly-oxometalate composite films for electronics[J]. J Am Chem Soc,2011,133(24):9423-9429.
    [28] Sloan J, Liu Z, Suenaga K, et al., Imaging the structure, symmetry, and surface-inhibited rotation ofpolyoxometalate ions on graphene oxide[J]. Nano Lett,2010,10(11):4600-4606.
    [29] Chaumont A, Wipff G, Polyoxometalate Keggin anions at aqueous interfaces with organic solvents,ionic liquids, and graphite: A molecular dynamics study[J]. J Phys Chem C,2009,113(42):18233-18243.
    [30] Ordejón P, Artacho E, Soler J, Self-consistent order-N density-functional calculations for very largesystems.[J]. Phys Rev B,1996,53(16): R10441-R10444.
    [31] Sánchez-Portal D, Ordejón P, Artacho E, et al., Density-functional method for very large systems withLCAO basis sets[J]. Int J Quantum Chem,1997,65(5):453-461.
    [32] Soler J M, Artacho E, Gale J D, et al., The SIESTA method for ab initio order-N materials[J]. J Phys:Condns Matter,2002,14(11):2745-2779.
    [33] Troullier N, Martins J L, Efficient pseudopotentials for plane-wave calculations. II. Operators for fastiterative diagonalization[J]. Phys Rev B,1991,43(11):8861-8869.
    [34] Perdew J P, Zunger A, Self-interaction correction to density-functional approximations for many-elec-tron systems[J]. Phys Rev B,1981,23(10):5048-5079.
    [35] Perdew J P, Burke K, Ernzerhof M, Generalized gradient approximation made simple[J]. Phys RevLett,1996,77(18):3865-3868.
    [36] Mulliken R S, Electronic population analysis on LCAO-MO molecular wave functions. I[J]. J ChemPhys,1955,23(10):1833-1833.
    [37] Maestre J M, Lopez X, Bo C, et al., Electronic and magnetic properties of α-Keggin anions: A DFTstudy of [XM12O-40]n,(M=W, Mo; X=A1III, SiIV, PV, FeIII, CoII, CoIII) and [SiM11VO40]m-(M=Mo andW)[J]. J Am Chem Soc,2001,123(16):3749-3758.
    [38] López X, Maestre J M, Bo C, et al., Electronic properties of polyoxometalates: A DFT study ofα/β-[XM12O40]n-relative stability (M=W, Mo and X a main group element)[J]. J Am Chem Soc,2001,123(39):9571-9576.
    [39] Guan W, Yan L, Su Z, et al., Electronic properties and stability of dititanium(IV) substituted apha-Keg-gin polyoxotungstate with heteroatom phosphorus by DFT[J]. Inorg Chem,2005,44(1):100-107.
    [40] Ravelli D, Dondi D, Fagnoni M, et al., Predicting the UV spectrum of polyoxometalates by TDDFT[J].J Comput Chem,2011,32(4):2983-2987.
    [41] Fuchs J, Freiwald W, Hartl H, Neubestimmung der Kristallstruktur von, Tetrabutylammonium-hexawolframat[J]. Acta Crystallogr Sec B: Struct Sci,1978,34(6):1764-1770.
    [42] Makov G, Payne M C, Periodic boundary conditions in ab initio calculations[J]. Phys Rev B,1995,51(7):4014-4022.
    [43] Dabo I, Kozinsky B, Singh-Miller N E, et al., Electrostatics in periodic boundary conditions and re-al-space corrections[J]. Phys Rev B,2008,77(11):115139.
    [44] The three Na ions were positioned around the PW12which is farthest to the graphene surface. There issome uncertainty in determine the position of the Na atoms. We just took one of the possible situationswhich the Na atoms were supposed to interact only with the bridging oxygen. Full optimization with thesame force convergence was also used for this model. Due to the same fixed supercell, atoms and charge ofour models we adopted, we just take this lowest energy configuration as an example for convenient.
    [45] Dion M, Rydberg H, Schr der E, et al., Van der Waals density functional for general geometries[J].Phys Rev Lett,2004,92(24):246401.
    [46] Román-Pérez G, Soler J M, Efficient implementation of a van der Waals density functional: Applica-tion to double-wall carbon nanotubes[J]. Phys Rev Lett,2009,103(9):096102.
    [47] No further geometry optimization is made with the vdW functional. The adsorption energy is calcu-lated based on the geometry obtained with GGA method for S4-b model only for directly comparition.
    [48] Arellano J S, Molina L M, Rubio A, et al., Density functional study of adsorption of molecular hydro-gen on graphene layers[J]. J Chem Phys,2000,112(18):8114-8119.
    [49] Kawasaki N, Wang H, Nakanishi R, et al., Nanohybridization of polyoxometalate clusters and sin-gle-wall carbon nanotubes: applications in molecular cluster batteries[J]. Angew Chem Int Ed,2011,123(15):3533-3536.
    [50] Zanolli Z, Leghrib R, Felten A, et al., Gas sensing with au-decorated carbon nanotubes[J]. ACSnano,2011,5(6):4592-4599.
    [51] The DFT calculations are performed with SIESTA code, and quantum transport is modeled within theSMEAGOL code. The norm-conserving pseudopotentials and the local density approximation (LDA) areadopted. A numerical atomic orbital basis set of SZ is used for C and DZP for other atoms with50meVenergy shift. Periodic boundary conditions are chosen along y and z axis, while for x axis the large dimen-sions with30is chosen. To reduce the computational demand200Ry of enegy cutoff were chosen fortransport simulations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700